메뉴 건너뛰기




Volumn 3, Issue 3, 2018, Pages 135-149

CRISPR-Cas9/Cas12a biotechnology and application in bacteria

Author keywords

Base editing; Cas12a (Cpf1); Cas13; Cas9; DNA RNA detection

Indexed keywords

TRANSCRIPTION ACTIVATOR LIKE EFFECTOR NUCLEASE; ZINC FINGER NUCLEASE;

EID: 85054124456     PISSN: None     EISSN: 2405805X     Source Type: Journal    
DOI: 10.1016/j.synbio.2018.09.004     Document Type: Review
Times cited : (104)

References (259)
  • 2
    • 85020445396 scopus 로고    scopus 로고
    • Diversity, classification and evolution of CRISPR-Cas systems
    • Koonin, E.V., Makarova, K.S., Zhang, F., Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37 (2017), 67–78.
    • (2017) Curr Opin Microbiol , vol.37 , pp. 67-78
    • Koonin, E.V.1    Makarova, K.S.2    Zhang, F.3
  • 3
    • 85025128200 scopus 로고    scopus 로고
    • Beyond native Cas9: manipulating genomic information and function
    • Mitsunobu, H., Teramoto, J., Nishida, K., Kondo, A., Beyond native Cas9: manipulating genomic information and function. Trends Biotechnol 35 (2017), 983–996.
    • (2017) Trends Biotechnol , vol.35 , pp. 983-996
    • Mitsunobu, H.1    Teramoto, J.2    Nishida, K.3    Kondo, A.4
  • 4
    • 33645781346 scopus 로고    scopus 로고
    • Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining
    • Bowater, R., Doherty, A.J., Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet, 2, 2006, e8.
    • (2006) PLoS Genet , vol.2 , pp. e8
    • Bowater, R.1    Doherty, A.J.2
  • 5
    • 85047212505 scopus 로고    scopus 로고
    • Fundamental CRISPR-Cas9 tools and current applications in microbial systems
    • Tian, P., Wang, J., Shen, X., Rey, J.F., Yuan, Q., Yan, Y., Fundamental CRISPR-Cas9 tools and current applications in microbial systems. Synth Syst Biotechnol 2 (2017), 219–225.
    • (2017) Synth Syst Biotechnol , vol.2 , pp. 219-225
    • Tian, P.1    Wang, J.2    Shen, X.3    Rey, J.F.4    Yuan, Q.5    Yan, Y.6
  • 6
    • 84925876620 scopus 로고    scopus 로고
    • Harnessing CRISPR-Cas systems for bacterial genome editing
    • Selle, K., Barrangou, R., Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol 23 (2015), 225–232.
    • (2015) Trends Microbiol , vol.23 , pp. 225-232
    • Selle, K.1    Barrangou, R.2
  • 7
    • 84935472715 scopus 로고    scopus 로고
    • Advances in yeast genome engineering
    • David, F., Siewers, V., Advances in yeast genome engineering. FEMS Yeast Res 15 (2015), 1–14.
    • (2015) FEMS Yeast Res , vol.15 , pp. 1-14
    • David, F.1    Siewers, V.2
  • 8
    • 84873800970 scopus 로고    scopus 로고
    • Genome-scale engineering for systems and synthetic biology
    • Esvelt, K.M., Wang, H.H., Genome-scale engineering for systems and synthetic biology. Mol Syst Biol, 9, 2013, 641.
    • (2013) Mol Syst Biol , vol.9 , pp. 641
    • Esvelt, K.M.1    Wang, H.H.2
  • 9
    • 85042354098 scopus 로고    scopus 로고
    • CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity
    • Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., Doudna, J.A., CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360 (2018), 436–439.
    • (2018) Science , vol.360 , pp. 436-439
    • Chen, J.S.1    Ma, E.2    Harrington, L.B.3    Da Costa, M.4    Tian, X.5    Palefsky, J.M.6    Doudna, J.A.7
  • 10
    • 85042220581 scopus 로고    scopus 로고
    • Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6
    • Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J., Joung, J., Collins, J.J., Zhang, F., Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360 (2018), 439–444.
    • (2018) Science , vol.360 , pp. 439-444
    • Gootenberg, J.S.1    Abudayyeh, O.O.2    Kellner, M.J.3    Joung, J.4    Collins, J.J.5    Zhang, F.6
  • 11
    • 85043461903 scopus 로고    scopus 로고
    • CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA
    • Li, S.Y., Cheng, Q.X., Liu, J.K., Nie, X.Q., Zhao, G.P., Wang, J., CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res 28 (2018), 491–493.
    • (2018) Cell Res , vol.28 , pp. 491-493
    • Li, S.Y.1    Cheng, Q.X.2    Liu, J.K.3    Nie, X.Q.4    Zhao, G.P.5    Wang, J.6
  • 12
    • 85045741001 scopus 로고    scopus 로고
    • Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System
    • Lian, J., HamediRad, M., Zhao, H., Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System. Biotechnol J, 2018, e1700601.
    • (2018) Biotechnol J
    • Lian, J.1    HamediRad, M.2    Zhao, H.3
  • 13
    • 85047180904 scopus 로고    scopus 로고
    • The CRISPR tool kit for genome editing and beyond
    • Adli, M., The CRISPR tool kit for genome editing and beyond. Nat Commun, 9, 2018, 1911.
    • (2018) Nat Commun , vol.9 , pp. 1911
    • Adli, M.1
  • 14
    • 85029667775 scopus 로고    scopus 로고
    • CRISPR system in filamentous fungi: current achievements and future directions
    • Deng, H., Gao, R., Liao, X., Cai, Y., CRISPR system in filamentous fungi: current achievements and future directions. Gene 627 (2017), 212–221.
    • (2017) Gene , vol.627 , pp. 212-221
    • Deng, H.1    Gao, R.2    Liao, X.3    Cai, Y.4
  • 15
    • 85032907233 scopus 로고    scopus 로고
    • CRISPR-Cas9 based plant genome editing: significance, opportunities and recent advances
    • Soda, N., Verma, L., Giri, J., CRISPR-Cas9 based plant genome editing: significance, opportunities and recent advances. Plant Physiol Biochem 131 (2018), 2–11.
    • (2018) Plant Physiol Biochem , vol.131 , pp. 2-11
    • Soda, N.1    Verma, L.2    Giri, J.3
  • 16
    • 85047667250 scopus 로고    scopus 로고
    • Cas9 versus Cas12a/Cpf1: structure-function comparisons and implications for genome editing
    • Wiley Interdiscip Rev RNA
    • Swarts, D.C., Jinek, M., Cas9 versus Cas12a/Cpf1: structure-function comparisons and implications for genome editing. 2018, Wiley Interdiscip Rev RNA, e1481.
    • (2018) , pp. e1481
    • Swarts, D.C.1    Jinek, M.2
  • 19
    • 84922998282 scopus 로고    scopus 로고
    • Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation
    • Wei, Y., Terns, R.M., Terns, M.P., Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev 29 (2015), 356–361.
    • (2015) Genes Dev , vol.29 , pp. 356-361
    • Wei, Y.1    Terns, R.M.2    Terns, M.P.3
  • 20
    • 85021146685 scopus 로고    scopus 로고
    • Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage
    • Stella, S., Alcon, P., Montoya, G., Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature 546 (2017), 559–563.
    • (2017) Nature , vol.546 , pp. 559-563
    • Stella, S.1    Alcon, P.2    Montoya, G.3
  • 22
    • 64049118040 scopus 로고    scopus 로고
    • Short motif sequences determine the targets of the prokaryotic CRISPR defence system
    • Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J., Almendros, C., Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155 (2009), 733–740.
    • (2009) Microbiology , vol.155 , pp. 733-740
    • Mojica, F.J.1    Diez-Villasenor, C.2    Garcia-Martinez, J.3    Almendros, C.4
  • 23
    • 84860433123 scopus 로고    scopus 로고
    • CRISPR interference directs strand specific spacer acquisition
    • Swarts, D.C., Mosterd, C., van Passel, M.W., Brouns, S.J., CRISPR interference directs strand specific spacer acquisition. PloS One, 7, 2012, e35888.
    • (2012) PloS One , vol.7
    • Swarts, D.C.1    Mosterd, C.2    van Passel, M.W.3    Brouns, S.J.4
  • 24
    • 84964862130 scopus 로고    scopus 로고
    • The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
    • Fonfara, I., Richter, H., Bratovic, M., Le Rhun, A., Charpentier, E., The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532 (2016), 517–521.
    • (2016) Nature , vol.532 , pp. 517-521
    • Fonfara, I.1    Richter, H.2    Bratovic, M.3    Le Rhun, A.4    Charpentier, E.5
  • 27
    • 84908508061 scopus 로고    scopus 로고
    • Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
    • Anders, C., Niewoehner, O., Duerst, A., Jinek, M., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513 (2014), 569–573.
    • (2014) Nature , vol.513 , pp. 569-573
    • Anders, C.1    Niewoehner, O.2    Duerst, A.3    Jinek, M.4
  • 28
    • 84933574487 scopus 로고    scopus 로고
    • STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition
    • Jiang, F., Zhou, K., Ma, L., Gressel, S., Doudna, J.A., STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348 (2015), 1477–1481.
    • (2015) Science , vol.348 , pp. 1477-1481
    • Jiang, F.1    Zhou, K.2    Ma, L.3    Gressel, S.4    Doudna, J.A.5
  • 30
    • 77956498326 scopus 로고    scopus 로고
    • Sequence- and structure-specific RNA processing by a CRISPR endonuclease
    • Haurwitz, R.E., Jinek, M., Wiedenheft, B., Zhou, K., Doudna, J.A., Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329 (2010), 1355–1358.
    • (2010) Science , vol.329 , pp. 1355-1358
    • Haurwitz, R.E.1    Jinek, M.2    Wiedenheft, B.3    Zhou, K.4    Doudna, J.A.5
  • 32
    • 84866859751 scopus 로고    scopus 로고
    • Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
    • Gasiunas, G., Barrangou, R., Horvath, P., Siksnys, V., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109 (2012), E2579–E2586.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. E2579-E2586
    • Gasiunas, G.1    Barrangou, R.2    Horvath, P.3    Siksnys, V.4
  • 33
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (2012), 816–821.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3    Hauer, M.4    Doudna, J.A.5    Charpentier, E.6
  • 37
    • 84979224039 scopus 로고    scopus 로고
    • Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition
    • Gao, P., Yang, H., Rajashankar, K.R., Huang, Z., Patel, D.J., Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res 26 (2016), 901–913.
    • (2016) Cell Res , vol.26 , pp. 901-913
    • Gao, P.1    Yang, H.2    Rajashankar, K.R.3    Huang, Z.4    Patel, D.J.5
  • 38
    • 84946215320 scopus 로고    scopus 로고
    • Conformational control of DNA target cleavage by CRISPR-Cas9
    • Sternberg, S.H., LaFrance, B., Kaplan, M., Doudna, J.A., Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527 (2015), 110–113.
    • (2015) Nature , vol.527 , pp. 110-113
    • Sternberg, S.H.1    LaFrance, B.2    Kaplan, M.3    Doudna, J.A.4
  • 41
    • 85018632551 scopus 로고    scopus 로고
    • Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a
    • Swarts, D.C., van der Oost, J., Jinek, M., Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell 66 (2017), 221–233 e4.
    • (2017) Mol Cell , vol.66 , pp. 221-233 e4
    • Swarts, D.C.1    van der Oost, J.2    Jinek, M.3
  • 42
    • 85032959464 scopus 로고    scopus 로고
    • Class 2 CRISPR-Cas RNA-guided endonucleases: swiss Army knives of genome editing
    • Stella, S., Alcon, P., Montoya, G., Class 2 CRISPR-Cas RNA-guided endonucleases: swiss Army knives of genome editing. Nat Struct Mol Biol 24 (2017), 882–892.
    • (2017) Nat Struct Mol Biol , vol.24 , pp. 882-892
    • Stella, S.1    Alcon, P.2    Montoya, G.3
  • 43
    • 85030331090 scopus 로고    scopus 로고
    • The discovery, mechanisms, and evolutionary impact of anti-CRISPRs
    • Borges, A.L., Davidson, A.R., Bondy-Denomy, J., The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Annu Rev Virol 4 (2017), 37–59.
    • (2017) Annu Rev Virol , vol.4 , pp. 37-59
    • Borges, A.L.1    Davidson, A.R.2    Bondy-Denomy, J.3
  • 44
    • 85030658002 scopus 로고    scopus 로고
    • The anti-CRISPR story: a battle for survival
    • Maxwell, K.L., The anti-CRISPR story: a battle for survival. Mol Cell 68 (2017), 8–14.
    • (2017) Mol Cell , vol.68 , pp. 8-14
    • Maxwell, K.L.1
  • 45
  • 46
    • 84872607723 scopus 로고    scopus 로고
    • Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system
    • Bondy-Denomy, J., Pawluk, A., Maxwell, K.L., Davidson, A.R., Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493 (2013), 429–432.
    • (2013) Nature , vol.493 , pp. 429-432
    • Bondy-Denomy, J.1    Pawluk, A.2    Maxwell, K.L.3    Davidson, A.R.4
  • 47
    • 84899866053 scopus 로고    scopus 로고
    • A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa
    • Pawluk, A., Bondy-Denomy, J., Cheung, V.H., Maxwell, K.L., Davidson, A.R., A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. mBio, 5, 2014, e00896.
    • (2014) mBio , vol.5
    • Pawluk, A.1    Bondy-Denomy, J.2    Cheung, V.H.3    Maxwell, K.L.4    Davidson, A.R.5
  • 52
    • 85020928320 scopus 로고    scopus 로고
    • Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein
    • Dong, D., Guo, M., Wang, S., Zhu, Y., Wang, S., Xiong, Z., Yang, J., Xu, Z., Huang, Z., Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature 546 (2017), 436–439.
    • (2017) Nature , vol.546 , pp. 436-439
    • Dong, D.1    Guo, M.2    Wang, S.3    Zhu, Y.4    Wang, S.5    Xiong, Z.6    Yang, J.7    Xu, Z.8    Huang, Z.9
  • 54
    • 84980348236 scopus 로고    scopus 로고
    • Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3
    • Wang, X., Yao, D., Xu, J.G., Li, A.R., Xu, J., Fu, P., Zhou, Y., Zhu, Y., Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3. Nat Struct Mol Biol 23 (2016), 868–870.
    • (2016) Nat Struct Mol Biol , vol.23 , pp. 868-870
    • Wang, X.1    Yao, D.2    Xu, J.G.3    Li, A.R.4    Xu, J.5    Fu, P.6    Zhou, Y.7    Zhu, Y.8
  • 55
    • 84984903773 scopus 로고    scopus 로고
    • A CRISPR evolutionary arms race: structural insights into viral anti-CRISPR/Cas responses
    • Wang, J., Ma, J., Cheng, Z., Meng, X., You, L., Wang, M., Zhang, X., Wang, Y., A CRISPR evolutionary arms race: structural insights into viral anti-CRISPR/Cas responses. Cell Res 26 (2016), 1165–1168.
    • (2016) Cell Res , vol.26 , pp. 1165-1168
    • Wang, J.1    Ma, J.2    Cheng, Z.3    Meng, X.4    You, L.5    Wang, M.6    Zhang, X.7    Wang, Y.8
  • 57
    • 85020309949 scopus 로고    scopus 로고
    • Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9
    • Yang, H., Patel, D.J., Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9. Mol Cell 67 (2017), 117–127.
    • (2017) Mol Cell , vol.67 , pp. 117-127
    • Yang, H.1    Patel, D.J.2
  • 59
    • 85020928320 scopus 로고    scopus 로고
    • Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein
    • Dong, Guo M., Wang, S., Zhu, Y., Wang, S., Xiong, Z., Yang, J., Xu, Z., Huang, Z., Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature 546 (2017), 436–439.
    • (2017) Nature , vol.546 , pp. 436-439
    • Dong, G.M.1    Wang, S.2    Zhu, Y.3    Wang, S.4    Xiong, Z.5    Yang, J.6    Xu, Z.7    Huang, Z.8
  • 62
    • 84952639685 scopus 로고    scopus 로고
    • Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation
    • Dominguez, A.A., Lim, W.A., Qi, L.S., Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17 (2016), 5–15.
    • (2016) Nat Rev Mol Cell Biol , vol.17 , pp. 5-15
    • Dominguez, A.A.1    Lim, W.A.2    Qi, L.S.3
  • 64
    • 84949791988 scopus 로고    scopus 로고
    • Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition
    • Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Topkar, V.V., Zheng, Z., Joung, J.K., Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33 (2015), 1293–1298.
    • (2015) Nat Biotechnol , vol.33 , pp. 1293-1298
    • Kleinstiver, B.P.1    Prew, M.S.2    Tsai, S.Q.3    Nguyen, N.T.4    Topkar, V.V.5    Zheng, Z.6    Joung, J.K.7
  • 66
    • 84986898390 scopus 로고    scopus 로고
    • Applications of CRISPR technologies in research and beyond
    • Barrangou, R., Doudna, J.A., Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34 (2016), 933–941.
    • (2016) Nat Biotechnol , vol.34 , pp. 933-941
    • Barrangou, R.1    Doudna, J.A.2
  • 67
    • 84943777049 scopus 로고    scopus 로고
    • Development of potent in vivo mutagenesis plasmids with broad mutational spectra
    • Badran, A.H., Liu, D.R., Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat Commun, 6, 2015, 8425.
    • (2015) Nat Commun , vol.6 , pp. 8425
    • Badran, A.H.1    Liu, D.R.2
  • 73
    • 85009228507 scopus 로고    scopus 로고
    • Two distant catalytic sites are responsible for C2c2 RNase activities
    • 121-34 e12
    • Liu, L., Li, X., Wang, J., Wang, M., Chen, P., Yin, M., Li, J., Sheng, G., Wang, Y., Two distant catalytic sites are responsible for C2c2 RNase activities. Cell, 168, 2017 121-34 e12.
    • (2017) Cell , vol.168
    • Liu, L.1    Li, X.2    Wang, J.3    Wang, M.4    Chen, P.5    Yin, M.6    Li, J.7    Sheng, G.8    Wang, Y.9
  • 75
    • 85045117799 scopus 로고    scopus 로고
    • Applications of CRISPR/Cas system to bacterial metabolic engineering
    • Cho, S., Shin, J., Cho, B.K., Applications of CRISPR/Cas system to bacterial metabolic engineering. Int J Mol Sci, 19, 2018.
    • (2018) Int J Mol Sci , vol.19
    • Cho, S.1    Shin, J.2    Cho, B.K.3
  • 76
    • 85026534475 scopus 로고    scopus 로고
    • Advances in industrial biotechnology using CRISPR-Cas systems
    • Donohoue, P.D., Barrangou, R., May, A.P., Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol 36 (2018), 134–146.
    • (2018) Trends Biotechnol , vol.36 , pp. 134-146
    • Donohoue, P.D.1    Barrangou, R.2    May, A.P.3
  • 77
    • 84994391729 scopus 로고    scopus 로고
    • CRISPR technologies for bacterial systems: current achievements and future directions
    • Choi, K.R., Lee, S.Y., CRISPR technologies for bacterial systems: current achievements and future directions. Biotechnol Adv 34 (2016), 1180–1209.
    • (2016) Biotechnol Adv , vol.34 , pp. 1180-1209
    • Choi, K.R.1    Lee, S.Y.2
  • 78
    • 85027284460 scopus 로고    scopus 로고
    • The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted Ligation) method for efficient editing of large DNA constructs in vitro
    • Lei, C., Li, S.Y., Liu, J.K., Zheng, X., Zhao, G.P., Wang, J., The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted Ligation) method for efficient editing of large DNA constructs in vitro. Nucleic Acids Res, 45, 2017, e74.
    • (2017) Nucleic Acids Res , vol.45 , pp. e74
    • Lei, C.1    Li, S.Y.2    Liu, J.K.3    Zheng, X.4    Zhao, G.P.5    Wang, J.6
  • 79
    • 85006401289 scopus 로고    scopus 로고
    • A new standard for assembly of biological parts using Cpf1
    • Li, S.Y., Zhao, G.P., Wang, J., C-Brick, A new standard for assembly of biological parts using Cpf1. ACS Synth Biol 5 (2016), 1383–1388.
    • (2016) ACS Synth Biol , vol.5 , pp. 1383-1388
    • Li, S.Y.1    Zhao, G.P.2    Wang, J.3    C-Brick4
  • 80
    • 85021217448 scopus 로고    scopus 로고
    • Protocols for C-brick DNA standard assembly using Cpf1
    • Li, S.Y., Zhao, G.P., Wang, J., Protocols for C-brick DNA standard assembly using Cpf1. J Vis Exp, 15, 2017, 124.
    • (2017) J Vis Exp , vol.15 , pp. 124
    • Li, S.Y.1    Zhao, G.P.2    Wang, J.3
  • 81
    • 84940676093 scopus 로고    scopus 로고
    • Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters
    • Jiang, W., Zhao, X., Gabrieli, T., Lou, C., Ebenstein, Y., Zhu, T.F., Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat Commun, 6, 2015, 8101.
    • (2015) Nat Commun , vol.6 , pp. 8101
    • Jiang, W.1    Zhao, X.2    Gabrieli, T.3    Lou, C.4    Ebenstein, Y.5    Zhu, T.F.6
  • 82
    • 84879264708 scopus 로고    scopus 로고
    • ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
    • Gaj, T., Gersbach, C.A., Barbas, C.F. 3rd, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31 (2013), 397–405.
    • (2013) Trends Biotechnol , vol.31 , pp. 397-405
    • Gaj, T.1    Gersbach, C.A.2    Barbas, C.F.3
  • 83
    • 35348890199 scopus 로고    scopus 로고
    • Bacterial DNA repair by non-homologous end joining
    • Shuman, S., Glickman, M.S., Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 5 (2007), 852–861.
    • (2007) Nat Rev Microbiol , vol.5 , pp. 852-861
    • Shuman, S.1    Glickman, M.S.2
  • 84
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    • Jiang, W., Bikard, D., Cox, D., Zhang, F., Marraffini, L.A., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31 (2013), 233–239.
    • (2013) Nat Biotechnol , vol.31 , pp. 233-239
    • Jiang, W.1    Bikard, D.2    Cox, D.3    Zhang, F.4    Marraffini, L.A.5
  • 85
    • 84964315717 scopus 로고    scopus 로고
    • CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
    • Oh, J.H., van Pijkeren, J.P., CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res, 42, 2014, e131.
    • (2014) Nucleic Acids Res , vol.42 , pp. e131
    • Oh, J.H.1    van Pijkeren, J.P.2
  • 86
    • 84924239544 scopus 로고    scopus 로고
    • Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator
    • Liu, D., Xiao, Y., Evans, B., Zhang, F., Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. ACS Synth Biol 4 (2014), 132–140.
    • (2014) ACS Synth Biol , vol.4 , pp. 132-140
    • Liu, D.1    Xiao, Y.2    Evans, B.3    Zhang, F.4
  • 87
    • 84961393253 scopus 로고    scopus 로고
    • Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis
    • Xiao, Y., Bowen, C.H., Liu, D., Zhang, F., Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat Chem Biol 12 (2016), 339–344.
    • (2016) Nat Chem Biol , vol.12 , pp. 339-344
    • Xiao, Y.1    Bowen, C.H.2    Liu, D.3    Zhang, F.4
  • 88
    • 84874687019 scopus 로고    scopus 로고
    • Resource repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P., Lim, W.A., Resource repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152 (2013), 1173–1183.
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1    Larson, M.H.2    Gilbert, L.A.3    Doudna, J.A.4    Weissman, J.S.5    Arkin, A.P.6    Lim, W.A.7
  • 90
    • 84882986957 scopus 로고    scopus 로고
    • Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
    • Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., Marraffini, L.A., Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41 (2013), 7429–7437.
    • (2013) Nucleic Acids Res , vol.41 , pp. 7429-7437
    • Bikard, D.1    Jiang, W.2    Samai, P.3    Hochschild, A.4    Zhang, F.5    Marraffini, L.A.6
  • 91
    • 85041213125 scopus 로고    scopus 로고
    • CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus
    • Peng, R., Wang, Y., Feng, W.W., Yue, X.J., Chen, J.H., Hu, X.Z., Li, Z.F., Sheng, D.H., Zhang, Y.M., Li, Y.Z., CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus. Microb Cell Fact, 17, 2018, 15.
    • (2018) Microb Cell Fact , vol.17 , pp. 15
    • Peng, R.1    Wang, Y.2    Feng, W.W.3    Yue, X.J.4    Chen, J.H.5    Hu, X.Z.6    Li, Z.F.7    Sheng, D.H.8    Zhang, Y.M.9    Li, Y.Z.10
  • 92
    • 85049128854 scopus 로고    scopus 로고
    • Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria
    • Dong, C., Fontana, J., Patel, A., Carothers, J.M., Zalatan, J.G., Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat Commun, 9, 2018, 2489.
    • (2018) Nat Commun , vol.9 , pp. 2489
    • Dong, C.1    Fontana, J.2    Patel, A.3    Carothers, J.M.4    Zalatan, J.G.5
  • 93
    • 85040045900 scopus 로고    scopus 로고
    • Enhanced guide-RNA design and targeting analysis for precise CRISPR genome editing of single and consortia of industrially relevant and non-model organisms
    • Mendoza, B.J., Trinh, C.T., Enhanced guide-RNA design and targeting analysis for precise CRISPR genome editing of single and consortia of industrially relevant and non-model organisms. Bioinformatics 34 (2018), 16–23.
    • (2018) Bioinformatics , vol.34 , pp. 16-23
    • Mendoza, B.J.1    Trinh, C.T.2
  • 94
    • 85048349385 scopus 로고    scopus 로고
    • CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response
    • Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., Taipale, J., CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24 (2018), 927–930.
    • (2018) Nat Med , vol.24 , pp. 927-930
    • Haapaniemi, E.1    Botla, S.2    Persson, J.3    Schmierer, B.4    Taipale, J.5
  • 95
    • 84923106217 scopus 로고    scopus 로고
    • Therapeutic genome editing: prospects and challenges
    • Cox, D.B., Platt, R.J., Zhang, F., Therapeutic genome editing: prospects and challenges. Nat Med 21 (2015), 121–131.
    • (2015) Nat Med , vol.21 , pp. 121-131
    • Cox, D.B.1    Platt, R.J.2    Zhang, F.3
  • 97
    • 84971006562 scopus 로고    scopus 로고
    • Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
    • Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533 (2016), 420–424.
    • (2016) Nature , vol.533 , pp. 420-424
    • Komor, A.C.1    Kim, Y.B.2    Packer, M.S.3    Zuris, J.A.4    Liu, D.R.5
  • 100
    • 85048705226 scopus 로고    scopus 로고
    • Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing
    • Liu, Z., Lu, Z., Yang, G., Huang, S., Li, G., Feng, S., Liu, Y., Li, J., Yu, W., Zhang, Y., et al. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun, 9, 2018, 2338.
    • (2018) Nat Commun , vol.9 , pp. 2338
    • Liu, Z.1    Lu, Z.2    Yang, G.3    Huang, S.4    Li, G.5    Feng, S.6    Liu, Y.7    Li, J.8    Yu, W.9    Zhang, Y.10
  • 102
    • 85048696660 scopus 로고    scopus 로고
    • CRISPR base editors: genome editing without double-stranded breaks
    • Eid, A., Alshareef, S., Mahfouz, M.M., CRISPR base editors: genome editing without double-stranded breaks. Biochem J 475 (2018), 1955–1964.
    • (2018) Biochem J , vol.475 , pp. 1955-1964
    • Eid, A.1    Alshareef, S.2    Mahfouz, M.M.3
  • 104
    • 0026418667 scopus 로고
    • Nucleic acid sequence-based amplification
    • Compton, J., Nucleic acid sequence-based amplification. Nature 350 (1991), 91–92.
    • (1991) Nature , vol.350 , pp. 91-92
    • Compton, J.1
  • 106
    • 78649716727 scopus 로고    scopus 로고
    • Manufacturing molecules through metabolic engineering
    • Keasling, J.D., Manufacturing molecules through metabolic engineering. Science 330 (2010), 1355–1358.
    • (2010) Science , vol.330 , pp. 1355-1358
    • Keasling, J.D.1
  • 107
  • 109
    • 68949161807 scopus 로고    scopus 로고
    • Programming cells by multiplex genome engineering and accelerated evolution
    • Wang, H.H., Isaacs, F.J., Carr, P.A., Sun, Z.Z., Xu, G., Forest, C.R., Church, G.M., Programming cells by multiplex genome engineering and accelerated evolution. Nature 460 (2009), 894–898.
    • (2009) Nature , vol.460 , pp. 894-898
    • Wang, H.H.1    Isaacs, F.J.2    Carr, P.A.3    Sun, Z.Z.4    Xu, G.5    Forest, C.R.6    Church, G.M.7
  • 110
    • 79960502359 scopus 로고    scopus 로고
    • Precise manipulation of chromosomes in vivo enables genome-wide codon replacement
    • Isaacs, F.J., Carr, P.A., HH W, MJ L, B S, L K, AC T, TA G, DB G, NB R, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333 (2011), 348–353.
    • (2011) Science , vol.333 , pp. 348-353
    • Isaacs, F.J.1    Carr, P.A.2    HH, W.3    MJ, L.4    B, S.5    L, K.6    AC, T.7    TA, G.8    DB, G.9    NB, R.10
  • 111
    • 84957058205 scopus 로고    scopus 로고
    • Antisense transcription as a tool to tune gene expression
    • Brophy, J.A.N., Voigt, C.A., Antisense transcription as a tool to tune gene expression. Mol Syst Biol 12 (2016), 854–868.
    • (2016) Mol Syst Biol , vol.12 , pp. 854-868
    • Brophy, J.A.N.1    Voigt, C.A.2
  • 112
    • 84960392175 scopus 로고    scopus 로고
    • Modular Synthetic Inverters from Zinc Finger Proteins and Small RNAs
    • Hsia, J., Holtz, W.J., Maharbiz, M.M., Arcak, M., Keasling, J.D., Modular Synthetic Inverters from Zinc Finger Proteins and Small RNAs. PloS One, 11, 2016, e0149483.
    • (2016) PloS One , vol.11
    • Hsia, J.1    Holtz, W.J.2    Maharbiz, M.M.3    Arcak, M.4    Keasling, J.D.5
  • 113
    • 85006511345 scopus 로고    scopus 로고
    • Development of design rules for reliable antisense RNA behavior in E. coli
    • Connor, AH-o, Moon, T.S., Development of design rules for reliable antisense RNA behavior in E. coli. ACS Synth Biol 5 (2016), 1441–1454.
    • (2016) ACS Synth Biol , vol.5 , pp. 1441-1454
    • Connor, A.H.-O.1    Moon, T.S.2
  • 114
    • 84925355124 scopus 로고    scopus 로고
    • Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
    • Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system., 81, 2015, 2506–2514.
    • (2015) , vol.81 , pp. 2506-2514
    • Jiang, Y.1    Chen, B.2    Duan, C.3    Sun, B.4    Yang, J.5
  • 115
    • 84937538704 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli using CRISPR – Cas9 meditated genome editing
    • Li, Y., Lin, Z., Huang, C., Zhang, Y., Wang, Z., Metabolic engineering of Escherichia coli using CRISPR – Cas9 meditated genome editing. Metab Eng 31 (2015), 13–21.
    • (2015) Metab Eng , vol.31 , pp. 13-21
    • Li, Y.1    Lin, Z.2    Huang, C.3    Zhang, Y.4    Wang, Z.5
  • 116
    • 85014750171 scopus 로고    scopus 로고
    • CRISPR enabled trackable genome engineering for isopropanol production in Escherichia coli
    • Liang, L., Liu, R., Garst, A.D., Lee, T., Sànchez, V., Beckham, T., Gill, R.T., CRISPR enabled trackable genome engineering for isopropanol production in Escherichia coli. Metab Eng 41 (2017), 1–10.
    • (2017) Metab Eng , vol.41 , pp. 1-10
    • Liang, L.1    Liu, R.2    Garst, A.D.3    Lee, T.4    Sànchez, V.5    Beckham, T.6    Gill, R.T.7
  • 117
    • 84986198285 scopus 로고    scopus 로고
    • CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production
    • Keun, S., Hwan, G., Seong, W., Kim, H., Kim, S-w, Lee, D-h, Lee, S-g, CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng 38 (2016), 228–240.
    • (2016) Metab Eng , vol.38 , pp. 228-240
    • Keun, S.1    Hwan, G.2    Seong, W.3    Kim, H.4    Kim, S.-W.5    Lee, D.-H.6    Lee, S.-G.7
  • 118
    • 84926645319 scopus 로고    scopus 로고
    • Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study : Controllable P (3HB- co -4HB) biosynthesis
    • Lv, L., Ren, Y-l, Chen, J-c, Wu, Q., Chen, G-q, Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study : Controllable P (3HB- co -4HB) biosynthesis. Metab Eng 29 (2015), 160–168.
    • (2015) Metab Eng , vol.29 , pp. 160-168
    • Lv, L.1    Ren, Y.-L.2    Chen, J.-C.3    Wu, Q.4    Chen, G.-Q.5
  • 119
    • 85034750457 scopus 로고    scopus 로고
    • Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning
    • Gao, C., Wang, S., Hu, G., Guo, L., Chen, X., Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning. Biotechnol Bioeng 115 (2017), 661–672.
    • (2017) Biotechnol Bioeng , vol.115 , pp. 661-672
    • Gao, C.1    Wang, S.2    Hu, G.3    Guo, L.4    Chen, X.5
  • 120
    • 85032740297 scopus 로고    scopus 로고
    • CRISPR interference - guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli
    • Kim, S.K., Seong, W., Han, G.H., Lee, D.H., Lee, S.G., CRISPR interference - guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli. Microb Cell Fact, 2017, 1–15.
    • (2017) Microb Cell Fact , pp. 1-15
    • Kim, S.K.1    Seong, W.2    Han, G.H.3    Lee, D.H.4    Lee, S.G.5
  • 121
    • 85054136694 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for enhanced production of naringenin 7-sulfate and its biological activities
    • Chu, L.L., Dhakal, D., Shin, H.J., Jung, H.J., Yamaguchi, T., Sohng, J.K., Metabolic engineering of Escherichia coli for enhanced production of naringenin 7-sulfate and its biological activities. Front Microbiol, 9, 2018, 1671.
    • (2018) Front Microbiol , vol.9 , pp. 1671
    • Chu, L.L.1    Dhakal, D.2    Shin, H.J.3    Jung, H.J.4    Yamaguchi, T.5    Sohng, J.K.6
  • 122
    • 85053016797 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for high-yield uridine production
    • Wu, H., Li, Y., Ma, Q., Li, Q., Jia, Z., Yang, B., Xu, Q., Fan, X., Zhang, C., Chen, N., et al. Metabolic engineering of Escherichia coli for high-yield uridine production. Metab Eng 49 (2018), 248–256.
    • (2018) Metab Eng , vol.49 , pp. 248-256
    • Wu, H.1    Li, Y.2    Ma, Q.3    Li, Q.4    Jia, Z.5    Yang, B.6    Xu, Q.7    Fan, X.8    Zhang, C.9    Chen, N.10
  • 123
    • 85045107591 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway
    • Zhao, M., Huang, D., Zhang, X., Koffas, M.A.G., Zhou, J., Deng, Y., Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metab Eng 47 (2018), 254–262.
    • (2018) Metab Eng , vol.47 , pp. 254-262
    • Zhao, M.1    Huang, D.2    Zhang, X.3    Koffas, M.A.G.4    Zhou, J.5    Deng, Y.6
  • 124
    • 84940840437 scopus 로고    scopus 로고
    • Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli
    • Wu, J., Du, G., Chen, J., Zhou, J., Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci Rep, 5, 2015, 13477.
    • (2015) Sci Rep , vol.5 , pp. 13477
    • Wu, J.1    Du, G.2    Chen, J.3    Zhou, J.4
  • 126
    • 84934936070 scopus 로고    scopus 로고
    • Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks
    • Nielsen, A.A.K., Voigt, C.A., Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol Syst Biol, 10, 2014, 763.
    • (2014) Mol Syst Biol , vol.10 , pp. 763
    • Nielsen, A.A.K.1    Voigt, C.A.2
  • 127
    • 85046692825 scopus 로고    scopus 로고
    • Prospects for engineering dynamic CRISPR – Cas transcriptional circuits to improve bioproduction
    • Fontana, J., Voje, W.E., Zalatan, J.G., Carothers, J.M., Prospects for engineering dynamic CRISPR – Cas transcriptional circuits to improve bioproduction. J Ind Microbiol Biotechnol 45 (2018), 481–490.
    • (2018) J Ind Microbiol Biotechnol , vol.45 , pp. 481-490
    • Fontana, J.1    Voje, W.E.2    Zalatan, J.G.3    Carothers, J.M.4
  • 128
    • 85052728051 scopus 로고    scopus 로고
    • Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering
    • Arazoe, T., Kondo, A., Nishida, K., Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnol J, 13, 2018, e1700596.
    • (2018) Biotechnol J , vol.13
    • Arazoe, T.1    Kondo, A.2    Nishida, K.3
  • 129
    • 85041620547 scopus 로고    scopus 로고
    • Deaminase-mediated multiplex genome editing in Escherichia coli
    • Banno, S., Nishida, K., Arazoe, T., Mitsunobu, H., Kondo, A., Deaminase-mediated multiplex genome editing in Escherichia coli. Nat Microbiol 3 (2018), 423–429.
    • (2018) Nat Microbiol , vol.3 , pp. 423-429
    • Banno, S.1    Nishida, K.2    Arazoe, T.3    Mitsunobu, H.4    Kondo, A.5
  • 130
    • 77952492062 scopus 로고    scopus 로고
    • Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology
    • Huang, H.H., Camsund, D., Lindblad, P., Heidorn, T., Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38 (2010), 2577–2593.
    • (2010) Nucleic Acids Res , vol.38 , pp. 2577-2593
    • Huang, H.H.1    Camsund, D.2    Lindblad, P.3    Heidorn, T.4
  • 131
    • 84956958313 scopus 로고    scopus 로고
    • Utilising the native plasmid, pCA2.4, from the cyanobacterium Synechocystis sp. strain PCC6803 as a cloning site for enhanced product production
    • Armshaw, P., Carey, D., Sheahan, C., Pembroke, J.T., Utilising the native plasmid, pCA2.4, from the cyanobacterium Synechocystis sp. strain PCC6803 as a cloning site for enhanced product production. Biotechnol Biofuels, 8, 2015, 201.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 201
    • Armshaw, P.1    Carey, D.2    Sheahan, C.3    Pembroke, J.T.4
  • 132
    • 84940783269 scopus 로고    scopus 로고
    • Fine-tuning of photoautotrophic protein production by combining promoters and neutral sites in the cyanobacterium Synechocystis sp. strain PCC 6803
    • Ng, A.H., Berla, B.M., Pakrasi, H.B., Fine-tuning of photoautotrophic protein production by combining promoters and neutral sites in the cyanobacterium Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 81 (2015), 6857–6863.
    • (2015) Appl Environ Microbiol , vol.81 , pp. 6857-6863
    • Ng, A.H.1    Berla, B.M.2    Pakrasi, H.B.3
  • 133
    • 84947983632 scopus 로고    scopus 로고
    • Genome engineering in cyanobacteria: where we are and where we need to go
    • Ramey, C.J., Baron-Sola, A., Aucoin, H.R., Boyle, N.R., Genome engineering in cyanobacteria: where we are and where we need to go. ACS Synth Biol 4 (2015), 1186–1196.
    • (2015) ACS Synth Biol , vol.4 , pp. 1186-1196
    • Ramey, C.J.1    Baron-Sola, A.2    Aucoin, H.R.3    Boyle, N.R.4
  • 134
    • 85006870225 scopus 로고    scopus 로고
    • Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria
    • Ungerer, J., Pakrasi, H.B., Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep, 6, 2016, 39681.
    • (2016) Sci Rep , vol.6 , pp. 39681
    • Ungerer, J.1    Pakrasi, H.B.2
  • 135
    • 85034856601 scopus 로고    scopus 로고
    • Photomixotrophic chemical production in cyanobacteria
    • Matson, M.M., Atsumi, S., Photomixotrophic chemical production in cyanobacteria. Curr Opin Biotechnol 50 (2017), 65–71.
    • (2017) Curr Opin Biotechnol , vol.50 , pp. 65-71
    • Matson, M.M.1    Atsumi, S.2
  • 136
    • 85031906568 scopus 로고    scopus 로고
    • Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production
    • Zhang, A., Carroll, A.L., Atsumi, S., Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production. FEMS Microbiol Lett, 2017, 364.
    • (2017) FEMS Microbiol Lett , pp. 364
    • Zhang, A.1    Carroll, A.L.2    Atsumi, S.3
  • 137
    • 85045122442 scopus 로고    scopus 로고
    • Metabolic engineering tools in model cyanobacteria
    • pii: S1096-7176(18)30038-7
    • Carroll, A.L., Case, A.E., Zhang, A., Atsumi, S., Metabolic engineering tools in model cyanobacteria. Metab Eng, 2018 pii: S1096-7176(18)30038-7.
    • (2018) Metab Eng
    • Carroll, A.L.1    Case, A.E.2    Zhang, A.3    Atsumi, S.4
  • 138
    • 84994626819 scopus 로고    scopus 로고
    • The NDH-1L-PSI supercomplex is important for efficient cyclic electron transport in cyanobacteria
    • Gao, F., Zhao, J., Chen, L., Battchikova, N., Ran, Z., Aro, E.M., Ogawa, T., Ma, W., The NDH-1L-PSI supercomplex is important for efficient cyclic electron transport in cyanobacteria. Plant Physiol 172 (2016), 1451–1464.
    • (2016) Plant Physiol , vol.172 , pp. 1451-1464
    • Gao, F.1    Zhao, J.2    Chen, L.3    Battchikova, N.4    Ran, Z.5    Aro, E.M.6    Ogawa, T.7    Ma, W.8
  • 139
    • 85048283429 scopus 로고    scopus 로고
    • Three substrains of the cyanobacterium Anabaena sp. strain PCC 7120 display divergence in genomic sequences and hetC function
    • Wang, Y., Gao, Y., Li, C., Gao, H., Zhang, C.C., Xu, X., Three substrains of the cyanobacterium Anabaena sp. strain PCC 7120 display divergence in genomic sequences and hetC function. J Bacteriol, 200, 2018.
    • (2018) J Bacteriol , vol.200
    • Wang, Y.1    Gao, Y.2    Li, C.3    Gao, H.4    Zhang, C.C.5    Xu, X.6
  • 140
    • 85042908493 scopus 로고    scopus 로고
    • Tailoring cyanobacterial cell factory for improved industrial properties
    • Luan, G., Lu, X., Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnol Adv 36 (2018), 430–442.
    • (2018) Biotechnol Adv , vol.36 , pp. 430-442
    • Luan, G.1    Lu, X.2
  • 141
    • 85007460155 scopus 로고    scopus 로고
    • Versatility of hydrocarbon production in cyanobacteria
    • Xie, M., Wang, W., Zhang, W., Chen, L., Lu, X., Versatility of hydrocarbon production in cyanobacteria. Appl Microbiol Biotechnol 101 (2017), 905–919.
    • (2017) Appl Microbiol Biotechnol , vol.101 , pp. 905-919
    • Xie, M.1    Wang, W.2    Zhang, W.3    Chen, L.4    Lu, X.5
  • 142
    • 85020904626 scopus 로고    scopus 로고
    • Single-step production of the simvastatin precursor monacolin J by engineering of an industrial strain of Aspergillus terreus
    • Huang, X., Liang, Y., Yang, Y., Lu, X., Single-step production of the simvastatin precursor monacolin J by engineering of an industrial strain of Aspergillus terreus. Metab Eng 42 (2017), 109–114.
    • (2017) Metab Eng , vol.42 , pp. 109-114
    • Huang, X.1    Liang, Y.2    Yang, Y.3    Lu, X.4
  • 144
    • 85051406002 scopus 로고    scopus 로고
    • Direct photosynthetic production of plastic building block chemicals from CO2
    • Song, X., Wang, Y., Diao, J., Li, S., Chen, L., Zhang, W., Direct photosynthetic production of plastic building block chemicals from CO2. Adv Exp Med Biol 1080 (2018), 215–238.
    • (2018) Adv Exp Med Biol , vol.1080 , pp. 215-238
    • Song, X.1    Wang, Y.2    Diao, J.3    Li, S.4    Chen, L.5    Zhang, W.6
  • 145
    • 85048557105 scopus 로고    scopus 로고
    • Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973
    • Li, S., Sun, T., Xu, C., Chen, L., Zhang, W., Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Metab Eng 48 (2018), 163–174.
    • (2018) Metab Eng , vol.48 , pp. 163-174
    • Li, S.1    Sun, T.2    Xu, C.3    Chen, L.4    Zhang, W.5
  • 146
    • 85051403212 scopus 로고    scopus 로고
    • Production of industrial chemicals from CO2 by engineering cyanobacteria
    • Zhou, J., Meng, H., Zhang, W., Li, Y., Production of industrial chemicals from CO2 by engineering cyanobacteria. Adv Exp Med Biol 1080 (2018), 97–116.
    • (2018) Adv Exp Med Biol , vol.1080 , pp. 97-116
    • Zhou, J.1    Meng, H.2    Zhang, W.3    Li, Y.4
  • 147
    • 84984831746 scopus 로고    scopus 로고
    • Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria
    • Zhou, J., Zhang, F., Meng, H., Zhang, Y., Li, Y., Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria. Metab Eng 38 (2016), 217–227.
    • (2016) Metab Eng , vol.38 , pp. 217-227
    • Zhou, J.1    Zhang, F.2    Meng, H.3    Zhang, Y.4    Li, Y.5
  • 148
    • 84953395638 scopus 로고    scopus 로고
    • From cyanochemicals to cyanofactories: a review and perspective
    • Zhou, J., Zhu, T., Cai, Z., Li, Y., From cyanochemicals to cyanofactories: a review and perspective. Microb Cell Fact, 15, 2016, 2.
    • (2016) Microb Cell Fact , vol.15 , pp. 2
    • Zhou, J.1    Zhu, T.2    Cai, Z.3    Li, Y.4
  • 149
    • 85051411213 scopus 로고    scopus 로고
    • Engineering cyanobacteria for photosynthetic production of C3 platform chemicals and terpenoids from CO2
    • Ni, J., Tao, F., Xu, P., Yang, C., Engineering cyanobacteria for photosynthetic production of C3 platform chemicals and terpenoids from CO2. Adv Exp Med Biol 1080 (2018), 239–259.
    • (2018) Adv Exp Med Biol , vol.1080 , pp. 239-259
    • Ni, J.1    Tao, F.2    Xu, P.3    Yang, C.4
  • 150
    • 84978153360 scopus 로고    scopus 로고
    • CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973
    • Wendt, K.E., Ungerer, J., Cobb, R.E., Zhao, H., Pakrasi, H.B., CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Fact, 15, 2016, 115.
    • (2016) Microb Cell Fact , vol.15 , pp. 115
    • Wendt, K.E.1    Ungerer, J.2    Cobb, R.E.3    Zhao, H.4    Pakrasi, H.B.5
  • 153
    • 84992202389 scopus 로고    scopus 로고
    • CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production
    • Li, H., Shen, C.R., Huang, C.H., Sung, L.Y., Wu, M.Y., Hu, Y.C., CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng 38 (2016), 293–302.
    • (2016) Metab Eng , vol.38 , pp. 293-302
    • Li, H.1    Shen, C.R.2    Huang, C.H.3    Sung, L.Y.4    Wu, M.Y.5    Hu, Y.C.6
  • 154
    • 85033718927 scopus 로고    scopus 로고
    • Toward systems metabolic engineering of streptomycetes for secondary metabolites production
    • Robertsen, H.L., Weber, T., Kim, H.U., Lee, S.Y., Toward systems metabolic engineering of streptomycetes for secondary metabolites production. Biotechnol J, 13, 2018.
    • (2018) Biotechnol J , vol.13
    • Robertsen, H.L.1    Weber, T.2    Kim, H.U.3    Lee, S.Y.4
  • 155
    • 84901396861 scopus 로고    scopus 로고
    • Natural products from mangrove actinomycetes
    • Xu, D.B., Ye, W.W., Han, Y., Deng, Z.X., Hong, K., Natural products from mangrove actinomycetes. Mar Drugs 12 (2014), 2590–2613.
    • (2014) Mar Drugs , vol.12 , pp. 2590-2613
    • Xu, D.B.1    Ye, W.W.2    Han, Y.3    Deng, Z.X.4    Hong, K.5
  • 156
    • 84971408219 scopus 로고    scopus 로고
    • Characterization of a C3 deoxygenation pathway reveals a key branch point in aminoglycoside biosynthesis
    • Lv, M., Ji, X., Zhao, J., Li, Y., Zhang, C., Su, L., Ding, W., Deng, Z., Yu, Y., Zhang, Q., Characterization of a C3 deoxygenation pathway reveals a key branch point in aminoglycoside biosynthesis. J Am Chem Soc 138 (2016), 6427–6435.
    • (2016) J Am Chem Soc , vol.138 , pp. 6427-6435
    • Lv, M.1    Ji, X.2    Zhao, J.3    Li, Y.4    Zhang, C.5    Su, L.6    Ding, W.7    Deng, Z.8    Yu, Y.9    Zhang, Q.10
  • 157
    • 85020935736 scopus 로고    scopus 로고
    • Heterologous biosynthesis of spinosad: an omics-guided large polyketide synthase gene cluster reconstitution in Streptomyces
    • Tan, G.Y., Deng, K., Liu, X., Tao, H., Chang, Y., Chen, J., Chen, K., Sheng, Z., Deng, Z., Liu, T., Heterologous biosynthesis of spinosad: an omics-guided large polyketide synthase gene cluster reconstitution in Streptomyces. ACS Synth Biol 6 (2017), 995–1005.
    • (2017) ACS Synth Biol , vol.6 , pp. 995-1005
    • Tan, G.Y.1    Deng, K.2    Liu, X.3    Tao, H.4    Chang, Y.5    Chen, J.6    Chen, K.7    Sheng, Z.8    Deng, Z.9    Liu, T.10
  • 158
    • 85009413806 scopus 로고    scopus 로고
    • Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria
    • Tan, G.Y., Liu, T., Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria. Metab Eng 39 (2017), 228–236.
    • (2017) Metab Eng , vol.39 , pp. 228-236
    • Tan, G.Y.1    Liu, T.2
  • 159
    • 85021790419 scopus 로고    scopus 로고
    • Catalysis of extracellular deamination by a FAD-linked oxidoreductase after prodrug maturation in the biosynthesis of saframycin A
    • Song, L.Q., Zhang, Y.Y., Pu, J.Y., Tang, M.C., Peng, C., Tang, G.L., Catalysis of extracellular deamination by a FAD-linked oxidoreductase after prodrug maturation in the biosynthesis of saframycin A. Angew Chem Int Ed Engl 56 (2017), 9116–9120.
    • (2017) Angew Chem Int Ed Engl , vol.56 , pp. 9116-9120
    • Song, L.Q.1    Zhang, Y.Y.2    Pu, J.Y.3    Tang, M.C.4    Peng, C.5    Tang, G.L.6
  • 160
    • 85021396817 scopus 로고    scopus 로고
    • Bio-inspired engineering of thiopeptide antibiotics advances the expansion of molecular diversity and utility
    • Lin, Z., He, Q., Liu, W., Bio-inspired engineering of thiopeptide antibiotics advances the expansion of molecular diversity and utility. Curr Opin Biotechnol 48 (2017), 210–219.
    • (2017) Curr Opin Biotechnol , vol.48 , pp. 210-219
    • Lin, Z.1    He, Q.2    Liu, W.3
  • 161
    • 85031732591 scopus 로고    scopus 로고
    • Learn from microbial intelligence for avermectins overproduction
    • Gao, Q., Tan, G.Y., Xia, X., Zhang, L., Learn from microbial intelligence for avermectins overproduction. Curr Opin Biotechnol 48 (2017), 251–257.
    • (2017) Curr Opin Biotechnol , vol.48 , pp. 251-257
    • Gao, Q.1    Tan, G.Y.2    Xia, X.3    Zhang, L.4
  • 162
    • 85048132850 scopus 로고    scopus 로고
    • Angucycline glycosides from mangrove-derived streptomycesdiastaticus subsp. SCSIO GJ056
    • Gui, C., Liu, Y., Zhou, Z., Zhang, S., Hu, Y., Gu, Y.C., Huang, H., Ju, J., Angucycline glycosides from mangrove-derived streptomycesdiastaticus subsp. SCSIO GJ056. Mar Drugs, 2018, 16.
    • (2018) Mar Drugs , pp. 16
    • Gui, C.1    Liu, Y.2    Zhou, Z.3    Zhang, S.4    Hu, Y.5    Gu, Y.C.6    Huang, H.7    Ju, J.8
  • 163
    • 85047296963 scopus 로고    scopus 로고
    • Implication of orphan histidine kinase (OhkAsp) in biosynthesis of doxorubicin and daunorubicin in Streptomyces peucetius ATCC 27952
    • Pokhrel, A.R., Nguyen, H.T., Dhakal, D., Chaudhary, A.K., Sohng, J.K., Implication of orphan histidine kinase (OhkAsp) in biosynthesis of doxorubicin and daunorubicin in Streptomyces peucetius ATCC 27952. Microbiol Res 214 (2018), 37–46.
    • (2018) Microbiol Res , vol.214 , pp. 37-46
    • Pokhrel, A.R.1    Nguyen, H.T.2    Dhakal, D.3    Chaudhary, A.K.4    Sohng, J.K.5
  • 165
    • 84906949001 scopus 로고    scopus 로고
    • Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in Streptomyces coelicolor A3(2)
    • Kim, M., Sang Yi, J., Kim, J., Kim, J.N., Kim, M.W., Kim, B.G., Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in Streptomyces coelicolor A3(2). Biotechnol J 9 (2014), 1185–1194.
    • (2014) Biotechnol J , vol.9 , pp. 1185-1194
    • Kim, M.1    Sang Yi, J.2    Kim, J.3    Kim, J.N.4    Kim, M.W.5    Kim, B.G.6
  • 167
    • 84982082472 scopus 로고    scopus 로고
    • Gifted microbes for genome mining and natural product discovery
    • Baltz, R.H., Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 44 (2017), 573–588.
    • (2017) J Ind Microbiol Biotechnol , vol.44 , pp. 573-588
    • Baltz, R.H.1
  • 168
    • 85010931314 scopus 로고    scopus 로고
    • Activation and characterization of a cryptic gene cluster reveals a cyclization cascade for polycyclic tetramate macrolactams
    • Saha, S., Zhang, W., Zhang, G., Zhu, Y., Chen, Y., Liu, W., Yuan, C., Zhang, Q., Zhang, H., Zhang, L., et al. Activation and characterization of a cryptic gene cluster reveals a cyclization cascade for polycyclic tetramate macrolactams. Chem Sci 8 (2017), 1607–1612.
    • (2017) Chem Sci , vol.8 , pp. 1607-1612
    • Saha, S.1    Zhang, W.2    Zhang, G.3    Zhu, Y.4    Chen, Y.5    Liu, W.6    Yuan, C.7    Zhang, Q.8    Zhang, H.9    Zhang, L.10
  • 171
    • 84926466507 scopus 로고    scopus 로고
    • One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces
    • Huang, H., Zheng, G., Jiang, W., Hu, H., Lu, Y., One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin (Shanghai) 47 (2015), 231–243.
    • (2015) Acta Biochim Biophys Sin (Shanghai) , vol.47 , pp. 231-243
    • Huang, H.1    Zheng, G.2    Jiang, W.3    Hu, H.4    Lu, Y.5
  • 172
    • 84934947770 scopus 로고    scopus 로고
    • High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
    • Cobb, R.E., Wang, Y., Zhao, H., High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4 (2015), 723–728.
    • (2015) ACS Synth Biol , vol.4 , pp. 723-728
    • Cobb, R.E.1    Wang, Y.2    Zhao, H.3
  • 173
    • 84948382257 scopus 로고    scopus 로고
    • Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system
    • Zeng, H., Wen, S., Xu, W., He, Z., Zhai, G., Liu, Y., Deng, Z., Sun, Y., Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99 (2015), 10575–10585.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 10575-10585
    • Zeng, H.1    Wen, S.2    Xu, W.3    He, Z.4    Zhai, G.5    Liu, Y.6    Deng, Z.7    Sun, Y.8
  • 174
    • 85053483261 scopus 로고    scopus 로고
    • CRISPR-Cpf1 assisted multiplex genome editing and transcriptional repression in Streptomyces
    • pii: e00827-18
    • Li, L., Wei, K., Zheng, G., Liu, X., Chen, S., Jiang, W., Lu, Y., CRISPR-Cpf1 assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl Environ Microbiol, 2018 pii: e00827-18.
    • (2018) Appl Environ Microbiol
    • Li, L.1    Wei, K.2    Zheng, G.3    Liu, X.4    Chen, S.5    Jiang, W.6    Lu, Y.7
  • 175
    • 85028055069 scopus 로고    scopus 로고
    • Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus
    • Jia, H., Zhang, L., Wang, T., Han, J., Tang, H., Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology 163 (2017), 1148–1155.
    • (2017) Microbiology , vol.163 , pp. 1148-1155
    • Jia, H.1    Zhang, L.2    Wang, T.3    Han, J.4    Tang, H.5
  • 176
    • 84940106526 scopus 로고    scopus 로고
    • CRISPR-Cas9 based engineering of actinomycetal genomes
    • Tong, Y., Charusanti, P., Zhang, L., Weber, T., Lee, S.Y., CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4 (2015), 1020–1029.
    • (2015) ACS Synth Biol , vol.4 , pp. 1020-1029
    • Tong, Y.1    Charusanti, P.2    Zhang, L.3    Weber, T.4    Lee, S.Y.5
  • 178
    • 84929572600 scopus 로고    scopus 로고
    • Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
    • Bao, Z., Xiao, H., Liang, J., Zhang, L., Xiong, X., Sun, N., Si, T., Zhao, H., Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4 (2015), 585–594.
    • (2015) ACS Synth Biol , vol.4 , pp. 585-594
    • Bao, Z.1    Xiao, H.2    Liang, J.3    Zhang, L.4    Xiong, X.5    Sun, N.6    Si, T.7    Zhao, H.8
  • 179
    • 0020607444 scopus 로고
    • Carbohydrate metabolism in lactic acid bacteria
    • Kandler, O., Carbohydrate metabolism in lactic acid bacteria. Antonie Leeuwenhoek 49 (1983), 209–224.
    • (1983) Antonie Leeuwenhoek , vol.49 , pp. 209-224
    • Kandler, O.1
  • 180
    • 85019570372 scopus 로고    scopus 로고
    • The efficient clade: lactic acid bacteria for industrial chemical production
    • Sauer, M., Russmayer, H., Grabherr, R., Peterbauer, C.K., Marx, H., The efficient clade: lactic acid bacteria for industrial chemical production. Trends Biotechnol 35 (2017), 756–769.
    • (2017) Trends Biotechnol , vol.35 , pp. 756-769
    • Sauer, M.1    Russmayer, H.2    Grabherr, R.3    Peterbauer, C.K.4    Marx, H.5
  • 181
    • 84956948917 scopus 로고    scopus 로고
    • Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species
    • Vlasova, A.N., Kandasamy, S., Chattha, K.S., Rajashekara, G., Saif, L.J., Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Vet Immunol Immunopathol 172 (2016), 72–84.
    • (2016) Vet Immunol Immunopathol , vol.172 , pp. 72-84
    • Vlasova, A.N.1    Kandasamy, S.2    Chattha, K.S.3    Rajashekara, G.4    Saif, L.J.5
  • 182
    • 84994036215 scopus 로고    scopus 로고
    • Effect of carbon pulsing on the redox household of Lactobacillus diolivorans in order to enhance 1,3-propanediol production
    • Lindlbauer, K.A., Marx, H., Sauer, M., Effect of carbon pulsing on the redox household of Lactobacillus diolivorans in order to enhance 1,3-propanediol production. N Biotechnol 34 (2017), 32–39.
    • (2017) N Biotechnol , vol.34 , pp. 32-39
    • Lindlbauer, K.A.1    Marx, H.2    Sauer, M.3
  • 183
    • 84939990992 scopus 로고    scopus 로고
    • Efficient production of reuterin from glycerol by magnetically immobilized Lactobacillus reuteri
    • Liu, F., Yu, B., Efficient production of reuterin from glycerol by magnetically immobilized Lactobacillus reuteri. Appl Microbiol Biotechnol 99 (2015), 4659–4666.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 4659-4666
    • Liu, F.1    Yu, B.2
  • 184
    • 84954170297 scopus 로고    scopus 로고
    • Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis
    • Dishisha, T., Pyo, S.H., Hatti-Kaul, R., Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Microb Cell Fact, 14, 2015, 200.
    • (2015) Microb Cell Fact , vol.14 , pp. 200
    • Dishisha, T.1    Pyo, S.H.2    Hatti-Kaul, R.3
  • 185
    • 84920708600 scopus 로고    scopus 로고
    • High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine
    • Yang, Y., Kang, Z., Zhou, J., Chen, J., Du, G., High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine. Appl Microbiol Biotechnol 99 (2015), 301–308.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 301-308
    • Yang, Y.1    Kang, Z.2    Zhou, J.3    Chen, J.4    Du, G.5
  • 186
    • 85032683575 scopus 로고    scopus 로고
    • CRISPR-Cas9(D10A) nickase-assisted genome editing in Lactobacillus casei
    • Song, X., Huang, H., Xiong, Z., Ai, L., Yang, S., CRISPR-Cas9(D10A) nickase-assisted genome editing in Lactobacillus casei. Appl Environ Microbiol, 83, 2017.
    • (2017) Appl Environ Microbiol , vol.83
    • Song, X.1    Huang, H.2    Xiong, Z.3    Ai, L.4    Yang, S.5
  • 190
    • 84986309362 scopus 로고    scopus 로고
    • Clostridia: a flexible microbial platform for the production of alcohols
    • Ren, C., Wen, Z., Xu, Y., Jiang, W., Gu, Y., Clostridia: a flexible microbial platform for the production of alcohols. Curr Opin Chem Biol 35 (2016), 65–72.
    • (2016) Curr Opin Chem Biol , vol.35 , pp. 65-72
    • Ren, C.1    Wen, Z.2    Xu, Y.3    Jiang, W.4    Gu, Y.5
  • 191
    • 85041904982 scopus 로고    scopus 로고
    • Recent developments of the synthetic biology toolkit for Clostridium
    • Joseph, R.C., Kim, N.M., Sandoval, N.R., Recent developments of the synthetic biology toolkit for Clostridium. Front Microbiol, 9, 2018, 154.
    • (2018) Front Microbiol , vol.9 , pp. 154
    • Joseph, R.C.1    Kim, N.M.2    Sandoval, N.R.3
  • 192
    • 85011333326 scopus 로고    scopus 로고
    • Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum
    • Xue, C., Zhao, J., Chen, L., Yang, S.T., Bai, F., Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol Adv 35 (2017), 310–322.
    • (2017) Biotechnol Adv , vol.35 , pp. 310-322
    • Xue, C.1    Zhao, J.2    Chen, L.3    Yang, S.T.4    Bai, F.5
  • 193
    • 84924425397 scopus 로고    scopus 로고
    • Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
    • Wang, Y., Zhang, Z.T., Seo, S.O., Choi, K., Lu, T., Jin, Y.S., Blaschek, H.P., Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 200 (2015), 1–5.
    • (2015) J Biotechnol , vol.200 , pp. 1-5
    • Wang, Y.1    Zhang, Z.T.2    Seo, S.O.3    Choi, K.4    Lu, T.5    Jin, Y.S.6    Blaschek, H.P.7
  • 194
    • 84978699037 scopus 로고    scopus 로고
    • Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable “clean” mutant selection in Clostridium beijerinckii as an example
    • Wang, Y., Zhang, Z.T., Seo, S.O., Lynn, P., Lu, T., Jin, Y.S., Blaschek, H.P., Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable “clean” mutant selection in Clostridium beijerinckii as an example. ACS Synth Biol 5 (2016), 721–732.
    • (2016) ACS Synth Biol , vol.5 , pp. 721-732
    • Wang, Y.1    Zhang, Z.T.2    Seo, S.O.3    Lynn, P.4    Lu, T.5    Jin, Y.S.6    Blaschek, H.P.7
  • 195
    • 85018276292 scopus 로고    scopus 로고
    • Genome editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 system
    • Wang, S., Dong, S., Wang, P., Tao, Y., Wang, Y., Genome editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 system. Appl Environ Microbiol, 83, 2017.
    • (2017) Appl Environ Microbiol , vol.83
    • Wang, S.1    Dong, S.2    Wang, P.3    Tao, Y.4    Wang, Y.5
  • 196
    • 84977527317 scopus 로고    scopus 로고
    • CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii
    • Li, Q., Chen, J., Minton, N.P., Zhang, Y., Wen, Z., Liu, J., Yang, H., Zeng, Z., Ren, X., Yang, J., et al. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol J 11 (2016), 961–972.
    • (2016) Biotechnol J , vol.11 , pp. 961-972
    • Li, Q.1    Chen, J.2    Minton, N.P.3    Zhang, Y.4    Wen, Z.5    Liu, J.6    Yang, H.7    Zeng, Z.8    Ren, X.9    Yang, J.10
  • 198
    • 85006485809 scopus 로고    scopus 로고
    • CRISPR/Cas9-Based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium
    • Huang, H., Chai, C., Li, N., Rowe, P., Minton, N.P., Yang, S., Jiang, W., Gu, Y., CRISPR/Cas9-Based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol 5 (2016), 1355–1361.
    • (2016) ACS Synth Biol , vol.5 , pp. 1355-1361
    • Huang, H.1    Chai, C.2    Li, N.3    Rowe, P.4    Minton, N.P.5    Yang, S.6    Jiang, W.7    Gu, Y.8
  • 199
    • 85045795429 scopus 로고    scopus 로고
    • Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production
    • Zhang, J., Zong, W., Hong, W., Zhang, Z.T., Wang, Y., Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab Eng 47 (2018), 49–59.
    • (2018) Metab Eng , vol.47 , pp. 49-59
    • Zhang, J.1    Zong, W.2    Hong, W.3    Zhang, Z.T.4    Wang, Y.5
  • 200
    • 84971265340 scopus 로고    scopus 로고
    • Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium
    • Pyne, M.E., Bruder, M.R., Moo-Young, M., Chung, D.A., Chou, C.P., Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Sci Rep, 6, 2016, 25666.
    • (2016) Sci Rep , vol.6 , pp. 25666
    • Pyne, M.E.1    Bruder, M.R.2    Moo-Young, M.3    Chung, D.A.4    Chou, C.P.5
  • 201
    • 85048754323 scopus 로고    scopus 로고
    • Multiplexed CRISPR-Cpf1-mediated genome editing in Clostridium difficile toward the understanding of pathogenesis of C. difficile infection
    • Hong, W., Zhang, J., Cui, G., Wang, L., Wang, Y., Multiplexed CRISPR-Cpf1-mediated genome editing in Clostridium difficile toward the understanding of pathogenesis of C. difficile infection. ACS Synth Biol 7 (2018), 1588–1600.
    • (2018) ACS Synth Biol , vol.7 , pp. 1588-1600
    • Hong, W.1    Zhang, J.2    Cui, G.3    Wang, L.4    Wang, Y.5
  • 203
    • 85028929435 scopus 로고    scopus 로고
    • Cas9 nickase-assisted RNA repression enables stable and efficient manipulation of essential metabolic genes in Clostridium cellulolyticum
    • Xu, T., Li, Y., He, Z., Van Nostrand, J.D., Zhou, J., Cas9 nickase-assisted RNA repression enables stable and efficient manipulation of essential metabolic genes in Clostridium cellulolyticum. Front Microbiol, 8, 2017, 1744.
    • (2017) Front Microbiol , vol.8 , pp. 1744
    • Xu, T.1    Li, Y.2    He, Z.3    Van Nostrand, J.D.4    Zhou, J.5
  • 204
    • 84991281155 scopus 로고    scopus 로고
    • Extending CRISPR-Cas9 technology from genome editing to transcriptional engineering in the genus Clostridium
    • Bruder, M.R., Pyne, M.E., Moo-Young, M., Chung, D.A., Chou, C.P., Extending CRISPR-Cas9 technology from genome editing to transcriptional engineering in the genus Clostridium. Appl Environ Microbiol 82 (2016), 6109–6119.
    • (2016) Appl Environ Microbiol , vol.82 , pp. 6109-6119
    • Bruder, M.R.1    Pyne, M.E.2    Moo-Young, M.3    Chung, D.A.4    Chou, C.P.5
  • 205
    • 84975485770 scopus 로고    scopus 로고
    • Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9
    • Wang, Y., Zhang, Z.T., Seo, S.O., Lynn, P., Lu, T., Jin, Y.S., Blaschek, H.P., Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9. Biotechnol Bioeng 113 (2016), 2739–2743.
    • (2016) Biotechnol Bioeng , vol.113 , pp. 2739-2743
    • Wang, Y.1    Zhang, Z.T.2    Seo, S.O.3    Lynn, P.4    Lu, T.5    Jin, Y.S.6    Blaschek, H.P.7
  • 206
    • 85006141763 scopus 로고    scopus 로고
    • Enhanced solvent production by metabolic engineering of a twin-clostridial consortium
    • Wen, Z., Minton, N.P., Zhang, Y., Li, Q., Liu, J., Jiang, Y., Yang, S., Enhanced solvent production by metabolic engineering of a twin-clostridial consortium. Metab Eng 39 (2017), 38–48.
    • (2017) Metab Eng , vol.39 , pp. 38-48
    • Wen, Z.1    Minton, N.P.2    Zhang, Y.3    Li, Q.4    Liu, J.5    Jiang, Y.6    Yang, S.7
  • 207
    • 85040865494 scopus 로고    scopus 로고
    • Corynebacterium glutamicum chassis C1*: building and testing a novel platform host for synthetic biology and industrial biotechnology
    • Baumgart, M., Unthan, S., Kloss, R., Radek, A., Polen, T., Tenhaef, N., Muller, M.F., Kuberl, A., Siebert, D., Bruhl, N., et al. Corynebacterium glutamicum chassis C1*: building and testing a novel platform host for synthetic biology and industrial biotechnology. ACS Synth Biol 7 (2018), 132–144.
    • (2018) ACS Synth Biol , vol.7 , pp. 132-144
    • Baumgart, M.1    Unthan, S.2    Kloss, R.3    Radek, A.4    Polen, T.5    Tenhaef, N.6    Muller, M.F.7    Kuberl, A.8    Siebert, D.9    Bruhl, N.10
  • 208
    • 85052073647 scopus 로고    scopus 로고
    • Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products
    • pii: S1096-7176(18)30152-6
    • Becker, J., Rohles, C.M., Wittmann, C., Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng, 2018 pii: S1096-7176(18)30152-6.
    • (2018) Metab Eng
    • Becker, J.1    Rohles, C.M.2    Wittmann, C.3
  • 210
    • 85034250678 scopus 로고    scopus 로고
    • Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum
    • Liu, J., Wang, Y., Lu, Y., Zheng, P., Sun, J., Ma, Y., Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb Cell Fact, 16, 2017, 205.
    • (2017) Microb Cell Fact , vol.16 , pp. 205
    • Liu, J.1    Wang, Y.2    Lu, Y.3    Zheng, P.4    Sun, J.5    Ma, Y.6
  • 211
    • 85034083694 scopus 로고    scopus 로고
    • Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system
    • Peng, F., Wang, X., Sun, Y., Dong, G., Yang, Y., Liu, X., Bai, Z., Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Fact, 16, 2017, 201.
    • (2017) Microb Cell Fact , vol.16 , pp. 201
    • Peng, F.1    Wang, X.2    Sun, Y.3    Dong, G.4    Yang, Y.5    Liu, X.6    Bai, Z.7
  • 212
    • 85021307199 scopus 로고    scopus 로고
    • CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum
    • Cho, J.S., Choi, K.R., Prabowo, C.P.S., Shin, J.H., Yang, D., Jang, J., Lee, S.Y., CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng 42 (2017), 157–167.
    • (2017) Metab Eng , vol.42 , pp. 157-167
    • Cho, J.S.1    Choi, K.R.2    Prabowo, C.P.S.3    Shin, J.H.4    Yang, D.5    Jang, J.6    Lee, S.Y.7
  • 213
  • 214
    • 85044579211 scopus 로고    scopus 로고
    • MACBETH: multiplex automated Corynebacterium glutamicum base editing method
    • Wang, Y., Liu, Y., Liu, J., Guo, Y., Fan, L., Ni, X., Zheng, X., Wang, M., Zheng, P., Sun, J., et al. MACBETH: multiplex automated Corynebacterium glutamicum base editing method. Metab Eng 47 (2018), 200–210.
    • (2018) Metab Eng , vol.47 , pp. 200-210
    • Wang, Y.1    Liu, Y.2    Liu, J.3    Guo, Y.4    Fan, L.5    Ni, X.6    Zheng, X.7    Wang, M.8    Zheng, P.9    Sun, J.10
  • 215
    • 84973136613 scopus 로고    scopus 로고
    • Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi)
    • Cleto, S., Jensen, J.V., Wendisch, V.F., Lu, T.K., Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol 5 (2016), 375–385.
    • (2016) ACS Synth Biol , vol.5 , pp. 375-385
    • Cleto, S.1    Jensen, J.V.2    Wendisch, V.F.3    Lu, T.K.4
  • 216
    • 85040323809 scopus 로고    scopus 로고
    • RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain
    • Park, J., Shin, H., Lee, S.M., Um, Y., Woo, H.M., RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain. Microb Cell Fact, 17, 2018, 4.
    • (2018) Microb Cell Fact , vol.17 , pp. 4
    • Park, J.1    Shin, H.2    Lee, S.M.3    Um, Y.4    Woo, H.M.5
  • 217
    • 85046549174 scopus 로고    scopus 로고
    • CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production
    • Yoon, J., Woo, H.M., CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production. Biotechnol Bioeng 115 (2018), 2067–2074.
    • (2018) Biotechnol Bioeng , vol.115 , pp. 2067-2074
    • Yoon, J.1    Woo, H.M.2
  • 218
    • 85048835854 scopus 로고    scopus 로고
    • Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications
    • pii: S1096-7176(17)30482-2
    • Gu, Y., Xu, X., Wu, Y., Niu, T., Liu, Y., Li, J., Du, G., Liu, L., Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metab Eng, 2018 pii: S1096-7176(17)30482-2.
    • (2018) Metab Eng
    • Gu, Y.1    Xu, X.2    Wu, Y.3    Niu, T.4    Liu, Y.5    Li, J.6    Du, G.7    Liu, L.8
  • 219
    • 84982107482 scopus 로고    scopus 로고
    • Development of a CRISPR-Cas9 tool kit for Comprehensive engineering of Bacillus subtilis
    • Westbrook, A.W., Moo-Young, M., Chou, C.P., Development of a CRISPR-Cas9 tool kit for Comprehensive engineering of Bacillus subtilis. Appl Environ Microbiol 82 (2016), 4876–4895.
    • (2016) Appl Environ Microbiol , vol.82 , pp. 4876-4895
    • Westbrook, A.W.1    Moo-Young, M.2    Chou, C.P.3
  • 220
    • 85053760225 scopus 로고    scopus 로고
    • Metabolic engineering of Bacillus subtilis for L-valine overproduction
    • Westbrook, A.W., Ren, X., Moo-Young, M., Chou, C.P., Metabolic engineering of Bacillus subtilis for L-valine overproduction. Biotechnol Bioeng, 2018, 10.1002/bit.26789.
    • (2018) Biotechnol Bioeng
    • Westbrook, A.W.1    Ren, X.2    Moo-Young, M.3    Chou, C.P.4
  • 221
    • 85046700155 scopus 로고    scopus 로고
    • Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis
    • Westbrook, A.W., Ren, X., Oh, J., Moo-Young, M., Chou, C.P., Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metab Eng 47 (2018), 401–413.
    • (2018) Metab Eng , vol.47 , pp. 401-413
    • Westbrook, A.W.1    Ren, X.2    Oh, J.3    Moo-Young, M.4    Chou, C.P.5
  • 222
    • 85052874280 scopus 로고    scopus 로고
    • CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis
    • Wu, Y., Chen, T., Liu, Y., Lv, X., Li, J., Du, G., Ledesma-Amaro, R., Liu, L., CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Metab Eng 49 (2018), 232–241.
    • (2018) Metab Eng , vol.49 , pp. 232-241
    • Wu, Y.1    Chen, T.2    Liu, Y.3    Lv, X.4    Li, J.5    Du, G.6    Ledesma-Amaro, R.7    Liu, L.8
  • 223
    • 84975061735 scopus 로고    scopus 로고
    • Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system
    • Zhang, K., Duan, X., Wu, J., Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci Rep, 6, 2016, 27943.
    • (2016) Sci Rep , vol.6 , pp. 27943
    • Zhang, K.1    Duan, X.2    Wu, J.3
  • 224
    • 85045751365 scopus 로고    scopus 로고
    • Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding
    • Zhang, K., Su, L., Wu, J., Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding. Appl Microbiol Biotechnol 102 (2018), 5089–5103.
    • (2018) Appl Microbiol Biotechnol , vol.102 , pp. 5089-5103
    • Zhang, K.1    Su, L.2    Wu, J.3
  • 227
    • 85042672913 scopus 로고    scopus 로고
    • Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase
    • Li, K., Cai, D., Wang, Z., He, Z., Chen, S., Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase. Appl Environ Microbiol, 84, 2018.
    • (2018) Appl Environ Microbiol , vol.84
    • Li, K.1    Cai, D.2    Wang, Z.3    He, Z.4    Chen, S.5
  • 228
    • 85032687462 scopus 로고    scopus 로고
    • Antibiotic resistance: current perspectives
    • Petchiappan, A., Chatterji, D., Antibiotic resistance: current perspectives. ACS Omega 2 (2017), 7400–7409.
    • (2017) ACS Omega , vol.2 , pp. 7400-7409
    • Petchiappan, A.1    Chatterji, D.2
  • 229
    • 85044427879 scopus 로고    scopus 로고
    • Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase
    • Gu, T., Zhao, S., Pi, Y., Chen, W., Chen, C., Liu, Q., Li, M., Han, D., Ji, Q., Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase. Chem Sci 9 (2018), 3248–3253.
    • (2018) Chem Sci , vol.9 , pp. 3248-3253
    • Gu, T.1    Zhao, S.2    Pi, Y.3    Chen, W.4    Chen, C.5    Liu, Q.6    Li, M.7    Han, D.8    Ji, Q.9
  • 230
    • 85015230298 scopus 로고    scopus 로고
    • Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system
    • Chen, W., Zhang, Y., Yeo, W.S., Bae, T., Ji, Q., Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system. J Am Chem Soc 139 (2017), 3790–3795.
    • (2017) J Am Chem Soc , vol.139 , pp. 3790-3795
    • Chen, W.1    Zhang, Y.2    Yeo, W.S.3    Bae, T.4    Ji, Q.5
  • 231
    • 85019857816 scopus 로고    scopus 로고
    • CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus
    • Dong, X., Jin, Y., Ming, D., Li, B., Dong, H., Wang, L., Wang, T., Wang, D., CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus. J Microbiol Methods 139 (2017), 79–86.
    • (2017) J Microbiol Methods , vol.139 , pp. 79-86
    • Dong, X.1    Jin, Y.2    Ming, D.3    Li, B.4    Dong, H.5    Wang, L.6    Wang, T.7    Wang, D.8
  • 232
    • 84923869859 scopus 로고    scopus 로고
    • Gene silencing by CRISPR interference in mycobacteria
    • Choudhary, E., Thakur, P., Pareek, M., Agarwal, N., Gene silencing by CRISPR interference in mycobacteria. Nat Commun, 6, 2015, 6267.
    • (2015) Nat Commun , vol.6 , pp. 6267
    • Choudhary, E.1    Thakur, P.2    Pareek, M.3    Agarwal, N.4
  • 234
    • 84992170651 scopus 로고    scopus 로고
    • Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system
    • Singh, A.K., Carette, X., Potluri, L.P., Sharp, J.D., Xu, R., Prisic, S., Husson, R.N., Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system. Nucleic Acids Res, 44, 2016, e143.
    • (2016) Nucleic Acids Res , vol.44 , pp. e143
    • Singh, A.K.1    Carette, X.2    Potluri, L.P.3    Sharp, J.D.4    Xu, R.5    Prisic, S.6    Husson, R.N.7
  • 235
    • 85052617295 scopus 로고    scopus 로고
    • A CRISPR-Cpf1-Assisted Non-Homologous End Joining Genome Editing System of Mycobacterium smegmatis
    • Sun, B., Yang, J., Yang, S., Ye, R.D., Chen, D., Jiang, Y., A CRISPR-Cpf1-Assisted Non-Homologous End Joining Genome Editing System of Mycobacterium smegmatis. Biotechnol J, 2018, e1700588.
    • (2018) Biotechnol J
    • Sun, B.1    Yang, J.2    Yang, S.3    Ye, R.D.4    Chen, D.5    Jiang, Y.6
  • 236
    • 84971373700 scopus 로고    scopus 로고
    • Constitutive expression of a nag-like dioxygenase gene through an internal promoter in the 2-Chloronitrobenzene Catabolism gene cluster of Pseudomonas stutzeri ZWLR2-1
    • Gao, Y.Z., Liu, H., Chao, H.J., Zhou, N.Y., Constitutive expression of a nag-like dioxygenase gene through an internal promoter in the 2-Chloronitrobenzene Catabolism gene cluster of Pseudomonas stutzeri ZWLR2-1. Appl Environ Microbiol 82 (2016), 3461–3470.
    • (2016) Appl Environ Microbiol , vol.82 , pp. 3461-3470
    • Gao, Y.Z.1    Liu, H.2    Chao, H.J.3    Zhou, N.Y.4
  • 237
    • 84908080020 scopus 로고    scopus 로고
    • Mechanism of the 6-hydroxy-3-succinoyl-pyridine 3-monooxygenase flavoprotein from Pseudomonas putida S16
    • Yu, H., Hausinger, R.P., Tang, H.Z., Xu, P., Mechanism of the 6-hydroxy-3-succinoyl-pyridine 3-monooxygenase flavoprotein from Pseudomonas putida S16. J Biol Chem 289 (2014), 29158–29170.
    • (2014) J Biol Chem , vol.289 , pp. 29158-29170
    • Yu, H.1    Hausinger, R.P.2    Tang, H.Z.3    Xu, P.4
  • 238
    • 85037347493 scopus 로고    scopus 로고
    • CRISPR/Cas9-Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida
    • Aparicio, T., de Lorenzo, V., Martinez-Garcia, E., CRISPR/Cas9-Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida. Biotechnol J, 13, 2018, e1700161.
    • (2018) Biotechnol J , vol.13
    • Aparicio, T.1    de Lorenzo, V.2    Martinez-Garcia, E.3
  • 239
    • 85043454615 scopus 로고    scopus 로고
    • Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system
    • Sun, J., Wang, Q., Jiang, Y., Wen, Z., Yang, L., Wu, J., Yang, S., Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system. Microb Cell Fact, 17, 2018, 41.
    • (2018) Microb Cell Fact , vol.17 , pp. 41
    • Sun, J.1    Wang, Q.2    Jiang, Y.3    Wen, Z.4    Yang, L.5    Wu, J.6    Yang, S.7
  • 240
    • 85043512916 scopus 로고    scopus 로고
    • A robust CRISPR interference gene repression system in Pseudomonas
    • Tan, S.Z., Reisch, C.R., Prather, K.L.J., A robust CRISPR interference gene repression system in Pseudomonas. J Bacteriol, 200, 2018.
    • (2018) J Bacteriol , vol.200
    • Tan, S.Z.1    Reisch, C.R.2    Prather, K.L.J.3
  • 241
    • 85051801192 scopus 로고    scopus 로고
    • Efficient genome engineering of a virulent Klebsiella bacteriophage using CRISPR-Cas9
    • Shen, J., Zhou, J., Chen, G.Q., Xiu, Z.L., Efficient genome engineering of a virulent Klebsiella bacteriophage using CRISPR-Cas9. J Virol, 92, 2018.
    • (2018) J Virol , vol.92
    • Shen, J.1    Zhou, J.2    Chen, G.Q.3    Xiu, Z.L.4
  • 242
    • 85044984145 scopus 로고    scopus 로고
    • Engineering CRISPR interference system in Klebsiella pneumoniae for attenuating lactic acid synthesis
    • Wang, J., Zhao, P., Li, Y., Xu, L., Tian, P., Engineering CRISPR interference system in Klebsiella pneumoniae for attenuating lactic acid synthesis. Microb Cell Fact, 17, 2018, 56.
    • (2018) Microb Cell Fact , vol.17 , pp. 56
    • Wang, J.1    Zhao, P.2    Li, Y.3    Xu, L.4    Tian, P.5
  • 244
    • 84879101651 scopus 로고    scopus 로고
    • Synthetic biology: advancing the design of diverse genetic systems
    • Wang, Y.H., Wei, K.Y., Smolke, C.D., Synthetic biology: advancing the design of diverse genetic systems. Annu Rev Chem Biomol Eng 4 (2012), 69–102.
    • (2012) Annu Rev Chem Biomol Eng , vol.4 , pp. 69-102
    • Wang, Y.H.1    Wei, K.Y.2    Smolke, C.D.3
  • 247
    • 85049967681 scopus 로고    scopus 로고
    • Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation
    • Shao, J., Wang, M., Yu, G., Zhu, S., Yu, Y., Heng, B.C., Wu, J., Ye, H., Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proc Natl Acad Sci U S A 115 (2018), E6722–E6730.
    • (2018) Proc Natl Acad Sci U S A , vol.115 , pp. E6722-E6730
    • Shao, J.1    Wang, M.2    Yu, G.3    Zhu, S.4    Yu, Y.5    Heng, B.C.6    Wu, J.7    Ye, H.8
  • 248
    • 85021437995 scopus 로고    scopus 로고
    • Inhibition of CRISPR-Cas systems by mobile genetic elements
    • Sontheimer, E.J., Davidson, A.R., Inhibition of CRISPR-Cas systems by mobile genetic elements. Curr Opin Microbiol 37 (2017), 120–127.
    • (2017) Curr Opin Microbiol , vol.37 , pp. 120-127
    • Sontheimer, E.J.1    Davidson, A.R.2
  • 249
    • 85046878848 scopus 로고    scopus 로고
    • Review of CRISPR/Cas9 sgRNA design tools
    • Cui, Y., Xu, J., Cheng, M., Liao, X., Peng, S., Review of CRISPR/Cas9 sgRNA design tools. Interdiscip Sci 10 (2018), 455–465.
    • (2018) Interdiscip Sci , vol.10 , pp. 455-465
    • Cui, Y.1    Xu, J.2    Cheng, M.3    Liao, X.4    Peng, S.5
  • 250
    • 84945926658 scopus 로고    scopus 로고
    • Wu-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system
    • Wong, N., Liu, W., Wang, X., Wu-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol, 16, 2015, 218.
    • (2015) Genome Biol , vol.16 , pp. 218
    • Wong, N.1    Liu, W.2    Wang, X.3
  • 253
  • 254
    • 85019592417 scopus 로고    scopus 로고
    • sgRNA scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity
    • Chari, R., Yeo, N.C., Chavez, A., Church, G.M., sgRNA scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol 6 (2017), 902–904.
    • (2017) ACS Synth Biol , vol.6 , pp. 902-904
    • Chari, R.1    Yeo, N.C.2    Chavez, A.3    Church, G.M.4
  • 257
    • 84961626370 scopus 로고    scopus 로고
    • CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries
    • Heigwer, F., Zhan, T., Breinig, M., Winter, J., Brugemann, D., Leible, S., Boutros, M., CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries. Genome Biol, 17, 2016, 55.
    • (2016) Genome Biol , vol.17 , pp. 55
    • Heigwer, F.1    Zhan, T.2    Breinig, M.3    Winter, J.4    Brugemann, D.5    Leible, S.6    Boutros, M.7
  • 258
    • 84893287073 scopus 로고    scopus 로고
    • E-CRISP: fast CRISPR target site identification
    • Heigwer, F., Kerr, G., Boutros, M., E-CRISP: fast CRISPR target site identification. Nat Methods 11 (2014), 122–123.
    • (2014) Nat Methods , vol.11 , pp. 122-123
    • Heigwer, F.1    Kerr, G.2    Boutros, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.