메뉴 건너뛰기




Volumn 40, Issue , 2010, Pages 469-500

Heterogeneous integration of compound semiconductors

Author keywords

defect engineering; direct wafer bonding; heterodevices; ion cut; thin layer and nanomembrane transfer

Indexed keywords

DEFECT ENGINEERING; DIRECT WAFER BONDING; HETERODEVICES; ION-CUT; THIN LAYER AND NANOMEMBRANE TRANSFER;

EID: 77956988478     PISSN: 15317331     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev-matsci-070909-104448     Document Type: Article
Times cited : (138)

References (186)
  • 2
    • 0025849269 scopus 로고
    • Mesa release and deposition used for GaAs-on-Si MESFET fabrication
    • Deboeck J, Zou G, Vanrossum M, Borghs G. 1991. Mesa release and deposition used for GaAs-on-Si MESFET fabrication. Electron. Lett. 27:22-23
    • (1991) Electron. Lett. , vol.27 , pp. 22-23
    • Deboeck, J.1    Zou, G.2    Vanrossum, M.3    Borghs, G.4
  • 3
    • 0026420422 scopus 로고
    • 1.3μm InGaAsP ridge waveguide laser on GaAs and silicon substrates by thin-film transfer
    • Shieh CL, Chi JY, Armiento CA, Haugsjaa PO, Negri A et al. 1991. 1.3μm InGaAsP ridge waveguide laser on GaAs and silicon substrates by thin-film transfer. Electron. Lett. 27:850-851
    • (1991) Electron. Lett. , vol.27 , pp. 850-851
    • Shieh, C.L.1    Chi, J.Y.2    Armiento, C.A.3    Haugsjaa, P.O.4    Negri, A.5
  • 4
    • 0026923827 scopus 로고
    • Vertical electrical interconnection of compound semiconductor thin-film devices to underlying silicon circuitry
    • Camperiginestet C, Kim YW, Jokerst NM, Allen MG, Brooke MA. 1992. Vertical electrical interconnection of compound semiconductor thin-film devices to underlying silicon circuitry. IEEE Photon. Tech. Lett. 4:1003-1006
    • (1992) IEEE Photon. Tech. Lett. , vol.4 , pp. 1003-1006
    • Camperiginestet, C.1    Kim, Y.W.2    Jokerst, N.M.3    Allen, M.G.4    Brooke, M.A.5
  • 5
    • 0027875384 scopus 로고
    • Direct bonding of GaAs films on silicon circuits by epitaxial liftoff
    • Ersen A, Schnitzer I, Yablonovitch E, Gmitter T. 1993. Direct bonding of GaAs films on silicon circuits by epitaxial liftoff. Electron. Lett. 36:1731-1739
    • (1993) Electron. Lett. , vol.36 , pp. 1731-1739
    • Ersen, A.1    Schnitzer, I.2    Yablonovitch, E.3    Gmitter, T.4
  • 6
    • 60749133848 scopus 로고    scopus 로고
    • Is silicons reign nearing its end?
    • Service RS. 2009. Is silicons reign nearing its end? Science 323:1000-1002
    • (2009) Science , vol.323 , pp. 1000-1002
    • Service, R.S.1
  • 7
    • 34250205539 scopus 로고    scopus 로고
    • Prospects for rare earth doped GaN lasers on Si
    • Steckl AJ, Park JH, Zavada JM. 2007. Prospects for rare earth doped GaN lasers on Si. Mater. Today 10:20-27
    • (2007) Mater. Today , vol.10 , pp. 20-27
    • Steckl, A.J.1    Park, J.H.2    Zavada, J.M.3
  • 10
    • 3242671509 scopus 로고    scopus 로고
    • A 90 nm high-volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors
    • 2003
    • Ghani T, Armstrong M, Auth C, Bost M, Charvat P et al. 2003. A 90 nm high-volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. Int. Electron Devices Meet. Tech. Dig. 2003:978-980
    • (2003) Int. Electron Devices Meet. Tech. Dig. , pp. 978-980
    • Ghani, T.1    Armstrong, M.2    Auth, C.3    Bost, M.4    Charvat, P.5
  • 11
    • 69249119394 scopus 로고    scopus 로고
    • Ultimate scaling of CMOS logic devices with Ge and III-V materials
    • Heyns M Tsai W (2009). Ultimate scaling of CMOS logic devices with Ge and III-V materials. MRS Bull. 34: 485-488.
    • (2009) MRS Bull. , vol.34 , pp. 485-488
    • Heyns, M.1    Tsai, W.2
  • 12
    • 49149131108 scopus 로고    scopus 로고
    • Heterogeneous integration of enhancement mode In0.7Ga0.3As quantum well transistor on silicon substrate using thin (≥2μm) composite buffer architecture for high-speed and low-voltage (0.5V) logic applications
    • 2007
    • Hudait MK, Dewey G, Datta S, Fastenau JM, Kavalieros J et al. 2007. Heterogeneous integration of enhancement mode In0.7Ga0.3As quantum well transistor on silicon substrate using thin (≥2μm) composite buffer architecture for high-speed and low-voltage (0.5V) logic applications. Int. Electron Devices Meet. 2007:625-628
    • (2007) Int. Electron Devices Meet. , pp. 625-628
    • Hudait, M.K.1    Dewey, G.2    Datta, S.3    Fastenau, J.M.4    Kavalieros, J.5
  • 15
    • 36549095110 scopus 로고
    • First CW operation of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate
    • Razeghi M, Defour M, Blondeau R, Omnes F, Maurel P et al. 1988. First CW operation of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate. Appl. Phys. Lett. 53:2389-2390
    • (1988) Appl. Phys. Lett. , vol.53 , pp. 2389-2390
    • Razeghi, M.1    Defour, M.2    Blondeau, R.3    Omnes, F.4    Maurel, P.5
  • 16
    • 0032547594 scopus 로고    scopus 로고
    • Laser action in GaN pyramids grown on (111) silicon by selective lateral overgrowth
    • Bidnyk S, Little BD, Cho YH, Krasinski J, Song JJ et al. 1998. Laser action in GaN pyramids grown on (111) silicon by selective lateral overgrowth. Appl. Phys. Lett. 73:2242-2244
    • (1998) Appl. Phys. Lett. , vol.73 , pp. 2242-2244
    • Bidnyk, S.1    Little, B.D.2    Cho, Y.H.3    Krasinski, J.4    Song, J.J.5
  • 18
    • 22944438437 scopus 로고    scopus 로고
    • Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon
    • Mi Z, Bhattacharya P, Yang J, Pipe KP. 2005. Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon. Electron. Lett. 41:742-743
    • (2005) Electron. Lett. , vol.41 , pp. 742-743
    • Mi, Z.1    Bhattacharya, P.2    Yang, J.3    Pipe, K.P.4
  • 19
    • 26844498032 scopus 로고    scopus 로고
    • Athin-film laser, polymer waveguide, and thin-film photodetector cointegrated onto a silicon substrate
    • Seo S-W,Cho S-Y, JokerstNM. 2005.Athin-film laser, polymer waveguide, and thin-film photodetector cointegrated onto a silicon substrate. IEEE Photon. Technol. Lett. 17:2197-2199
    • (2005) IEEE Photon. Technol. Lett. , vol.17 , pp. 2197-2199
    • Seo, S.-W.1    Cho, S.-Y.2    Jokerst, N.M.3
  • 20
    • 25144443990 scopus 로고    scopus 로고
    • Demonstration of a visible laser on silicon using Eu-doped GaN thin films
    • Park JH, Steckl AJ. 2005. Demonstration of a visible laser on silicon using Eu-doped GaN thin films. J. Appl. Phys. 98:056108
    • (2005) J. Appl. Phys. , vol.98 , pp. 056108
    • Park, J.H.1    Steckl, A.J.2
  • 21
    • 33746211194 scopus 로고    scopus 로고
    • Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy
    • Kwon O, Boeckl JJ, Lee ML, Pitera AJ, Fitzgerald EA et al. 2006. Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy. J. Appl. Phys. 100:013103
    • (2006) J. Appl. Phys. , vol.100 , pp. 013103
    • Kwon, O.1    Boeckl, J.J.2    Lee, M.L.3    Pitera, A.J.4    Fitzgerald, E.A.5
  • 22
    • 33749380861 scopus 로고    scopus 로고
    • Electrically pumped hybrid AlGaInAssilicon evanescent laser
    • Fang AW, Park H, Cohen O, Jones R, Paniccia MJ et al. 2006. Electrically pumped hybrid AlGaInAssilicon evanescent laser. Opt. Express 14:9203-9210
    • (2006) Opt. Express , vol.14 , pp. 9203-9210
    • Fang, A.W.1    Park, H.2    Cohen, O.3    Jones, R.4    Paniccia, M.J.5
  • 23
    • 63149179289 scopus 로고    scopus 로고
    • 150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits
    • Liang D, Fang AW, Oakley DC, Napoleone A, Chapman DC et al. 2008. 150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits. ECS Trans. 16:235-241
    • (2008) ECS Trans. , vol.16 , pp. 235-241
    • Liang, D.1    Fang, A.W.2    Oakley, D.C.3    Napoleone, A.4    Chapman, D.C.5
  • 24
    • 63149198910 scopus 로고    scopus 로고
    • Integration of compound semiconductor devices and CMOS (CoSMOS) with die to wafer bonding
    • Patterson PR, Elliott K, Li JC, Royter Y, Hussain T. 2008. Integration of compound semiconductor devices and CMOS (CoSMOS) with die to wafer bonding. ECS Trans. 16:221-225
    • (2008) ECS Trans. , vol.16 , pp. 221-225
    • Patterson, P.R.1    Elliott, K.2    Li, J.C.3    Royter, Y.4    Hussain, T.5
  • 26
    • 33845691203 scopus 로고    scopus 로고
    • Heterogeneous three-dimensional nanodevices. electronics by use of printed semiconductor nanomaterials
    • Ahn J-H Kim H-S Lee KJ Jeon S Kang SJ et al. (2006) Heterogeneous three-dimensional nanodevices. electronics by use of printed semiconductor nanomaterials. Science; 314: 1754-1757.
    • (2006) Science , vol.314 , pp. 1754-1757
    • Ahn, J.-H.1    Kim, H.-S.2    Lee, K.J.3    Jeon, S.4    Kang, S.J.5
  • 27
    • 77957005181 scopus 로고    scopus 로고
    • Transfer printed heterogeneous integrated circuits
    • Austin, Tex.
    • Menard E, Bower CA, Carr J, Rogers JA. 2007. Transfer printed heterogeneous integrated circuits. CS MANTECH Conf., Austin, Tex., pp. 203-205
    • (2007) CS MANTECH Conf. , pp. 203-205
    • Menard, E.1    Bower, C.A.2    Carr, J.3    Rogers, J.A.4
  • 28
    • 33750007643 scopus 로고    scopus 로고
    • Printed arrays of aligned GaAs wires for flexible transistors, diodes, and circuits on plastic substrates
    • Sun Y, Kim H-S, Menard E, Kim S, Adesida I et al. 2006. Printed arrays of aligned GaAs wires for flexible transistors, diodes, and circuits on plastic substrates. Small 2:1330-1334
    • (2006) Small , vol.2 , pp. 1330-1334
    • Sun, Y.1    Kim, H.-S.2    Menard, E.3    Kim, S.4    Adesida, I.5
  • 29
    • 30044447991 scopus 로고    scopus 로고
    • Transfer printing by kinetic control of adhesion to an elastomeric stamp
    • Meitl MA, Zhu Z, Kumar V, Lee KJ, Feng X et al. 2006. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5:33-38
    • (2006) Nat. Mater. , vol.5 , pp. 33-38
    • Meitl, M.A.1    Zhu, Z.2    Kumar, V.3    Lee, K.J.4    Feng, X.5
  • 30
    • 69249127460 scopus 로고    scopus 로고
    • Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays
    • Park SI,Xiong YJ, Kim RH, Elvikis P, Meitl M et al. 2009. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325:977-981
    • (2009) Science , vol.325 , pp. 977-981
    • Park Sixiong, Y.J.1    Kim, R.H.2    Elvikis, P.3    Meitl, M.4
  • 32
    • 58149504133 scopus 로고    scopus 로고
    • Effects of hydrogen implantation damage on the performance of InP/InGaAs/InP p-i-n photodiodes transferred on silicon
    • Chen P, Chen WV, Yu PKL, Tang CW, Lau KM et al. 2009. Effects of hydrogen implantation damage on the performance of InP/InGaAs/InP p-i-n photodiodes transferred on silicon. Appl. Phys. Lett. 94:012101
    • (2009) Appl. Phys. Lett. , vol.94 , pp. 012101
    • Chen, P.1    Chen, W.V.2    Pkl, Y.3    Tang, C.W.4    Lau, K.M.5
  • 33
    • 33947138803 scopus 로고    scopus 로고
    • Epitaxial growth of III-V nanowires on group IV substrates
    • Bakkers EPAM, Borgstr̈om MT, Verheijen MA. 2007. Epitaxial growth of III-V nanowires on group IV substrates. MRS Bull. 32:117-122
    • (2007) MRS Bull. , vol.32 , pp. 117-122
    • Epam, B.1    Borgstr̈om, M.T.2    Verheijen, M.A.3
  • 34
    • 63049114062 scopus 로고    scopus 로고
    • Reduction of phonon resonant terahertz wave absorption in photoconductive switches using epitaxial layer transfer
    • Kasai S, Katagiri T, Takayanagi J, Kawase K, Ouchi T. 2009. Reduction of phonon resonant terahertz wave absorption in photoconductive switches using epitaxial layer transfer. Appl. Phys. Lett. 94:113505
    • (2009) Appl. Phys. Lett. , vol.94 , pp. 113505
    • Kasai, S.1    Katagiri, T.2    Takayanagi, J.3    Kawase, K.4    Ouchi, T.5
  • 35
    • 67949085184 scopus 로고    scopus 로고
    • Micro strip line-based on-chip terahertz integrated devices for high sensitivity biosensors
    • Kasai S,Tanabashi A, Kajiki K, Itsuji T, Kurosaka R et al. 2009. Micro strip line-based on-chip terahertz integrated devices for high sensitivity biosensors. Appl. Phys. Express 2:062401
    • (2009) Appl. Phys. Express , vol.2 , pp. 062401
    • Kasai Stanabashi, A.1    Kajiki, K.2    Itsuji, T.3    Kurosaka, R.4
  • 36
    • 0003426859 scopus 로고    scopus 로고
    • Levinshtein ME, Rumyantsev SL, Shur MS, eds New York: Wiley
    • Levinshtein ME, Rumyantsev SL, Shur MS, eds. 2001. Properties of Advanced Semiconductor Materials. New York: Wiley
    • (2001) Properties of Advanced Semiconductor Materials
  • 38
  • 43
    • 46449084817 scopus 로고
    • Gallium arsenide FETs outperform conventional silicon MOS devices
    • Becke HW, White JP. 1967. Gallium arsenide FETs outperform conventional silicon MOS devices. Electronics 40:82-85
    • (1967) Electronics , vol.40 , pp. 82-85
    • Becke, H.W.1    White, J.P.2
  • 44
    • 0019023053 scopus 로고
    • Status of the GaAs metal-oxide-semiconductor technology
    • Mimura T, Fukuta M. 1980. Status of the GaAs metal-oxide-semiconductor technology. IEEE Trans. Electron Devices 27:1147-1155
    • (1980) IEEE Trans. Electron Devices , vol.27 , pp. 1147-1155
    • Mimura, T.1    Fukuta, M.2
  • 45
    • 46449098816 scopus 로고    scopus 로고
    • Main determinants for III-V metal-oxide-semiconductor field-effect transistors
    • Yea PD. 2008. Main determinants for III-V metal-oxide-semiconductor field-effect transistors. J. Vac. Sci. Technol. A 26:697-704
    • (2008) J. Vac. Sci. Technol. A , vol.26 , pp. 697-704
    • Yea, P.D.1
  • 46
    • 0343001109 scopus 로고
    • Band lineup for a GaInP/GaAs heterojunction measured by a high-gain Npn heterojunction bipolar transistor grown by metalorganic chemical vapor deposition
    • Kobayashi T, Taira K, Nakamura F, Kawai H. 1989. Band lineup for a GaInP/GaAs heterojunction measured by a high-gain Npn heterojunction bipolar transistor grown by metalorganic chemical vapor deposition. J. Appl. Phys. 65:4898-4902
    • (1989) J. Appl. Phys. , vol.65 , pp. 4898-4902
    • Kobayashi, T.1    Taira, K.2    Nakamura, F.3    Kawai, H.4
  • 48
    • 0029512455 scopus 로고
    • AlInAs/GaInAs/InP double heterojunction bipolar transistor with a novel base-collector design for power applications
    • Nguyen C, Liu T, Chen M, Sun H-C, Rensch D. 1995. AlInAs/GaInAs/InP double heterojunction bipolar transistor with a novel base-collector design for power applications. Int. Electron Devices Meet. 1995:799-802
    • (1995) Int. Electron Devices Meet. , vol.1995 , pp. 799-802
    • Nguyen, C.1    Liu, T.2    Chen, M.3    Sun, H.-C.4    Rensch, D.5
  • 49
    • 36449002595 scopus 로고    scopus 로고
    • InP/GaAsSb/InP and InP/GaAsSb/InGaAsP double heterojunction bipolar transistors with a carbon-doped base grown by organometallic chemical vapor deposition
    • Bhat R, Hong W-P, Caneau C, Koza MA, Nguyen C-K et al. 1996. InP/GaAsSb/InP and InP/GaAsSb/InGaAsP double heterojunction bipolar transistors with a carbon-doped base grown by organometallic chemical vapor deposition. Appl. Phys. Lett. 68:985-987
    • (1996) Appl. Phys. Lett. , vol.68 , pp. 985-987
    • Bhat, R.1    Hong, W.-P.2    Caneau, C.3    Koza, M.A.4    Nguyen, C.-K.5
  • 50
    • 0032614607 scopus 로고    scopus 로고
    • Growth and fabrication of GaN/AlGaN heterojunction bipolar transistor
    • Han J, Baca AG, Shul RJ, Willison CG, Zhang L et al. 1999. Growth and fabrication of GaN/AlGaN heterojunction bipolar transistor. Appl. Phys. Lett. 74:2702-2704
    • (1999) Appl. Phys. Lett. , vol.74 , pp. 2702-2704
    • Han, J.1    Baca, A.G.2    Shul, R.J.3    Willison, C.G.4    Zhang, L.5
  • 52
    • 0842277372 scopus 로고
    • High electron mobility transistor based on a GaN-AlxGa1?xN heterojunction
    • Khan MA, Bhattarai A, Kuznia JN, Olson DT. 1993. High electron mobility transistor based on a GaN-AlxGa1?xN heterojunction. Appl. Phys. Lett. 63:1214-1215
    • (1993) Appl. Phys. Lett. , vol.63 , pp. 1214-1215
    • Khan, M.A.1    Bhattarai, A.2    Kuznia, J.N.3    Olson, D.T.4
  • 54
    • 33846611741 scopus 로고    scopus 로고
    • 85 nm gate length enhancement and depletion mode InSb quantum well transistors for ultra high speed and very low power digital logic applications
    • 2005
    • Datta S, AshleyT, Brask J, Buckle L, Doczy M et al. 2005. 85 nm gate length enhancement and depletion mode InSb quantum well transistors for ultra high speed and very low power digital logic applications. Int. Electron Devices Meet. 2005:783-786
    • (2005) Int. Electron Devices Meet. , pp. 783-786
    • Datta, S.1    Ashleyt Brask, J.2    Buckle, L.3    Doczy, M.4
  • 55
    • 34547620506 scopus 로고    scopus 로고
    • Heterogeneous InSb quantum well transistors on silicon for ultra-high speed, low power logic applications
    • Ashley T, Buckle L, Datta S, Emeny MT, Hayes DG et al. 2007. Heterogeneous InSb quantum well transistors on silicon for ultra-high speed, low power logic applications. Electron. Lett. 43:777-779
    • (2007) Electron. Lett. , vol.43 , pp. 777-779
    • Ashley, T.1    Buckle, L.2    Datta, S.3    Emeny, M.T.4    Hayes, D.G.5
  • 56
    • 0141775174 scopus 로고
    • Silicon quantum array fabrication by electrochemical chemical dissolution of wafers
    • Canham LT. 1990. Silicon quantum array fabrication by electrochemical chemical dissolution of wafers. Appl. Phys. Lett. 57:1046-1048
    • (1990) Appl. Phys. Lett. , vol.57 , pp. 1046-1048
    • Canham, L.T.1
  • 57
    • 1842595981 scopus 로고
    • Porous silicon formation: A quantum wire effect
    • LehmannV,G̈oseleU. 1991. Porous silicon formation: a quantum wire effect. Appl. Phys. Lett. 58:656-658
    • (1991) Appl. Phys. Lett. , vol.58 , pp. 656-658
    • Lehmann, V.1    G̈osele, U.2
  • 58
    • 0038444694 scopus 로고    scopus 로고
    • Will silicon be the photonic material of the third millenium?
    • Pavesi L. 2003. Will silicon be the photonic material of the third millenium? J. Phys. Condens. Matter 15:R1169-96
    • (2003) J. Phys. Condens. Matter , vol.15
    • Pavesi, L.1
  • 59
    • 9144245707 scopus 로고    scopus 로고
    • Demonstration of a silicon Raman laser
    • Boyraz O, Jalali B. 2004. Demonstration of a silicon Raman laser. Opt. Express 12:5269-5273
    • (2004) Opt. Express , vol.12 , pp. 5269-5273
    • Boyraz, O.1    Jalali, B.2
  • 64
    • 67449136398 scopus 로고    scopus 로고
    • Silicon-germanium nanostructures for light emitters and on-chip optical interconnects
    • Tsybeskov L, Lockwood DJ. 2009. Silicon-germanium nanostructures for light emitters and on-chip optical interconnects. Proc. IEEE 97:1284-1303
    • (2009) Proc. IEEE , vol.97 , pp. 1284-1303
    • Tsybeskov, L.1    Lockwood, D.J.2
  • 67
    • 60349107985 scopus 로고    scopus 로고
    • InGaN/GaN multiple quantum well solar cells with long operating wavelengths
    • Dahal R, Pantha B, Li J, Lin JY, Jiang HX. 2009. InGaN/GaN multiple quantum well solar cells with long operating wavelengths. Appl. Phys. Lett. 94:063505
    • (2009) Appl. Phys. Lett. , vol.94 , pp. 063505
    • Dahal, R.1    Pantha, B.2    Li, J.3    Lin, J.Y.4    Jiang, H.X.5
  • 68
    • 0942288657 scopus 로고    scopus 로고
    • InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation
    • Fontcuberta i Morral A, Zahler JM, AtwaterHA, Ahrenkiel SP, Wanlass MW. 2003. InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation. Appl. Phys. Lett. 83:5413-5415
    • (2003) Appl. Phys. Lett. , vol.83 , pp. 5413-5415
    • Fontcuberta, I.1    Morral, A.2    Zahler, J.M.3    Atwater, H.A.4    Ahrenkiel, S.P.5    Wanlass, M.W.6
  • 71
    • 24144468206 scopus 로고    scopus 로고
    • Electrical detection of immobilized proteins with ungated AlGaN/GaN high-electron-mobility transistors
    • Kang BS, Ren F, Wang L, Lofton C, Tan WHW et al. 2005. Electrical detection of immobilized proteins with ungated AlGaN/GaN high-electron-mobility transistors. Appl. Phys. Lett. 87:023508
    • (2005) Appl. Phys. Lett. , vol.87 , pp. 023508
    • Kang, B.S.1    Ren, F.2    Wang, L.3    Lofton, C.4    Whw, T.5
  • 72
    • 33748973080 scopus 로고    scopus 로고
    • Electrical detection of deoxyribonucleic acid hybridization with AlGaN/GaN high electron mobility transistors
    • Kang BS, Pearton SJ, Chen JJ, Ren F, Johnson JW et al. 2006. Electrical detection of deoxyribonucleic acid hybridization with AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 89:122102
    • (2006) Appl. Phys. Lett. , vol.89 , pp. 122102
    • Kang, B.S.1    Pearton, S.J.2    Chen, J.J.3    Ren, F.4    Johnson, J.W.5
  • 73
    • 49749145679 scopus 로고    scopus 로고
    • Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors
    • Kang BS,Wang HT, Ren F, Pearton SJ. 2008. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. J. Appl. Phys. 104:031101
    • (2008) J. Appl. Phys. , vol.104 , pp. 031101
    • Kang Bswang, H.T.1    Ren, F.2    Pearton, S.J.3
  • 75
    • 0036531775 scopus 로고    scopus 로고
    • Technology and materials issues in semiconductor-based magnetoelectronics
    • De Boeck J, Van Roy W, Das J, Motsnyi V, Liu Z et al. 2002. Technology and materials issues in semiconductor-based magnetoelectronics. Semicond. Sci. Technol. 17:342-354
    • (2002) Semicond. Sci. Technol. , vol.17 , pp. 342-354
    • De Boeck, J.1    Van Roy, W.2    Das, J.3    Motsnyi, V.4    Liu, Z.5
  • 77
    • 0021521599 scopus 로고
    • Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD
    • AkiyamaM, Kawarada Y, Kaminishi K. 1984. Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD. Jpn. J. Appl. Phys. 23:L843-45
    • (1984) Jpn. J. Appl. Phys. , vol.23
    • Akiyama, M.1    Kawarada, Y.2    Kaminishi, K.3
  • 79
    • 33746279630 scopus 로고    scopus 로고
    • Effect of two-step growth on the heteroepitaxial growth of InSb thin film on Si (001) substrate: A transmission electron microscopy study
    • Kim YH, Lee JY, Noh YG, KimMD, Kwon YJ et al. 2006. Effect of two-step growth on the heteroepitaxial growth of InSb thin film on Si (001) substrate: a transmission electron microscopy study. Appl. Phys. Lett. 89:031919
    • (2006) Appl. Phys. Lett. , vol.89 , pp. 031919
    • Kim, Y.H.1    Lee, J.Y.2    Noh, Y.G.3    Kimmd Kwon, Y.J.4
  • 80
    • 0011320719 scopus 로고
    • A novel crystal growth phenomenon: Single crystal GaAs overgrowth onto silicon dioxide
    • Tausch FW Jr, Lapierre AG III. 1965. A novel crystal growth phenomenon: single crystal GaAs overgrowth onto silicon dioxide. J. Electrochem. Soc. 112:706-709
    • (1965) J. Electrochem. Soc. , vol.112 , pp. 706-709
    • Tausch Jr., F.W.1    Lapierre III, A.G.2
  • 81
    • 36749118810 scopus 로고
    • A technique for producing epitaxial films on reuseable substrates
    • McClelland RW, Bozler CO, Fan JCC. 1980. A technique for producing epitaxial films on reuseable substrates. Appl. Phys. Lett. 37:560-562
    • (1980) Appl. Phys. Lett. , vol.37 , pp. 560-562
    • McClelland, R.W.1    Bozler, C.O.2    Jcc, F.3
  • 82
    • 34548756252 scopus 로고    scopus 로고
    • Fabrication of III-V on insulator structures on Si using microchannel epitaxy with a two-step growth technique
    • Shichijo M, Nakane R, Sugahara S, Takagi S. 2007. Fabrication of III-V on insulator structures on Si using microchannel epitaxy with a two-step growth technique. Jpn. J. Appl. Phys. 46:5930-5934
    • (2007) Jpn. J. Appl. Phys. , vol.46 , pp. 5930-5934
    • Shichijo, M.1    Nakane, R.2    Sugahara, S.3    Takagi, S.4
  • 83
    • 44649150181 scopus 로고    scopus 로고
    • Heteroepitaxial growth of GaAs on (100) Ge/Si using migration enhanced epitaxy
    • Tanoto H, Yoon SF, LokeWK, Chen KP, Fitzgerald EA et al. 2008. Heteroepitaxial growth of GaAs on (100) Ge/Si using migration enhanced epitaxy. J. Appl. Phys. 103:104901
    • (2008) J. Appl. Phys. , vol.103 , pp. 104901
    • Tanoto, H.1    Yoon, S.F.2    Lokewk Chen, K.P.3    Fitzgerald, E.A.4
  • 84
    • 44349187310 scopus 로고    scopus 로고
    • Molecular-beam epitaxy growth of III-V semiconductors on Ge/Si for metal-oxide-semiconductor device fabrication
    • Choi D, Kim E,McIntyre PC, Harris JS. 2008. Molecular-beam epitaxy growth of III-V semiconductors on Ge/Si for metal-oxide-semiconductor device fabrication. Appl. Phys. Lett. 92:203502
    • (2008) Appl. Phys. Lett. , vol.92 , pp. 203502
    • Choi, D.1    Kim Emcintyre, P.C.2    Harris, J.S.3
  • 85
    • 0242498422 scopus 로고    scopus 로고
    • Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique
    • Nakaharai S, Tezuka T, Sugiyama N, Moriyama Y, Takagi S. 2003. Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique. Appl. Phys. Lett. 83:3516-3518
    • (2003) Appl. Phys. Lett. , vol.83 , pp. 3516-3518
    • Nakaharai, S.1    Tezuka, T.2    Sugiyama, N.3    Moriyama, Y.4    Takagi, S.5
  • 86
    • 33751122778 scopus 로고
    • Vapor-liquid-solid mechanism of single crystal growth
    • Wagner RS, Ellis WC. 1964. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4:89-90
    • (1964) Appl. Phys. Lett. , vol.4 , pp. 89-90
    • Wagner, R.S.1    Ellis, W.C.2
  • 87
    • 0000986791 scopus 로고
    • Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates
    • Yazawa M, Koguchi M, Hiruma K. 1991. Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates. Appl. Phys. Lett. 58:1080-1082
    • (1991) Appl. Phys. Lett. , vol.58 , pp. 1080-1082
    • Yazawa, M.1    Koguchi, M.2    Hiruma, K.3
  • 88
    • 33344462077 scopus 로고
    • Growth and optical properties of nanometer-scale GaAs and InAs whiskers
    • Hiruma K, Yazawa M, Katsuyama T, Ogawa K, Haraguchi K. 1995. Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77:447-462
    • (1995) J. Appl. Phys. , vol.77 , pp. 447-462
    • Hiruma, K.1    Yazawa, M.2    Katsuyama, T.3    Ogawa, K.4    Haraguchi, K.5
  • 91
    • 33749258714 scopus 로고    scopus 로고
    • InP nanobridges epitaxially formed between two vertical Si surfaces by metal-catalyzed chemical vapor deposition
    • Yi SS, GirolamiG, Amano J, Islam MS, Sharma S et al. 2006. InP nanobridges epitaxially formed between two vertical Si surfaces by metal-catalyzed chemical vapor deposition. Appl. Phys. Lett. 89:133121
    • (2006) Appl. Phys. Lett. , vol.89 , pp. 133121
    • Yi, S.S.1    Girolamig Amano, J.2    Islam, M.S.3    Sharma, S.4
  • 92
    • 0031624240 scopus 로고    scopus 로고
    • Semiconductor wafer bonding
    • G̈osele U, Tong QY. 1998. Semiconductor wafer bonding. Annu. Rev. Mater. Sci. 28:215-241
    • (1998) Annu. Rev. Mater. Sci. , vol.28 , pp. 215-241
    • G̈osele, U.T.1
  • 94
    • 0037023178 scopus 로고    scopus 로고
    • Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: Historical review in a broader scope and comparative outlook
    • Haisma J, Spierings GACM. 2002. Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: historical review in a broader scope and comparative outlook. Mater. Sci. Eng. R 37:1-60
    • (2002) Mater. Sci. Eng. R , vol.37 , pp. 1-60
    • Haisma, J.1    Spierings, G.A.C.M.2
  • 95
  • 96
    • 33947423949 scopus 로고    scopus 로고
    • Wafer direct bonding: From advanced substrate engineering to future applications in micro/nanoelectronics
    • Christiansen SH, Singh R, G̈osele U. 2006. Wafer direct bonding: from advanced substrate engineering to future applications in micro/nanoelectronics. Proc. IEEE 94:1-46
    • (2006) Proc. IEEE , vol.94 , pp. 1-46
    • Christiansen, S.H.1    Singh, R.2    G̈osele, U.3
  • 97
    • 30344444791 scopus 로고    scopus 로고
    • Glass frit bonding: An universal technology forwafer level encapsulation and packaging
    • Knechtel R. 2005. Glass frit bonding: an universal technology forwafer level encapsulation and packaging. Microsyst. Technol. 12:63-68
    • (2005) Microsyst. Technol. , vol.12 , pp. 63-68
    • Knechtel, R.1
  • 99
    • 0014563672 scopus 로고
    • Field assisted glass-metal sealing
    • Wallis G, Daniel IP. 1969. Field assisted glass-metal sealing. J. Appl. Phys. 40:3946-3949
    • (1969) J. Appl. Phys. , vol.40 , pp. 3946-3949
    • Wallis, G.1    Daniel, I.P.2
  • 101
    • 0037428750 scopus 로고    scopus 로고
    • Photocurrent method for characterizing the interface of hydrophobically bonded Si wafers
    • Yu SL, Mages P, Qiao D, Jia L, Yu PKL et al. 2003. Photocurrent method for characterizing the interface of hydrophobically bonded Si wafers. Appl. Phys. Lett. 82:916-918
    • (2003) Appl. Phys. Lett. , vol.82 , pp. 916-918
    • Yu, S.L.1    Mages, P.2    Qiao, D.3    Jia, L.4    Pkl, Y.5
  • 103
    • 0041941109 scopus 로고    scopus 로고
    • Heterogeneous silicon integration by ultrahigh vacuum wafer bonding
    • Kim MJ, Carpenter RW. 2003. Heterogeneous silicon integration by ultrahigh vacuum wafer bonding. J. Electron. Mater. 32:849-854
    • (2003) J. Electron. Mater. , vol.32 , pp. 849-854
    • Kim, M.J.1    Carpenter, R.W.2
  • 105
    • 49849089411 scopus 로고    scopus 로고
    • Highly efficient vertical outgassing channels for low-temperature InP-tosilicon direct wafer bonding on the silicon-on-insulator substrate
    • Liang D, Bowers JE. 2008. Highly efficient vertical outgassing channels for low-temperature InP-tosilicon direct wafer bonding on the silicon-on-insulator substrate. J. Vac. Sci. Technol. B 26:1560-1568
    • (2008) J. Vac. Sci. Technol. B , vol.26 , pp. 1560-1568
    • Liang, D.1    Bowers, J.E.2
  • 109
    • 60449089494 scopus 로고    scopus 로고
    • Stress adjustment and bonding of H-implanted 2-in. freestandingGaNwafer: The concept of double-sided splitting
    • Moutanabbir O, Senz S, Scholz R, Christiansen S, Avramescu A et al. 2009. Stress adjustment and bonding of H-implanted 2-in. freestandingGaNwafer: the concept of double-sided splitting. Electrochem. Solid-State Lett. 14:H105-8
    • (2009) Electrochem. Solid-State Lett. , vol.14
    • Moutanabbir, O.1    Senz, S.2    Scholz, R.3    Christiansen, S.4    Avramescu, A.5
  • 110
    • 0038559965 scopus 로고    scopus 로고
    • Low-temperature thermal oxide to plasma-enhanced chemical vapor deposition oxide wafer bonding for thin-layer transfer
    • Tan CS, Fan A, Chen KN, Reif R. 2003. Low-temperature thermal oxide to plasma-enhanced chemical vapor deposition oxide wafer bonding for thin-layer transfer. Appl. Phys. Lett. 82:2649-2651
    • (2003) Appl. Phys. Lett. , vol.82 , pp. 2649-2651
    • Tan, C.S.1    Fan, A.2    Chen, K.N.3    Reif, R.4
  • 111
    • 0001888905 scopus 로고
    • Fundamentals of bonding by isothermal solidification for high temperature semiconductor applications
    • ed. Lin RY, Chang YA, Reddy RG, Liu CT, pp. Warrendale, PA: Miner. Met. Mater. Soc.
    • Schmid-Fetzer R. 1995. Fundamentals of bonding by isothermal solidification for high temperature semiconductor applications. In Design Fundamentals of High Temperature Composites, Intermetallics, and Metal-Ceramics Systems, ed. Lin RY, Chang YA, Reddy RG, Liu CT, pp. 75-99. Warrendale, PA: Miner. Met. Mater. Soc.
    • (1995) Design Fundamentals of High Temperature Composites, Intermetallics, and Metal-Ceramics Systems , pp. 75-99
    • Schmid-Fetzer, R.1
  • 112
  • 114
    • 67149103782 scopus 로고    scopus 로고
    • Photonic integration: Si or InP?
    • Liang D, Bowers JE. 2009. Photonic integration: Si or InP? Electron. Lett. 45:578-581
    • (2009) Electron. Lett. , vol.45 , pp. 578-581
    • Liang, D.1    Bowers, J.E.2
  • 115
    • 12144285599 scopus 로고    scopus 로고
    • Wafer bonding and epitaxial transfer of GaSb-based epitaxy to GaAs for monolithic interconnection of thermophotovoltaic devices
    • Wang CA, Shiau DA, Murphy PG, OBrian PW, Huang RK et al. 2004. Wafer bonding and epitaxial transfer of GaSb-based epitaxy to GaAs for monolithic interconnection of thermophotovoltaic devices. J. Electron. Mater. 33:213-217
    • (2004) J. Electron. Mater. , vol.33 , pp. 213-217
    • Wang, C.A.1    Shiau, D.A.2    Murphy, P.G.3    Obrian, P.W.4    Huang, R.K.5
  • 116
    • 33747524206 scopus 로고
    • Epitaxial layer transfer by bond and etch back of porous Si
    • Yonehara T, Sakaguchi K, Sato N. 1994. Epitaxial layer transfer by bond and etch back of porous Si. Appl. Phys. Lett. 64:2108-2110
    • (1994) Appl. Phys. Lett. , vol.64 , pp. 2108-2110
    • Yonehara, T.1    Sakaguchi, K.2    Sato, N.3
  • 117
    • 0037834139 scopus 로고    scopus 로고
    • ELTRANR novel SOI wafer technology
    • Yonehara T, Sakaguchi K. 2001. ELTRANR novel SOI wafer technology. JSAP Int. 4:10-16
    • (2001) JSAP Int. , vol.4 , pp. 10-16
    • Yonehara, T.1    Sakaguchi, K.2
  • 118
    • 0038377269 scopus 로고    scopus 로고
    • Porous III-V compound semiconductors: Formation, properties, and comparison to silicon
    • F̈oll H, Carstensen J, Langa S, Christophersen M, Tiginyanu IM. 2003. Porous III-V compound semiconductors: formation, properties, and comparison to silicon. Phys. Status Solid. A 197:61-70
    • (2003) Phys. Status Solid. A , vol.197 , pp. 61-70
    • F̈oll, H.C.1
  • 120
    • 0010033768 scopus 로고
    • High efficiency GaAs thin film solar cells by peeled film technology
    • Konagai M, Sugimoto M, Takahashi K. 1978. High efficiency GaAs thin film solar cells by peeled film technology. J. Cryst. Growth 45:277-280
    • (1978) J. Cryst. Growth , vol.45 , pp. 277-280
    • Konagai, M.1    Sugimoto, M.2    Takahashi, K.3
  • 122
    • 0029637854 scopus 로고
    • Silicon on-insulator material technology
    • Bruel M. 1995. Silicon on-insulator material technology. Electron. Lett. 31:1201-1202
    • (1995) Electron. Lett. , vol.31 , pp. 1201-1202
    • Bruel, M.1
  • 123
    • 33750200098 scopus 로고    scopus 로고
    • Fabrication and characterization of 200 mm germanium-on-insulator (GeOI) substrates made from bulk germanium
    • Deguet C, Sanchez L, Akatsu T, Allibert F, Dechamp J et al. 2006. Fabrication and characterization of 200 mm germanium-on-insulator (GeOI) substrates made from bulk germanium. Electron. Lett. 42:415-417
    • (2006) Electron. Lett. , vol.42 , pp. 415-417
    • Deguet, C.1    Sanchez, L.2    Akatsu, T.3    Allibert, F.4    Dechamp, J.5
  • 124
    • 34547891080 scopus 로고    scopus 로고
    • Characteristics of germanium-on-insulators fabricated by wafer bonding and hydrogen-induced layer splitting
    • Chao Y-L, Scholz R, ReicheM, G̈osele U,Woo JCS. 2006. Characteristics of germanium-on-insulators fabricated by wafer bonding and hydrogen-induced layer splitting. Jpn. J. Appl. Phys. 45:8665-8670
    • (2006) Jpn. J. Appl. Phys. , vol.45 , pp. 8665-8670
    • Chao, Y.-L.1    Scholz, R.2    Reiche, M.3    G̈osele, U.4    Woo, J.C.S.5
  • 125
    • 0038037092 scopus 로고    scopus 로고
    • Ferroelectric oxide single-crystalline layers by wafer bonding and hydrogen/helium implantation
    • Radu I, Szafraniak I, Scholz R, AlexeM, G̈osele U. 2002. Ferroelectric oxide single-crystalline layers by wafer bonding and hydrogen/helium implantation. Mater. Res. Soc. Symp. Proc. 748:U1181-86
    • (2002) Mater. Res. Soc. Symp. Proc. , vol.748
    • Radu, I.1    Szafraniak, I.2    Scholz, R.3    Alexe, M.4    G̈osele, U.5
  • 127
    • 10944248848 scopus 로고    scopus 로고
    • Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding
    • Rabiei P, Gunter P. 2004. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl. Phys. Lett. 85:4603-4605
    • (2004) Appl. Phys. Lett. , vol.85 , pp. 4603-4605
    • Rabiei, P.1    Gunter, P.2
  • 130
    • 70350704576 scopus 로고    scopus 로고
    • Photonic guiding structures in lithium niobate crystals produced by energetic ion beams
    • Chen F. 2009. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams. J. Appl. Phys. 106:081101
    • (2009) J. Appl. Phys. , vol.106 , pp. 081101
    • Chen, F.1
  • 133
    • 34547524293 scopus 로고    scopus 로고
    • Hydrogen blistering of silicon: Progress in fundamental understanding
    • Terreault B (2007) Hydrogen blistering of silicon: progress in fundamental understanding. Phys. Status Solid. A; 204: 2129-2184.
    • (2007) Phys. Status Solid. A , vol.204 , pp. 2129-2184
    • Terreault, B.1
  • 135
    • 65549166915 scopus 로고    scopus 로고
    • Atomic scale structure of (001) hydrogen-induced platelets in germanium
    • David M-L, Pizzagalli L, Pailloux F, Barbot JF. 2009. Atomic scale structure of (001) hydrogen-induced platelets in germanium. Phys. Rev. Lett. 102:155504
    • (2009) Phys. Rev. Lett. , vol.102 , pp. 155504
    • David, M.-L.1    Pizzagalli, L.2    Pailloux, F.3    Barbot, J.F.4
  • 137
    • 44349188577 scopus 로고    scopus 로고
    • Effects of hydrogen implantation temperature on InP surface blistering
    • Chen P, Di Z, Nastasi M, Bruno E, Grimaldi MG et al. 2008. Effects of hydrogen implantation temperature on InP surface blistering. Appl. Phys. Lett. 92:202107
    • (2008) Appl. Phys. Lett. , vol.92 , pp. 202107
    • Chen, P.1    Di Nastasi, Z.M.2    Bruno, E.3    Grimaldi, M.G.4
  • 138
    • 33750807868 scopus 로고    scopus 로고
    • Materials issues for the heterogeneous integration of III-V compounds
    • Hayashi S, Goorsky M, Noori A, Bruno D. 2006 . Materials issues for the heterogeneous integration of III-V compounds. J. Electrochem. Soc. 153:G1011
    • (2006) J. Electrochem. Soc. , vol.153
    • Hayashi, S.1    Goorsky, M.2    Noori, A.3    Bruno, D.4
  • 144
    • 84865655389 scopus 로고    scopus 로고
    • Direct film transfer (DFT) technology for kerf-free silicon wafering
    • 23rd, Valencia, 2BO.2.3
    • Henley F, Lamm A, Kang S, Liu Z, Tian L. 2008. Direct film transfer (DFT) technology for kerf-free silicon wafering. Eur. Photovoltaic Solar Energy, 23rd, Valencia, 2BO.2.3
    • (2008) Eur. Photovoltaic Solar Energy
    • Henley, F.1    Lamm, A.2    Kang, S.3    Liu, Z.4    Tian, L.5
  • 145
    • 36849140814 scopus 로고
    • Radiation-induced cavities and exfoliation
    • Primak W. 1963. Radiation-induced cavities and exfoliation. J. Appl. Phys. 34:3630-3631
    • (1963) J. Appl. Phys. , vol.34 , pp. 3630-3631
    • Primak, W.1
  • 148
    • 0001158740 scopus 로고    scopus 로고
    • Mechanism of silicon exfoliation induced by hydrogen/helium coimplantation
    • Weldon MK, CollotM, Chabal YJ, Venezia VC, Agarwal A et al. 1998. Mechanism of silicon exfoliation induced by hydrogen/helium coimplantation. Appl. Phys. Lett. 73:3721-3723
    • (1998) Appl. Phys. Lett. , vol.73 , pp. 3721-3723
    • Weldon, M.K.1    Collotm Chabal, Y.J.2    Venezia, V.C.3    Agarwal, A.4
  • 149
    • 0033337816 scopus 로고    scopus 로고
    • Spectroscopic studies of H-decorated interstitials and vacancies in thin-film silicon exfoliation
    • Chabal YJ, Weldon MK, Caudano Y, Stefanov BB, Raghavachari K. 1999. Spectroscopic studies of H-decorated interstitials and vacancies in thin-film silicon exfoliation. Physica B 273-274:152-163
    • (1999) Physica B , vol.273-274 , pp. 152-163
    • Chabal, Y.J.1    Weldon, M.K.2    Caudano, Y.3    Stefanov, B.B.4    Raghavachari, K.5
  • 150
    • 8344228539 scopus 로고    scopus 로고
    • Raman-scattering elucidation of the giant isotope effect in hydrogenion blistering of silicon
    • MoutanabbirO,Terreault B. 2004. Raman-scattering elucidation of the giant isotope effect in hydrogenion blistering of silicon. J. Chem. Phys. 121:7973-7986
    • (2004) J. Chem. Phys. , vol.121 , pp. 7973-7986
    • Moutanabbir, O.1    Terreault, B.2
  • 152
    • 18644375817 scopus 로고    scopus 로고
    • Effects in synergistic blistering of silicon by coimplantation of H, D, and He ions
    • Moutanabbir O, Terreault B. 2005. Effects in synergistic blistering of silicon by coimplantation of H, D, and He ions. Appl. Phys. Lett. 86:051906
    • (2005) Appl. Phys. Lett. , vol.86 , pp. 051906
    • Moutanabbir, O.1    Terreault, B.2
  • 153
    • 21444459082 scopus 로고    scopus 로고
    • Mechanism of the Smart CutTM layer transfer in silicon by hydrogen and helium coimplantation in the medium dose range
    • Nguyen P, Cayrefourcq I, Bourdelle KK, Boussagol A, Guiot E et al. 2005. Mechanism of the Smart CutTM layer transfer in silicon by hydrogen and helium coimplantation in the medium dose range. J. Appl. Phys. 97:083527
    • (2005) J. Appl. Phys. , vol.97 , pp. 083527
    • Nguyen, P.1    Cayrefourcq, I.2    Bourdelle, K.K.3    Boussagol, A.4    Guiot, E.5
  • 154
    • 84860068962 scopus 로고    scopus 로고
    • Physical mechanisms behind the ion-cut in hydrogen implanted silicon
    • Ḧochbauer T, MisraA,NastasiM,Mayer JW.2002. Physical mechanisms behind the ion-cut in hydrogen implanted silicon. J. Appl. Phys. 92:2335-2342
    • (2002) J. Appl. Phys. , vol.92 , pp. 2335-2342
    • Ḧochbauer, T.M.1
  • 155
    • 33846696383 scopus 로고    scopus 로고
    • Influence of isotopic substitution and He coimplantation on defect complexes and voids induced by H ions in silicon
    • Moutanabbir O, Terreault B, Chicoine M, Schiettekatte F, Simpson PJ. 2007. Influence of isotopic substitution and He coimplantation on defect complexes and voids induced by H ions in silicon. Phys. Rev. B 75:075201
    • (2007) Phys. Rev. B , vol.75 , pp. 075201
    • Moutanabbir, O.1    Terreault, B.2    Chicoine, M.3    Schiettekatte, F.4    Simpson, P.J.5
  • 156
    • 51749096397 scopus 로고    scopus 로고
    • Evidence for ion irradiation induced dissociation and reconstruction of Si-H bonds in hydrogen-implanted silicon
    • Di ZF,Wang YQ, Nastasi M, Shao L, Lee JK et al. 2008. Evidence for ion irradiation induced dissociation and reconstruction of Si-H bonds in hydrogen-implanted silicon. Appl. Phys. Lett. 93:104103
    • (2008) Appl. Phys. Lett. , vol.93 , pp. 104103
    • Di Zfwang, Y.Q.1    Nastasi, M.2    Shao, L.3    Lee, J.K.4
  • 161
    • 67349166631 scopus 로고    scopus 로고
    • Blistering/exfoliation kinetics of GaAs by hydrogen and helium implantations
    • Woo HJ, Choi HW, Kim GD, Kim JK, Kim KJ. 2009. Blistering/exfoliation kinetics of GaAs by hydrogen and helium implantations. Surf. Coat. Technol. 203:2370-2374
    • (2009) Surf. Coat. Technol. , vol.203 , pp. 2370-2374
    • Woo, H.J.1    Choi, H.W.2    Kim, G.D.3    Kim, J.K.4    Kim, K.J.5
  • 162
    • 9744270951 scopus 로고    scopus 로고
    • Wafer bonding and layer splitting formicrosystems
    • Tong Q-Y, G̈osele U. 1999. Wafer bonding and layer splitting formicrosystems. Adv. Mater. 11:1409-1425
    • (1999) Adv. Mater. , vol.11 , pp. 1409-1425
    • Tong, Q.-Y.1    G̈osele, U.2
  • 163
    • 3242876406 scopus 로고    scopus 로고
    • Temperature dependence of hydrogen-induced exfoliation of InP
    • Hayashi S, Bruno D, Goorsky MS. 2004. Temperature dependence of hydrogen-induced exfoliation of InP. Appl. Phys. Lett. 85:236-238
    • (2004) Appl. Phys. Lett. , vol.85 , pp. 236-238
    • Hayashi, S.1    Bruno, D.2    Goorsky, M.S.3
  • 164
    • 0032545852 scopus 로고    scopus 로고
    • Transfer of 3 in GaAs film on silicon substrate by proton implantation process
    • Jalaguier E, Aspar B, Pocas S, Michaud JF, Zussy M et al. Transfer of 3 in GaAs film on silicon substrate by proton implantation process. Electron. Lett. 34:408-409
    • Electron. Lett. , vol.34 , pp. 408-409
    • Jalaguier, E.1    Aspar, B.2    Pocas, S.3    Michaud, J.F.4    Zussy, M.5
  • 167
    • 33747238267 scopus 로고    scopus 로고
    • Low temperature InP layer transfer onto Si by helium implantation and direct wafer bonding
    • Singh R, Radu I, Scholz R, Himcinschi C, G̈osele U et al. 2006. Low temperature InP layer transfer onto Si by helium implantation and direct wafer bonding. Semicond. Sci. Technol. 21:1311-1314
    • (2006) Semicond. Sci. Technol. , vol.21 , pp. 1311-1314
    • Singh, R.1    Radu, I.2    Scholz, R.3    Himcinschi, C.4    G̈osele, U.5
  • 168
    • 60449113150 scopus 로고    scopus 로고
    • III-V and III-nitride engineered heterostructures: Wafer bonding, ion slicing and more
    • Moutanabbir O, Christiansen S, Senz S, Scholz R, Petzold M et al. 2008. III-V and III-nitride engineered heterostructures: wafer bonding, ion slicing and more. ECS Trans. 16:251-262
    • (2008) ECS Trans. , vol.16 , pp. 251-262
    • Moutanabbir, O.1    Christiansen, S.2    Senz, S.3    Scholz, R.4    Petzold, M.5
  • 169
    • 33847003329 scopus 로고    scopus 로고
    • Double-flip transfer of indium phosphide layers via adhesive wafer bonding and ion-cutting process
    • Chen W, Chen P, Jing Y, Lau SS, Kuech TF et al. 2007. Double-flip transfer of indium phosphide layers via adhesive wafer bonding and ion-cutting process. Appl. Phys. Lett. 90:052114
    • (2007) Appl. Phys. Lett. , vol.90 , pp. 052114
    • Chen, W.1    Chen, P.2    Jing, Y.3    Lau, S.S.4    Kuech, T.F.5
  • 170
    • 45249084072 scopus 로고    scopus 로고
    • Fabrication of transfer-enhanced semiconductor substrates by wafer bonding and hydrogen exfoliation techniques
    • Joshi MB, Hayashi SL, Goorsky MS. 2008. Fabrication of transfer-enhanced semiconductor substrates by wafer bonding and hydrogen exfoliation techniques. Electrochem. Solid State Lett. 11:H236-39
    • (2008) Electrochem. Solid State Lett. , vol.11
    • Joshi, M.B.1    Hayashi, S.L.2    Goorsky, M.S.3
  • 173
    • 77957003972 scopus 로고    scopus 로고
    • Ion beam layer separation of cadmium zinc telluride
    • Bhattacharya RS, He P, Xu Y, Goorsky M. 2008. Ion beam layer separation of cadmium zinc telluride. AIP Conf. Proc. 1066:221-224
    • (2008) AIP Conf. Proc. , vol.1066 , pp. 221-224
    • Bhattacharya, R.S.1    He, P.2    Xu, Y.3    Goorsky, M.4
  • 174
    • 0034318573 scopus 로고    scopus 로고
    • Free-standing GaN substrates by hydride vapor phase epitaxy
    • Park SS, Park I-W, Park SH. 2000. Free-standing GaN substrates by hydride vapor phase epitaxy. Jpn. J. Appl. Phys. 39:L1141-42
    • (2000) Jpn. J. Appl. Phys. , vol.39
    • Park, S.S.1    Park, I.-W.2    Park, S.H.3
  • 175
    • 54849441920 scopus 로고    scopus 로고
    • Preparation of 3 inch freestandingGaN substrates by hydride vapor phase epitaxy with void-assisted separation
    • YoshidaT, OshimaY,Eri T, Watanabe K, Shibata M et al. 2008. Preparation of 3 inch freestandingGaN substrates by hydride vapor phase epitaxy with void-assisted separation. Phys. Status Solid. A 205:1053-1055
    • (2008) Phys. Status Solid. A , vol.205 , pp. 1053-1055
    • Yoshida, T.1    Oshima, Y.2    Eri, T.3    Watanabe, K.4    Shibata, M.5
  • 182
    • 67349091267 scopus 로고    scopus 로고
    • Blistering kinetics of GaN by hydrogen implantation at high temperature
    • Woo HJ, Choi HW, Hong W, Park JH, Eum CH. 2009. Blistering kinetics of GaN by hydrogen implantation at high temperature. Surf. Coat. Technol. 203:2375-2379
    • (2009) Surf. Coat. Technol. , vol.203 , pp. 2375-2379
    • Woo, H.J.1    Choi, H.W.2    Hong, W.3    Park, J.H.4    Eum, C.H.5
  • 183
    • 68949127589 scopus 로고    scopus 로고
    • Facile synthesis of highly stable a-Si by ion implantation of low-keV H isotopes
    • Moutanabbir O, Scholz R, G̈osele U, Terreault B. 2009. Facile synthesis of highly stable a-Si by ion implantation of low-keV H isotopes. Phys. Rev. B 79:233202
    • (2009) Phys. Rev. B , vol.79 , pp. 233202
    • Moutanabbir, O.1    Scholz, R.2    G̈osele, U.3    Terreault, B.4
  • 184
    • 18644375817 scopus 로고    scopus 로고
    • Effects in synergistic blistering of silicon by coimplantation of H, D, and He ions
    • Moutanabbir O, Terreault B. 2005. Effects in synergistic blistering of silicon by coimplantation of H, D, and He ions. Appl. Phys. Lett. 86:051906
    • (2005) Appl. Phys. Lett. , vol.86 , pp. 051906
    • Moutanabbir, O.1    Terreault, B.2
  • 186
    • 77955001688 scopus 로고    scopus 로고
    • Experimental elucidation of vacancy complexes associated with hydrogen ion-induced splitting of bulk GaN
    • Moutanabbir
    • Moutanabbir O, Scholz R, G̈osele U, Guittoum A, Jungmann M et al. 2010. Experimental elucidation of vacancy complexes associated with hydrogen ion-induced splitting of bulk GaN. Phys. Rev. B 81:115205 500 Moutanabbir
    • (2010) Phys. Rev. B , vol.81 , pp. 115205-115500
    • Moutanabbir, O.1    Scholz, R.2    G̈osele, U.3    Guittoum, A.4    Jungmann, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.