-
1
-
-
85043332333
-
The biology of CRISPR-Cas: backward and forward
-
Hille, F., Richter, H., Wong, S.P., Bratovic, M., Ressel, S., Charpentier, E., The biology of CRISPR-Cas: backward and forward. Cell 172 (2018), 1239–1259.
-
(2018)
Cell
, vol.172
, pp. 1239-1259
-
-
Hille, F.1
Richter, H.2
Wong, S.P.3
Bratovic, M.4
Ressel, S.5
Charpentier, E.6
-
2
-
-
85020445396
-
Diversity, classification and evolution of CRISPR-Cas systems
-
Koonin, E.V., Makarova, K.S., Zhang, F., Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37 (2017), 67–78.
-
(2017)
Curr Opin Microbiol
, vol.37
, pp. 67-78
-
-
Koonin, E.V.1
Makarova, K.S.2
Zhang, F.3
-
3
-
-
85025128200
-
Beyond native Cas9: manipulating genomic information and function
-
Mitsunobu, H., Teramoto, J., Nishida, K., Kondo, A., Beyond native Cas9: manipulating genomic information and function. Trends Biotechnol 35 (2017), 983–996.
-
(2017)
Trends Biotechnol
, vol.35
, pp. 983-996
-
-
Mitsunobu, H.1
Teramoto, J.2
Nishida, K.3
Kondo, A.4
-
4
-
-
33645781346
-
Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining
-
Bowater, R., Doherty, A.J., Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet, 2, 2006, e8.
-
(2006)
PLoS Genet
, vol.2
, pp. e8
-
-
Bowater, R.1
Doherty, A.J.2
-
5
-
-
85047212505
-
Fundamental CRISPR-Cas9 tools and current applications in microbial systems
-
Tian, P., Wang, J., Shen, X., Rey, J.F., Yuan, Q., Yan, Y., Fundamental CRISPR-Cas9 tools and current applications in microbial systems. Synth Syst Biotechnol 2 (2017), 219–225.
-
(2017)
Synth Syst Biotechnol
, vol.2
, pp. 219-225
-
-
Tian, P.1
Wang, J.2
Shen, X.3
Rey, J.F.4
Yuan, Q.5
Yan, Y.6
-
6
-
-
84925876620
-
Harnessing CRISPR-Cas systems for bacterial genome editing
-
Selle, K., Barrangou, R., Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol 23 (2015), 225–232.
-
(2015)
Trends Microbiol
, vol.23
, pp. 225-232
-
-
Selle, K.1
Barrangou, R.2
-
7
-
-
84935472715
-
Advances in yeast genome engineering
-
David, F., Siewers, V., Advances in yeast genome engineering. FEMS Yeast Res 15 (2015), 1–14.
-
(2015)
FEMS Yeast Res
, vol.15
, pp. 1-14
-
-
David, F.1
Siewers, V.2
-
8
-
-
84873800970
-
Genome-scale engineering for systems and synthetic biology
-
Esvelt, K.M., Wang, H.H., Genome-scale engineering for systems and synthetic biology. Mol Syst Biol, 9, 2013, 641.
-
(2013)
Mol Syst Biol
, vol.9
, pp. 641
-
-
Esvelt, K.M.1
Wang, H.H.2
-
9
-
-
85042354098
-
CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity
-
Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., Doudna, J.A., CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360 (2018), 436–439.
-
(2018)
Science
, vol.360
, pp. 436-439
-
-
Chen, J.S.1
Ma, E.2
Harrington, L.B.3
Da Costa, M.4
Tian, X.5
Palefsky, J.M.6
Doudna, J.A.7
-
10
-
-
85042220581
-
Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6
-
Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J., Joung, J., Collins, J.J., Zhang, F., Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360 (2018), 439–444.
-
(2018)
Science
, vol.360
, pp. 439-444
-
-
Gootenberg, J.S.1
Abudayyeh, O.O.2
Kellner, M.J.3
Joung, J.4
Collins, J.J.5
Zhang, F.6
-
11
-
-
85043461903
-
CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA
-
Li, S.Y., Cheng, Q.X., Liu, J.K., Nie, X.Q., Zhao, G.P., Wang, J., CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res 28 (2018), 491–493.
-
(2018)
Cell Res
, vol.28
, pp. 491-493
-
-
Li, S.Y.1
Cheng, Q.X.2
Liu, J.K.3
Nie, X.Q.4
Zhao, G.P.5
Wang, J.6
-
12
-
-
85045741001
-
Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System
-
Lian, J., HamediRad, M., Zhao, H., Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System. Biotechnol J, 2018, e1700601.
-
(2018)
Biotechnol J
-
-
Lian, J.1
HamediRad, M.2
Zhao, H.3
-
13
-
-
85047180904
-
The CRISPR tool kit for genome editing and beyond
-
Adli, M., The CRISPR tool kit for genome editing and beyond. Nat Commun, 9, 2018, 1911.
-
(2018)
Nat Commun
, vol.9
, pp. 1911
-
-
Adli, M.1
-
14
-
-
85029667775
-
CRISPR system in filamentous fungi: current achievements and future directions
-
Deng, H., Gao, R., Liao, X., Cai, Y., CRISPR system in filamentous fungi: current achievements and future directions. Gene 627 (2017), 212–221.
-
(2017)
Gene
, vol.627
, pp. 212-221
-
-
Deng, H.1
Gao, R.2
Liao, X.3
Cai, Y.4
-
15
-
-
85032907233
-
CRISPR-Cas9 based plant genome editing: significance, opportunities and recent advances
-
Soda, N., Verma, L., Giri, J., CRISPR-Cas9 based plant genome editing: significance, opportunities and recent advances. Plant Physiol Biochem 131 (2018), 2–11.
-
(2018)
Plant Physiol Biochem
, vol.131
, pp. 2-11
-
-
Soda, N.1
Verma, L.2
Giri, J.3
-
16
-
-
85047667250
-
Cas9 versus Cas12a/Cpf1: structure-function comparisons and implications for genome editing
-
Wiley Interdiscip Rev RNA
-
Swarts, D.C., Jinek, M., Cas9 versus Cas12a/Cpf1: structure-function comparisons and implications for genome editing. 2018, Wiley Interdiscip Rev RNA, e1481.
-
(2018)
, pp. e1481
-
-
Swarts, D.C.1
Jinek, M.2
-
17
-
-
85017393597
-
CRISPR-Cas: adapting to change
-
Jackson, S.A., McKenzie, R.E., Fagerlund, R.D., Kieper, S.N., Fineran, P.C., Brouns, S.J., CRISPR-Cas: adapting to change. Science, 356, 2017.
-
(2017)
Science
, vol.356
-
-
Jackson, S.A.1
McKenzie, R.E.2
Fagerlund, R.D.3
Kieper, S.N.4
Fineran, P.C.5
Brouns, S.J.6
-
18
-
-
84924705939
-
Cas9 specifies functional viral targets during CRISPR-Cas adaptation
-
Heler, R., Samai, P., Modell, J.W., Weiner, C., Goldberg, G.W., Bikard, D., Marraffini, L.A., Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519 (2015), 199–202.
-
(2015)
Nature
, vol.519
, pp. 199-202
-
-
Heler, R.1
Samai, P.2
Modell, J.W.3
Weiner, C.4
Goldberg, G.W.5
Bikard, D.6
Marraffini, L.A.7
-
19
-
-
84922998282
-
Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation
-
Wei, Y., Terns, R.M., Terns, M.P., Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev 29 (2015), 356–361.
-
(2015)
Genes Dev
, vol.29
, pp. 356-361
-
-
Wei, Y.1
Terns, R.M.2
Terns, M.P.3
-
20
-
-
85021146685
-
Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage
-
Stella, S., Alcon, P., Montoya, G., Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature 546 (2017), 559–563.
-
(2017)
Nature
, vol.546
, pp. 559-563
-
-
Stella, S.1
Alcon, P.2
Montoya, G.3
-
21
-
-
38949123143
-
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
-
Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P., Romero, D.A., Horvath, P., Moineau, S., Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190 (2008), 1390–1400.
-
(2008)
J Bacteriol
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
Barrangou, R.2
Garneau, J.E.3
Labonte, J.4
Fremaux, C.5
Boyaval, P.6
Romero, D.A.7
Horvath, P.8
Moineau, S.9
-
22
-
-
64049118040
-
Short motif sequences determine the targets of the prokaryotic CRISPR defence system
-
Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J., Almendros, C., Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155 (2009), 733–740.
-
(2009)
Microbiology
, vol.155
, pp. 733-740
-
-
Mojica, F.J.1
Diez-Villasenor, C.2
Garcia-Martinez, J.3
Almendros, C.4
-
23
-
-
84860433123
-
CRISPR interference directs strand specific spacer acquisition
-
Swarts, D.C., Mosterd, C., van Passel, M.W., Brouns, S.J., CRISPR interference directs strand specific spacer acquisition. PloS One, 7, 2012, e35888.
-
(2012)
PloS One
, vol.7
-
-
Swarts, D.C.1
Mosterd, C.2
van Passel, M.W.3
Brouns, S.J.4
-
24
-
-
84964862130
-
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
-
Fonfara, I., Richter, H., Bratovic, M., Le Rhun, A., Charpentier, E., The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532 (2016), 517–521.
-
(2016)
Nature
, vol.532
, pp. 517-521
-
-
Fonfara, I.1
Richter, H.2
Bratovic, M.3
Le Rhun, A.4
Charpentier, E.5
-
25
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163 (2015), 759–771.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
Essletzbichler, P.6
Volz, S.E.7
Joung, J.8
van der Oost, J.9
Regev, A.10
-
26
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., Horvath, P., CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 (2007), 1709–1712.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
Moineau, S.6
Romero, D.A.7
Horvath, P.8
-
27
-
-
84908508061
-
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
-
Anders, C., Niewoehner, O., Duerst, A., Jinek, M., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513 (2014), 569–573.
-
(2014)
Nature
, vol.513
, pp. 569-573
-
-
Anders, C.1
Niewoehner, O.2
Duerst, A.3
Jinek, M.4
-
28
-
-
84933574487
-
STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition
-
Jiang, F., Zhou, K., Ma, L., Gressel, S., Doudna, J.A., STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348 (2015), 1477–1481.
-
(2015)
Science
, vol.348
, pp. 1477-1481
-
-
Jiang, F.1
Zhou, K.2
Ma, L.3
Gressel, S.4
Doudna, J.A.5
-
29
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., Dickman, M.J., Makarova, K.S., Koonin, E.V., van der Oost, J., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321 (2008), 960–964.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.5
Snijders, A.P.6
Dickman, M.J.7
Makarova, K.S.8
Koonin, E.V.9
van der Oost, J.10
-
30
-
-
77956498326
-
Sequence- and structure-specific RNA processing by a CRISPR endonuclease
-
Haurwitz, R.E., Jinek, M., Wiedenheft, B., Zhou, K., Doudna, J.A., Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329 (2010), 1355–1358.
-
(2010)
Science
, vol.329
, pp. 1355-1358
-
-
Haurwitz, R.E.1
Jinek, M.2
Wiedenheft, B.3
Zhou, K.4
Doudna, J.A.5
-
31
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva, E., Chylinski, K., Sharma, C.M., Gonzales, K., Chao, Y., Pirzada, Z.A., Eckert, M.R., Vogel, J., Charpentier, E., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471 (2011), 602–607.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
Eckert, M.R.7
Vogel, J.8
Charpentier, E.9
-
32
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas, G., Barrangou, R., Horvath, P., Siksnys, V., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109 (2012), E2579–E2586.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
33
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (2012), 816–821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
34
-
-
84893157352
-
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
-
Jinek, M., Jiang, F., Taylor, D.W., Sternberg, S.H., Kaya, E., Ma, E., Anders, C., Hauer, M., Zhou, K., Lin, S., et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 343, 2014, 1247997.
-
(2014)
Science
, vol.343
, pp. 1247997
-
-
Jinek, M.1
Jiang, F.2
Taylor, D.W.3
Sternberg, S.H.4
Kaya, E.5
Ma, E.6
Anders, C.7
Hauer, M.8
Zhou, K.9
Lin, S.10
-
35
-
-
84896733529
-
Crystal structure of Cas9 in complex with guide RNA and target DNA
-
Nishimasu, H., Ran, F.A., Hsu, P.D., Konermann, S., Shehata, S.I., Dohmae, N., Ishitani, R., Zhang, F., Nureki, O., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156 (2014), 935–949.
-
(2014)
Cell
, vol.156
, pp. 935-949
-
-
Nishimasu, H.1
Ran, F.A.2
Hsu, P.D.3
Konermann, S.4
Shehata, S.I.5
Dohmae, N.6
Ishitani, R.7
Zhang, F.8
Nureki, O.9
-
36
-
-
84963973892
-
Crystal structure of Cpf1 in complex with guide RNA and target DNA
-
Yamano, T., Nishimasu, H., Zetsche, B., Hirano, H., Slaymaker, I.M., Li, Y., Fedorova, I., Nakane, T., Makarova, K.S., Koonin, E.V., et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165 (2016), 949–962.
-
(2016)
Cell
, vol.165
, pp. 949-962
-
-
Yamano, T.1
Nishimasu, H.2
Zetsche, B.3
Hirano, H.4
Slaymaker, I.M.5
Li, Y.6
Fedorova, I.7
Nakane, T.8
Makarova, K.S.9
Koonin, E.V.10
-
37
-
-
84979224039
-
Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition
-
Gao, P., Yang, H., Rajashankar, K.R., Huang, Z., Patel, D.J., Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res 26 (2016), 901–913.
-
(2016)
Cell Res
, vol.26
, pp. 901-913
-
-
Gao, P.1
Yang, H.2
Rajashankar, K.R.3
Huang, Z.4
Patel, D.J.5
-
38
-
-
84946215320
-
Conformational control of DNA target cleavage by CRISPR-Cas9
-
Sternberg, S.H., LaFrance, B., Kaplan, M., Doudna, J.A., Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527 (2015), 110–113.
-
(2015)
Nature
, vol.527
, pp. 110-113
-
-
Sternberg, S.H.1
LaFrance, B.2
Kaplan, M.3
Doudna, J.A.4
-
39
-
-
84903975702
-
Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes
-
Szczelkun, M.D., Tikhomirova, M.S., Sinkunas, T., Gasiunas, G., Karvelis, T., Pschera, P., Siksnys, V., Seidel, R., Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci U S A 111 (2014), 9798–9803.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 9798-9803
-
-
Szczelkun, M.D.1
Tikhomirova, M.S.2
Sinkunas, T.3
Gasiunas, G.4
Karvelis, T.5
Pschera, P.6
Siksnys, V.7
Seidel, R.8
-
40
-
-
84958953000
-
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
-
Jiang, F., Taylor, D.W., Chen, J.S., Kornfeld, J.E., Zhou, K., Thompson, A.J., Nogales, E., Doudna, J.A., Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351 (2016), 867–871.
-
(2016)
Science
, vol.351
, pp. 867-871
-
-
Jiang, F.1
Taylor, D.W.2
Chen, J.S.3
Kornfeld, J.E.4
Zhou, K.5
Thompson, A.J.6
Nogales, E.7
Doudna, J.A.8
-
41
-
-
85018632551
-
Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a
-
Swarts, D.C., van der Oost, J., Jinek, M., Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell 66 (2017), 221–233 e4.
-
(2017)
Mol Cell
, vol.66
, pp. 221-233 e4
-
-
Swarts, D.C.1
van der Oost, J.2
Jinek, M.3
-
42
-
-
85032959464
-
Class 2 CRISPR-Cas RNA-guided endonucleases: swiss Army knives of genome editing
-
Stella, S., Alcon, P., Montoya, G., Class 2 CRISPR-Cas RNA-guided endonucleases: swiss Army knives of genome editing. Nat Struct Mol Biol 24 (2017), 882–892.
-
(2017)
Nat Struct Mol Biol
, vol.24
, pp. 882-892
-
-
Stella, S.1
Alcon, P.2
Montoya, G.3
-
43
-
-
85030331090
-
The discovery, mechanisms, and evolutionary impact of anti-CRISPRs
-
Borges, A.L., Davidson, A.R., Bondy-Denomy, J., The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Annu Rev Virol 4 (2017), 37–59.
-
(2017)
Annu Rev Virol
, vol.4
, pp. 37-59
-
-
Borges, A.L.1
Davidson, A.R.2
Bondy-Denomy, J.3
-
44
-
-
85030658002
-
The anti-CRISPR story: a battle for survival
-
Maxwell, K.L., The anti-CRISPR story: a battle for survival. Mol Cell 68 (2017), 8–14.
-
(2017)
Mol Cell
, vol.68
, pp. 8-14
-
-
Maxwell, K.L.1
-
45
-
-
85038241811
-
Anti-CRISPR: discovery, mechanism and function
-
Pawluk, A., Davidson, A.R., Maxwell, K.L., Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol 16 (2018), 12–17.
-
(2018)
Nat Rev Microbiol
, vol.16
, pp. 12-17
-
-
Pawluk, A.1
Davidson, A.R.2
Maxwell, K.L.3
-
46
-
-
84872607723
-
Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system
-
Bondy-Denomy, J., Pawluk, A., Maxwell, K.L., Davidson, A.R., Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493 (2013), 429–432.
-
(2013)
Nature
, vol.493
, pp. 429-432
-
-
Bondy-Denomy, J.1
Pawluk, A.2
Maxwell, K.L.3
Davidson, A.R.4
-
47
-
-
84899866053
-
A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa
-
Pawluk, A., Bondy-Denomy, J., Cheung, V.H., Maxwell, K.L., Davidson, A.R., A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. mBio, 5, 2014, e00896.
-
(2014)
mBio
, vol.5
-
-
Pawluk, A.1
Bondy-Denomy, J.2
Cheung, V.H.3
Maxwell, K.L.4
Davidson, A.R.5
-
48
-
-
84990838988
-
Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species
-
Pawluk, A., Staals, R.H., Taylor, C., Watson, B.N., Saha, S., Fineran, P.C., Maxwell, K.L., Davidson, A.R., Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat Microbiol, 1, 2016, 16085.
-
(2016)
Nat Microbiol
, vol.1
, pp. 16085
-
-
Pawluk, A.1
Staals, R.H.2
Taylor, C.3
Watson, B.N.4
Saha, S.5
Fineran, P.C.6
Maxwell, K.L.7
Davidson, A.R.8
-
49
-
-
85009201750
-
Inhibition of CRISPR-Cas9 with bacteriophage proteins
-
Rauch, B.J., Silvis, M.R., Hultquist, J.F., Waters, C.S., McGregor, M.J., Krogan, N.J., Bondy-Denomy, J., Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168 (2017), 150–158.
-
(2017)
Cell
, vol.168
, pp. 150-158
-
-
Rauch, B.J.1
Silvis, M.R.2
Hultquist, J.F.3
Waters, C.S.4
McGregor, M.J.5
Krogan, N.J.6
Bondy-Denomy, J.7
-
50
-
-
84943188033
-
Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins
-
Bondy-Denomy, J., Garcia, B., Strum, S., Du, M., Rollins, M.F., Hidalgo-Reyes, Y., Wiedenheft, B., Maxwell, K.L., Davidson, A.R., Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526 (2015), 136–139.
-
(2015)
Nature
, vol.526
, pp. 136-139
-
-
Bondy-Denomy, J.1
Garcia, B.2
Strum, S.3
Du, M.4
Rollins, M.F.5
Hidalgo-Reyes, Y.6
Wiedenheft, B.7
Maxwell, K.L.8
Davidson, A.R.9
-
51
-
-
85016008023
-
Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex
-
Chowdhury, S., Carter, J., Rollins, M.F., Golden, S.M., Jackson, R.N., Hoffmann, C., Nosaka, L., Bondy-Denomy, J., Maxwell, K.L., Davidson, A.R., et al. Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell 169 (2017), 47–57.
-
(2017)
Cell
, vol.169
, pp. 47-57
-
-
Chowdhury, S.1
Carter, J.2
Rollins, M.F.3
Golden, S.M.4
Jackson, R.N.5
Hoffmann, C.6
Nosaka, L.7
Bondy-Denomy, J.8
Maxwell, K.L.9
Davidson, A.R.10
-
52
-
-
85020928320
-
Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein
-
Dong, D., Guo, M., Wang, S., Zhu, Y., Wang, S., Xiong, Z., Yang, J., Xu, Z., Huang, Z., Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature 546 (2017), 436–439.
-
(2017)
Nature
, vol.546
, pp. 436-439
-
-
Dong, D.1
Guo, M.2
Wang, S.3
Zhu, Y.4
Wang, S.5
Xiong, Z.6
Yang, J.7
Xu, Z.8
Huang, Z.9
-
53
-
-
84991489888
-
The solution structure of an anti-CRISPR protein
-
Maxwell, K.L., Garcia, B., Bondy-Denomy, J., Bona, D., Hidalgo-Reyes, Y., Davidson, A.R., The solution structure of an anti-CRISPR protein. Nat Commun, 7, 2016, 13134.
-
(2016)
Nat Commun
, vol.7
, pp. 13134
-
-
Maxwell, K.L.1
Garcia, B.2
Bondy-Denomy, J.3
Bona, D.4
Hidalgo-Reyes, Y.5
Davidson, A.R.6
-
54
-
-
84980348236
-
Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3
-
Wang, X., Yao, D., Xu, J.G., Li, A.R., Xu, J., Fu, P., Zhou, Y., Zhu, Y., Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3. Nat Struct Mol Biol 23 (2016), 868–870.
-
(2016)
Nat Struct Mol Biol
, vol.23
, pp. 868-870
-
-
Wang, X.1
Yao, D.2
Xu, J.G.3
Li, A.R.4
Xu, J.5
Fu, P.6
Zhou, Y.7
Zhu, Y.8
-
55
-
-
84984903773
-
A CRISPR evolutionary arms race: structural insights into viral anti-CRISPR/Cas responses
-
Wang, J., Ma, J., Cheng, Z., Meng, X., You, L., Wang, M., Zhang, X., Wang, Y., A CRISPR evolutionary arms race: structural insights into viral anti-CRISPR/Cas responses. Cell Res 26 (2016), 1165–1168.
-
(2016)
Cell Res
, vol.26
, pp. 1165-1168
-
-
Wang, J.1
Ma, J.2
Cheng, Z.3
Meng, X.4
You, L.5
Wang, M.6
Zhang, X.7
Wang, Y.8
-
56
-
-
85028044880
-
A broad-spectrum inhibitor of CRISPR-Cas9
-
Harrington, L.B., Doxzen, K.W., Ma, E., Liu, J.J., Knott, G.J., Edraki, A., Garcia, B., Amrani, N., Chen, J.S., Cofsky, J.C., et al. A broad-spectrum inhibitor of CRISPR-Cas9. Cell 170 (2017), 1224–1233.
-
(2017)
Cell
, vol.170
, pp. 1224-1233
-
-
Harrington, L.B.1
Doxzen, K.W.2
Ma, E.3
Liu, J.J.4
Knott, G.J.5
Edraki, A.6
Garcia, B.7
Amrani, N.8
Chen, J.S.9
Cofsky, J.C.10
-
57
-
-
85020309949
-
Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9
-
Yang, H., Patel, D.J., Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9. Mol Cell 67 (2017), 117–127.
-
(2017)
Mol Cell
, vol.67
, pp. 117-127
-
-
Yang, H.1
Patel, D.J.2
-
58
-
-
85021437214
-
Disabling Cas9 by an anti-CRISPR DNA mimic
-
Shin, J., Jiang, F., Liu, J.J., Bray, N.L., Rauch, B.J., Baik, S.H., Nogales, E., Bondy-Denomy, J., Corn, J.E., Doudna, J.A., Disabling Cas9 by an anti-CRISPR DNA mimic. Sci Adv, 3, 2017, e1701620.
-
(2017)
Sci Adv
, vol.3
-
-
Shin, J.1
Jiang, F.2
Liu, J.J.3
Bray, N.L.4
Rauch, B.J.5
Baik, S.H.6
Nogales, E.7
Bondy-Denomy, J.8
Corn, J.E.9
Doudna, J.A.10
-
59
-
-
85020928320
-
Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein
-
Dong, Guo M., Wang, S., Zhu, Y., Wang, S., Xiong, Z., Yang, J., Xu, Z., Huang, Z., Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature 546 (2017), 436–439.
-
(2017)
Nature
, vol.546
, pp. 436-439
-
-
Dong, G.M.1
Wang, S.2
Zhu, Y.3
Wang, S.4
Xiong, Z.5
Yang, J.6
Xu, Z.7
Huang, Z.8
-
60
-
-
85006307718
-
Naturally occurring off-switches for CRISPR-Cas9
-
Pawluk, A., Amrani, N., Zhang, Y., Garcia, B., Hidalgo-Reyes, Y., Lee, J., Edraki, A., Shah, M., Sontheimer, E.J., Maxwell, K.L., et al. Naturally occurring off-switches for CRISPR-Cas9. Cell 167 (2016), 1829–18238 e9.
-
(2016)
Cell
, vol.167
, pp. 1829-18238 e9
-
-
Pawluk, A.1
Amrani, N.2
Zhang, Y.3
Garcia, B.4
Hidalgo-Reyes, Y.5
Lee, J.6
Edraki, A.7
Shah, M.8
Sontheimer, E.J.9
Maxwell, K.L.10
-
61
-
-
85022113341
-
Multiplex gene regulation by CRISPR-ddCpf1
-
Zhang, X., Wang, J., Cheng, Q., Zheng, X., Zhao, G., Wang, J., Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov, 3, 2017, 17018.
-
(2017)
Cell Discov
, vol.3
, pp. 17018
-
-
Zhang, X.1
Wang, J.2
Cheng, Q.3
Zheng, X.4
Zhao, G.5
Wang, J.6
-
62
-
-
84952639685
-
Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation
-
Dominguez, A.A., Lim, W.A., Qi, L.S., Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17 (2016), 5–15.
-
(2016)
Nat Rev Mol Cell Biol
, vol.17
, pp. 5-15
-
-
Dominguez, A.A.1
Lim, W.A.2
Qi, L.S.3
-
63
-
-
85044959586
-
Evolved Cas9 variants with broad PAM compatibility and high DNA specificity
-
Hu, J.H., Miller, S.M., Geurts, M.H., Tang, W., Chen, L., Sun, N., Zeina, C.M., Gao, X., Rees, H.A., Lin, Z., et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556 (2018), 57–63.
-
(2018)
Nature
, vol.556
, pp. 57-63
-
-
Hu, J.H.1
Miller, S.M.2
Geurts, M.H.3
Tang, W.4
Chen, L.5
Sun, N.6
Zeina, C.M.7
Gao, X.8
Rees, H.A.9
Lin, Z.10
-
64
-
-
84949791988
-
Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition
-
Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Topkar, V.V., Zheng, Z., Joung, J.K., Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33 (2015), 1293–1298.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1293-1298
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Nguyen, N.T.4
Topkar, V.V.5
Zheng, Z.6
Joung, J.K.7
-
65
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Topkar, V.V., Nguyen, N.T., Zheng, Z., Gonzales, A.P., Li, Z., Peterson, R.T., Yeh, J.R., et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523 (2015), 481–485.
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Topkar, V.V.4
Nguyen, N.T.5
Zheng, Z.6
Gonzales, A.P.7
Li, Z.8
Peterson, R.T.9
Yeh, J.R.10
-
66
-
-
84986898390
-
Applications of CRISPR technologies in research and beyond
-
Barrangou, R., Doudna, J.A., Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34 (2016), 933–941.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 933-941
-
-
Barrangou, R.1
Doudna, J.A.2
-
67
-
-
84943777049
-
Development of potent in vivo mutagenesis plasmids with broad mutational spectra
-
Badran, A.H., Liu, D.R., Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat Commun, 6, 2015, 8425.
-
(2015)
Nat Commun
, vol.6
, pp. 8425
-
-
Badran, A.H.1
Liu, D.R.2
-
68
-
-
84959102577
-
Continuous directed evolution of DNA-binding proteins to improve TALEN specificity
-
Hubbard, B.P., Badran, A.H., Zuris, J.A., Guilinger, J.P., Davis, K.M., Chen, L., Tsai, S.Q., Sander, J.D., Joung, J.K., Liu, D.R., Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nat Methods 12 (2015), 939–942.
-
(2015)
Nat Methods
, vol.12
, pp. 939-942
-
-
Hubbard, B.P.1
Badran, A.H.2
Zuris, J.A.3
Guilinger, J.P.4
Davis, K.M.5
Chen, L.6
Tsai, S.Q.7
Sander, J.D.8
Joung, J.K.9
Liu, D.R.10
-
69
-
-
84969786561
-
Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance
-
Badran, A.H., Guzov, V.M., Huai, Q., Kemp, M.M., Vishwanath, P., Kain, W., Nance, A.M., Evdokimov, A., Moshiri, F., Turner, K.H., et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533 (2016), 58–63.
-
(2016)
Nature
, vol.533
, pp. 58-63
-
-
Badran, A.H.1
Guzov, V.M.2
Huai, Q.3
Kemp, M.M.4
Vishwanath, P.5
Kain, W.6
Nance, A.M.7
Evdokimov, A.8
Moshiri, F.9
Turner, K.H.10
-
70
-
-
85054018722
-
Engineered CRISPR-Cas9 nuclease with expanded targeting space
-
Nishimasu, H., Shi, X., Ishiguro, S., Gao, L., Hirano, S., Okazaki, S., Noda, T., Abudayyeh, O.O., Gootenberg, J.S., Mori, H., et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361 (2018), 1259–1262.
-
(2018)
Science
, vol.361
, pp. 1259-1262
-
-
Nishimasu, H.1
Shi, X.2
Ishiguro, S.3
Gao, L.4
Hirano, S.5
Okazaki, S.6
Noda, T.7
Abudayyeh, O.O.8
Gootenberg, J.S.9
Mori, H.10
-
71
-
-
85031303757
-
RNA targeting with CRISPR-Cas13
-
Abudayyeh, O.O., Gootenberg, J.S., Essletzbichler, P., Han, S., Joung, J., Belanto, J.J., Verdine, V., Cox, D.B.T., Kellner, M.J., Regev, A., et al. RNA targeting with CRISPR-Cas13. Nature 550 (2017), 280–284.
-
(2017)
Nature
, vol.550
, pp. 280-284
-
-
Abudayyeh, O.O.1
Gootenberg, J.S.2
Essletzbichler, P.3
Han, S.4
Joung, J.5
Belanto, J.J.6
Verdine, V.7
Cox, D.B.T.8
Kellner, M.J.9
Regev, A.10
-
72
-
-
84974606818
-
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
-
aaf5573
-
Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B., Shmakov, S., Makarova, K.S., Semenova, E., Minakhin, L., et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353, 2016 aaf5573.
-
(2016)
Science
, vol.353
-
-
Abudayyeh, O.O.1
Gootenberg, J.S.2
Konermann, S.3
Joung, J.4
Slaymaker, I.M.5
Cox, D.B.6
Shmakov, S.7
Makarova, K.S.8
Semenova, E.9
Minakhin, L.10
-
73
-
-
85009228507
-
Two distant catalytic sites are responsible for C2c2 RNase activities
-
121-34 e12
-
Liu, L., Li, X., Wang, J., Wang, M., Chen, P., Yin, M., Li, J., Sheng, G., Wang, Y., Two distant catalytic sites are responsible for C2c2 RNase activities. Cell, 168, 2017 121-34 e12.
-
(2017)
Cell
, vol.168
-
-
Liu, L.1
Li, X.2
Wang, J.3
Wang, M.4
Chen, P.5
Yin, M.6
Li, J.7
Sheng, G.8
Wang, Y.9
-
74
-
-
85032331429
-
RNA editing with CRISPR-Cas13
-
Cox, D.B.T., Gootenberg, J.S., Abudayyeh, O.O., Franklin, B., Kellner, M.J., Joung, J., Zhang, F., RNA editing with CRISPR-Cas13. Science 358 (2017), 1019–1027.
-
(2017)
Science
, vol.358
, pp. 1019-1027
-
-
Cox, D.B.T.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Franklin, B.4
Kellner, M.J.5
Joung, J.6
Zhang, F.7
-
75
-
-
85045117799
-
Applications of CRISPR/Cas system to bacterial metabolic engineering
-
Cho, S., Shin, J., Cho, B.K., Applications of CRISPR/Cas system to bacterial metabolic engineering. Int J Mol Sci, 19, 2018.
-
(2018)
Int J Mol Sci
, vol.19
-
-
Cho, S.1
Shin, J.2
Cho, B.K.3
-
76
-
-
85026534475
-
Advances in industrial biotechnology using CRISPR-Cas systems
-
Donohoue, P.D., Barrangou, R., May, A.P., Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol 36 (2018), 134–146.
-
(2018)
Trends Biotechnol
, vol.36
, pp. 134-146
-
-
Donohoue, P.D.1
Barrangou, R.2
May, A.P.3
-
77
-
-
84994391729
-
CRISPR technologies for bacterial systems: current achievements and future directions
-
Choi, K.R., Lee, S.Y., CRISPR technologies for bacterial systems: current achievements and future directions. Biotechnol Adv 34 (2016), 1180–1209.
-
(2016)
Biotechnol Adv
, vol.34
, pp. 1180-1209
-
-
Choi, K.R.1
Lee, S.Y.2
-
78
-
-
85027284460
-
The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted Ligation) method for efficient editing of large DNA constructs in vitro
-
Lei, C., Li, S.Y., Liu, J.K., Zheng, X., Zhao, G.P., Wang, J., The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted Ligation) method for efficient editing of large DNA constructs in vitro. Nucleic Acids Res, 45, 2017, e74.
-
(2017)
Nucleic Acids Res
, vol.45
, pp. e74
-
-
Lei, C.1
Li, S.Y.2
Liu, J.K.3
Zheng, X.4
Zhao, G.P.5
Wang, J.6
-
79
-
-
85006401289
-
A new standard for assembly of biological parts using Cpf1
-
Li, S.Y., Zhao, G.P., Wang, J., C-Brick, A new standard for assembly of biological parts using Cpf1. ACS Synth Biol 5 (2016), 1383–1388.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 1383-1388
-
-
Li, S.Y.1
Zhao, G.P.2
Wang, J.3
C-Brick4
-
80
-
-
85021217448
-
Protocols for C-brick DNA standard assembly using Cpf1
-
Li, S.Y., Zhao, G.P., Wang, J., Protocols for C-brick DNA standard assembly using Cpf1. J Vis Exp, 15, 2017, 124.
-
(2017)
J Vis Exp
, vol.15
, pp. 124
-
-
Li, S.Y.1
Zhao, G.P.2
Wang, J.3
-
81
-
-
84940676093
-
Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters
-
Jiang, W., Zhao, X., Gabrieli, T., Lou, C., Ebenstein, Y., Zhu, T.F., Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat Commun, 6, 2015, 8101.
-
(2015)
Nat Commun
, vol.6
, pp. 8101
-
-
Jiang, W.1
Zhao, X.2
Gabrieli, T.3
Lou, C.4
Ebenstein, Y.5
Zhu, T.F.6
-
82
-
-
84879264708
-
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
-
Gaj, T., Gersbach, C.A., Barbas, C.F. 3rd, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31 (2013), 397–405.
-
(2013)
Trends Biotechnol
, vol.31
, pp. 397-405
-
-
Gaj, T.1
Gersbach, C.A.2
Barbas, C.F.3
-
83
-
-
35348890199
-
Bacterial DNA repair by non-homologous end joining
-
Shuman, S., Glickman, M.S., Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 5 (2007), 852–861.
-
(2007)
Nat Rev Microbiol
, vol.5
, pp. 852-861
-
-
Shuman, S.1
Glickman, M.S.2
-
84
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang, W., Bikard, D., Cox, D., Zhang, F., Marraffini, L.A., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31 (2013), 233–239.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
85
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh, J.H., van Pijkeren, J.P., CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res, 42, 2014, e131.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. e131
-
-
Oh, J.H.1
van Pijkeren, J.P.2
-
86
-
-
84924239544
-
Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator
-
Liu, D., Xiao, Y., Evans, B., Zhang, F., Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. ACS Synth Biol 4 (2014), 132–140.
-
(2014)
ACS Synth Biol
, vol.4
, pp. 132-140
-
-
Liu, D.1
Xiao, Y.2
Evans, B.3
Zhang, F.4
-
87
-
-
84961393253
-
Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis
-
Xiao, Y., Bowen, C.H., Liu, D., Zhang, F., Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat Chem Biol 12 (2016), 339–344.
-
(2016)
Nat Chem Biol
, vol.12
, pp. 339-344
-
-
Xiao, Y.1
Bowen, C.H.2
Liu, D.3
Zhang, F.4
-
88
-
-
84874687019
-
Resource repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P., Lim, W.A., Resource repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152 (2013), 1173–1183.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
Weissman, J.S.5
Arkin, A.P.6
Lim, W.A.7
-
89
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern-Ginossar, N., Brandman, O., Whitehead, E.H., Doudna, J.A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154 (2013), 442–451.
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
Larson, M.H.2
Morsut, L.3
Liu, Z.4
Brar, G.A.5
Torres, S.E.6
Stern-Ginossar, N.7
Brandman, O.8
Whitehead, E.H.9
Doudna, J.A.10
-
90
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., Marraffini, L.A., Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41 (2013), 7429–7437.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
Hochschild, A.4
Zhang, F.5
Marraffini, L.A.6
-
91
-
-
85041213125
-
CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus
-
Peng, R., Wang, Y., Feng, W.W., Yue, X.J., Chen, J.H., Hu, X.Z., Li, Z.F., Sheng, D.H., Zhang, Y.M., Li, Y.Z., CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus. Microb Cell Fact, 17, 2018, 15.
-
(2018)
Microb Cell Fact
, vol.17
, pp. 15
-
-
Peng, R.1
Wang, Y.2
Feng, W.W.3
Yue, X.J.4
Chen, J.H.5
Hu, X.Z.6
Li, Z.F.7
Sheng, D.H.8
Zhang, Y.M.9
Li, Y.Z.10
-
92
-
-
85049128854
-
Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria
-
Dong, C., Fontana, J., Patel, A., Carothers, J.M., Zalatan, J.G., Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat Commun, 9, 2018, 2489.
-
(2018)
Nat Commun
, vol.9
, pp. 2489
-
-
Dong, C.1
Fontana, J.2
Patel, A.3
Carothers, J.M.4
Zalatan, J.G.5
-
93
-
-
85040045900
-
Enhanced guide-RNA design and targeting analysis for precise CRISPR genome editing of single and consortia of industrially relevant and non-model organisms
-
Mendoza, B.J., Trinh, C.T., Enhanced guide-RNA design and targeting analysis for precise CRISPR genome editing of single and consortia of industrially relevant and non-model organisms. Bioinformatics 34 (2018), 16–23.
-
(2018)
Bioinformatics
, vol.34
, pp. 16-23
-
-
Mendoza, B.J.1
Trinh, C.T.2
-
94
-
-
85048349385
-
CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response
-
Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., Taipale, J., CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24 (2018), 927–930.
-
(2018)
Nat Med
, vol.24
, pp. 927-930
-
-
Haapaniemi, E.1
Botla, S.2
Persson, J.3
Schmierer, B.4
Taipale, J.5
-
95
-
-
84923106217
-
Therapeutic genome editing: prospects and challenges
-
Cox, D.B., Platt, R.J., Zhang, F., Therapeutic genome editing: prospects and challenges. Nat Med 21 (2015), 121–131.
-
(2015)
Nat Med
, vol.21
, pp. 121-131
-
-
Cox, D.B.1
Platt, R.J.2
Zhang, F.3
-
96
-
-
85034861903
-
Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage
-
Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., Liu, D.R., Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551 (2017), 464–471.
-
(2017)
Nature
, vol.551
, pp. 464-471
-
-
Gaudelli, N.M.1
Komor, A.C.2
Rees, H.A.3
Packer, M.S.4
Badran, A.H.5
Bryson, D.I.6
Liu, D.R.7
-
97
-
-
84971006562
-
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
-
Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533 (2016), 420–424.
-
(2016)
Nature
, vol.533
, pp. 420-424
-
-
Komor, A.C.1
Kim, Y.B.2
Packer, M.S.3
Zuris, J.A.4
Liu, D.R.5
-
98
-
-
84981516964
-
Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
-
Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., Mochizuki, M., Miyabe, A., Araki, M., Hara, K.Y., et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 353, 2016.
-
(2016)
Science
, vol.353
-
-
Nishida, K.1
Arazoe, T.2
Yachie, N.3
Banno, S.4
Kakimoto, M.5
Tabata, M.6
Mochizuki, M.7
Miyabe, A.8
Araki, M.9
Hara, K.Y.10
-
99
-
-
85045114654
-
Base editing with a Cpf1-cytidine deaminase fusion
-
Li, X., Wang, Y., Liu, Y., Yang, B., Wang, X., Wei, J., Lu, Z., Zhang, Y., Wu, J., Huang, X., et al. Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol 36 (2018), 324–327.
-
(2018)
Nat Biotechnol
, vol.36
, pp. 324-327
-
-
Li, X.1
Wang, Y.2
Liu, Y.3
Yang, B.4
Wang, X.5
Wei, J.6
Lu, Z.7
Zhang, Y.8
Wu, J.9
Huang, X.10
-
100
-
-
85048705226
-
Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing
-
Liu, Z., Lu, Z., Yang, G., Huang, S., Li, G., Feng, S., Liu, Y., Li, J., Yu, W., Zhang, Y., et al. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun, 9, 2018, 2338.
-
(2018)
Nat Commun
, vol.9
, pp. 2338
-
-
Liu, Z.1
Lu, Z.2
Yang, G.3
Huang, S.4
Li, G.5
Feng, S.6
Liu, Y.7
Li, J.8
Yu, W.9
Zhang, Y.10
-
101
-
-
85018594542
-
Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion
-
Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., Teramura, H., Yamamoto, T., Komatsu, H., Miura, K., et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35 (2017), 441–443.
-
(2017)
Nat Biotechnol
, vol.35
, pp. 441-443
-
-
Shimatani, Z.1
Kashojiya, S.2
Takayama, M.3
Terada, R.4
Arazoe, T.5
Ishii, H.6
Teramura, H.7
Yamamoto, T.8
Komatsu, H.9
Miura, K.10
-
102
-
-
85048696660
-
CRISPR base editors: genome editing without double-stranded breaks
-
Eid, A., Alshareef, S., Mahfouz, M.M., CRISPR base editors: genome editing without double-stranded breaks. Biochem J 475 (2018), 1955–1964.
-
(2018)
Biochem J
, vol.475
, pp. 1955-1964
-
-
Eid, A.1
Alshareef, S.2
Mahfouz, M.M.3
-
103
-
-
85017652697
-
Nucleic acid detection with CRISPR-Cas13a/C2c2
-
Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., Verdine, V., Donghia, N., Daringer, N.M., Freije, C.A., et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356 (2017), 438–442.
-
(2017)
Science
, vol.356
, pp. 438-442
-
-
Gootenberg, J.S.1
Abudayyeh, O.O.2
Lee, J.W.3
Essletzbichler, P.4
Dy, A.J.5
Joung, J.6
Verdine, V.7
Donghia, N.8
Daringer, N.M.9
Freije, C.A.10
-
104
-
-
0026418667
-
Nucleic acid sequence-based amplification
-
Compton, J., Nucleic acid sequence-based amplification. Nature 350 (1991), 91–92.
-
(1991)
Nature
, vol.350
, pp. 91-92
-
-
Compton, J.1
-
105
-
-
33745879767
-
DNA detection using recombination proteins
-
Piepenburg, O., Williams, C.H., Stemple, D.L., Armes, N.A., DNA detection using recombination proteins. PLoS Biol, 4, 2006, e204.
-
(2006)
PLoS Biol
, vol.4
-
-
Piepenburg, O.1
Williams, C.H.2
Stemple, D.L.3
Armes, N.A.4
-
106
-
-
78649716727
-
Manufacturing molecules through metabolic engineering
-
Keasling, J.D., Manufacturing molecules through metabolic engineering. Science 330 (2010), 1355–1358.
-
(2010)
Science
, vol.330
, pp. 1355-1358
-
-
Keasling, J.D.1
-
107
-
-
85044678317
-
Systems metabolic engineering strategies for the production of amino acids
-
Ma, Q., Zhang, Q., Xu, Q., Zhang, C., Li, Y., Fan, X., Xie, X., Chen, N., Systems metabolic engineering strategies for the production of amino acids. Synth Syst Biotechnol 2 (2017), 87–96.
-
(2017)
Synth Syst Biotechnol
, vol.2
, pp. 87-96
-
-
Ma, Q.1
Zhang, Q.2
Xu, Q.3
Zhang, C.4
Li, Y.5
Fan, X.6
Xie, X.7
Chen, N.8
-
108
-
-
85046649083
-
Escherichia coli as a host for metabolic engineering
-
pii: S1096-7176(18)30074-0
-
Pontrelli, S., Chiu, T.Y., Lan, E.I., Chen, F.Y., Chang, P., Liao, J.C., Escherichia coli as a host for metabolic engineering. Metab Eng, 2018 pii: S1096-7176(18)30074-0.
-
(2018)
Metab Eng
-
-
Pontrelli, S.1
Chiu, T.Y.2
Lan, E.I.3
Chen, F.Y.4
Chang, P.5
Liao, J.C.6
-
109
-
-
68949161807
-
Programming cells by multiplex genome engineering and accelerated evolution
-
Wang, H.H., Isaacs, F.J., Carr, P.A., Sun, Z.Z., Xu, G., Forest, C.R., Church, G.M., Programming cells by multiplex genome engineering and accelerated evolution. Nature 460 (2009), 894–898.
-
(2009)
Nature
, vol.460
, pp. 894-898
-
-
Wang, H.H.1
Isaacs, F.J.2
Carr, P.A.3
Sun, Z.Z.4
Xu, G.5
Forest, C.R.6
Church, G.M.7
-
110
-
-
79960502359
-
Precise manipulation of chromosomes in vivo enables genome-wide codon replacement
-
Isaacs, F.J., Carr, P.A., HH W, MJ L, B S, L K, AC T, TA G, DB G, NB R, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333 (2011), 348–353.
-
(2011)
Science
, vol.333
, pp. 348-353
-
-
Isaacs, F.J.1
Carr, P.A.2
HH, W.3
MJ, L.4
B, S.5
L, K.6
AC, T.7
TA, G.8
DB, G.9
NB, R.10
-
111
-
-
84957058205
-
Antisense transcription as a tool to tune gene expression
-
Brophy, J.A.N., Voigt, C.A., Antisense transcription as a tool to tune gene expression. Mol Syst Biol 12 (2016), 854–868.
-
(2016)
Mol Syst Biol
, vol.12
, pp. 854-868
-
-
Brophy, J.A.N.1
Voigt, C.A.2
-
112
-
-
84960392175
-
Modular Synthetic Inverters from Zinc Finger Proteins and Small RNAs
-
Hsia, J., Holtz, W.J., Maharbiz, M.M., Arcak, M., Keasling, J.D., Modular Synthetic Inverters from Zinc Finger Proteins and Small RNAs. PloS One, 11, 2016, e0149483.
-
(2016)
PloS One
, vol.11
-
-
Hsia, J.1
Holtz, W.J.2
Maharbiz, M.M.3
Arcak, M.4
Keasling, J.D.5
-
113
-
-
85006511345
-
Development of design rules for reliable antisense RNA behavior in E. coli
-
Connor, AH-o, Moon, T.S., Development of design rules for reliable antisense RNA behavior in E. coli. ACS Synth Biol 5 (2016), 1441–1454.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 1441-1454
-
-
Connor, A.H.-O.1
Moon, T.S.2
-
114
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system., 81, 2015, 2506–2514.
-
(2015)
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
Chen, B.2
Duan, C.3
Sun, B.4
Yang, J.5
-
115
-
-
84937538704
-
Metabolic engineering of Escherichia coli using CRISPR – Cas9 meditated genome editing
-
Li, Y., Lin, Z., Huang, C., Zhang, Y., Wang, Z., Metabolic engineering of Escherichia coli using CRISPR – Cas9 meditated genome editing. Metab Eng 31 (2015), 13–21.
-
(2015)
Metab Eng
, vol.31
, pp. 13-21
-
-
Li, Y.1
Lin, Z.2
Huang, C.3
Zhang, Y.4
Wang, Z.5
-
116
-
-
85014750171
-
CRISPR enabled trackable genome engineering for isopropanol production in Escherichia coli
-
Liang, L., Liu, R., Garst, A.D., Lee, T., Sànchez, V., Beckham, T., Gill, R.T., CRISPR enabled trackable genome engineering for isopropanol production in Escherichia coli. Metab Eng 41 (2017), 1–10.
-
(2017)
Metab Eng
, vol.41
, pp. 1-10
-
-
Liang, L.1
Liu, R.2
Garst, A.D.3
Lee, T.4
Sànchez, V.5
Beckham, T.6
Gill, R.T.7
-
117
-
-
84986198285
-
CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production
-
Keun, S., Hwan, G., Seong, W., Kim, H., Kim, S-w, Lee, D-h, Lee, S-g, CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng 38 (2016), 228–240.
-
(2016)
Metab Eng
, vol.38
, pp. 228-240
-
-
Keun, S.1
Hwan, G.2
Seong, W.3
Kim, H.4
Kim, S.-W.5
Lee, D.-H.6
Lee, S.-G.7
-
118
-
-
84926645319
-
Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study : Controllable P (3HB- co -4HB) biosynthesis
-
Lv, L., Ren, Y-l, Chen, J-c, Wu, Q., Chen, G-q, Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study : Controllable P (3HB- co -4HB) biosynthesis. Metab Eng 29 (2015), 160–168.
-
(2015)
Metab Eng
, vol.29
, pp. 160-168
-
-
Lv, L.1
Ren, Y.-L.2
Chen, J.-C.3
Wu, Q.4
Chen, G.-Q.5
-
119
-
-
85034750457
-
Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning
-
Gao, C., Wang, S., Hu, G., Guo, L., Chen, X., Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning. Biotechnol Bioeng 115 (2017), 661–672.
-
(2017)
Biotechnol Bioeng
, vol.115
, pp. 661-672
-
-
Gao, C.1
Wang, S.2
Hu, G.3
Guo, L.4
Chen, X.5
-
120
-
-
85032740297
-
CRISPR interference - guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli
-
Kim, S.K., Seong, W., Han, G.H., Lee, D.H., Lee, S.G., CRISPR interference - guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli. Microb Cell Fact, 2017, 1–15.
-
(2017)
Microb Cell Fact
, pp. 1-15
-
-
Kim, S.K.1
Seong, W.2
Han, G.H.3
Lee, D.H.4
Lee, S.G.5
-
121
-
-
85054136694
-
Metabolic engineering of Escherichia coli for enhanced production of naringenin 7-sulfate and its biological activities
-
Chu, L.L., Dhakal, D., Shin, H.J., Jung, H.J., Yamaguchi, T., Sohng, J.K., Metabolic engineering of Escherichia coli for enhanced production of naringenin 7-sulfate and its biological activities. Front Microbiol, 9, 2018, 1671.
-
(2018)
Front Microbiol
, vol.9
, pp. 1671
-
-
Chu, L.L.1
Dhakal, D.2
Shin, H.J.3
Jung, H.J.4
Yamaguchi, T.5
Sohng, J.K.6
-
122
-
-
85053016797
-
Metabolic engineering of Escherichia coli for high-yield uridine production
-
Wu, H., Li, Y., Ma, Q., Li, Q., Jia, Z., Yang, B., Xu, Q., Fan, X., Zhang, C., Chen, N., et al. Metabolic engineering of Escherichia coli for high-yield uridine production. Metab Eng 49 (2018), 248–256.
-
(2018)
Metab Eng
, vol.49
, pp. 248-256
-
-
Wu, H.1
Li, Y.2
Ma, Q.3
Li, Q.4
Jia, Z.5
Yang, B.6
Xu, Q.7
Fan, X.8
Zhang, C.9
Chen, N.10
-
123
-
-
85045107591
-
Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway
-
Zhao, M., Huang, D., Zhang, X., Koffas, M.A.G., Zhou, J., Deng, Y., Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metab Eng 47 (2018), 254–262.
-
(2018)
Metab Eng
, vol.47
, pp. 254-262
-
-
Zhao, M.1
Huang, D.2
Zhang, X.3
Koffas, M.A.G.4
Zhou, J.5
Deng, Y.6
-
124
-
-
84940840437
-
Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli
-
Wu, J., Du, G., Chen, J., Zhou, J., Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci Rep, 5, 2015, 13477.
-
(2015)
Sci Rep
, vol.5
, pp. 13477
-
-
Wu, J.1
Du, G.2
Chen, J.3
Zhou, J.4
-
125
-
-
84988911466
-
Enhanced protein and biochemical production using CRISPRi-based growth switches
-
Li, S., Bille, C., Grünberger, A., Ronda, C., Ingemann, S., Noack, S., Toftgaard, A., Novo, T., Foundation, N., Lyngby, K., Enhanced protein and biochemical production using CRISPRi-based growth switches. Metab Eng 38 (2016), 274–284.
-
(2016)
Metab Eng
, vol.38
, pp. 274-284
-
-
Li, S.1
Bille, C.2
Grünberger, A.3
Ronda, C.4
Ingemann, S.5
Noack, S.6
Toftgaard, A.7
Novo, T.8
Foundation, N.9
Lyngby, K.10
-
126
-
-
84934936070
-
Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks
-
Nielsen, A.A.K., Voigt, C.A., Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol Syst Biol, 10, 2014, 763.
-
(2014)
Mol Syst Biol
, vol.10
, pp. 763
-
-
Nielsen, A.A.K.1
Voigt, C.A.2
-
127
-
-
85046692825
-
Prospects for engineering dynamic CRISPR – Cas transcriptional circuits to improve bioproduction
-
Fontana, J., Voje, W.E., Zalatan, J.G., Carothers, J.M., Prospects for engineering dynamic CRISPR – Cas transcriptional circuits to improve bioproduction. J Ind Microbiol Biotechnol 45 (2018), 481–490.
-
(2018)
J Ind Microbiol Biotechnol
, vol.45
, pp. 481-490
-
-
Fontana, J.1
Voje, W.E.2
Zalatan, J.G.3
Carothers, J.M.4
-
128
-
-
85052728051
-
Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering
-
Arazoe, T., Kondo, A., Nishida, K., Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnol J, 13, 2018, e1700596.
-
(2018)
Biotechnol J
, vol.13
-
-
Arazoe, T.1
Kondo, A.2
Nishida, K.3
-
129
-
-
85041620547
-
Deaminase-mediated multiplex genome editing in Escherichia coli
-
Banno, S., Nishida, K., Arazoe, T., Mitsunobu, H., Kondo, A., Deaminase-mediated multiplex genome editing in Escherichia coli. Nat Microbiol 3 (2018), 423–429.
-
(2018)
Nat Microbiol
, vol.3
, pp. 423-429
-
-
Banno, S.1
Nishida, K.2
Arazoe, T.3
Mitsunobu, H.4
Kondo, A.5
-
130
-
-
77952492062
-
Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology
-
Huang, H.H., Camsund, D., Lindblad, P., Heidorn, T., Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38 (2010), 2577–2593.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 2577-2593
-
-
Huang, H.H.1
Camsund, D.2
Lindblad, P.3
Heidorn, T.4
-
131
-
-
84956958313
-
Utilising the native plasmid, pCA2.4, from the cyanobacterium Synechocystis sp. strain PCC6803 as a cloning site for enhanced product production
-
Armshaw, P., Carey, D., Sheahan, C., Pembroke, J.T., Utilising the native plasmid, pCA2.4, from the cyanobacterium Synechocystis sp. strain PCC6803 as a cloning site for enhanced product production. Biotechnol Biofuels, 8, 2015, 201.
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 201
-
-
Armshaw, P.1
Carey, D.2
Sheahan, C.3
Pembroke, J.T.4
-
132
-
-
84940783269
-
Fine-tuning of photoautotrophic protein production by combining promoters and neutral sites in the cyanobacterium Synechocystis sp. strain PCC 6803
-
Ng, A.H., Berla, B.M., Pakrasi, H.B., Fine-tuning of photoautotrophic protein production by combining promoters and neutral sites in the cyanobacterium Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 81 (2015), 6857–6863.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 6857-6863
-
-
Ng, A.H.1
Berla, B.M.2
Pakrasi, H.B.3
-
133
-
-
84947983632
-
Genome engineering in cyanobacteria: where we are and where we need to go
-
Ramey, C.J., Baron-Sola, A., Aucoin, H.R., Boyle, N.R., Genome engineering in cyanobacteria: where we are and where we need to go. ACS Synth Biol 4 (2015), 1186–1196.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1186-1196
-
-
Ramey, C.J.1
Baron-Sola, A.2
Aucoin, H.R.3
Boyle, N.R.4
-
134
-
-
85006870225
-
Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria
-
Ungerer, J., Pakrasi, H.B., Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep, 6, 2016, 39681.
-
(2016)
Sci Rep
, vol.6
, pp. 39681
-
-
Ungerer, J.1
Pakrasi, H.B.2
-
135
-
-
85034856601
-
Photomixotrophic chemical production in cyanobacteria
-
Matson, M.M., Atsumi, S., Photomixotrophic chemical production in cyanobacteria. Curr Opin Biotechnol 50 (2017), 65–71.
-
(2017)
Curr Opin Biotechnol
, vol.50
, pp. 65-71
-
-
Matson, M.M.1
Atsumi, S.2
-
136
-
-
85031906568
-
Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production
-
Zhang, A., Carroll, A.L., Atsumi, S., Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production. FEMS Microbiol Lett, 2017, 364.
-
(2017)
FEMS Microbiol Lett
, pp. 364
-
-
Zhang, A.1
Carroll, A.L.2
Atsumi, S.3
-
137
-
-
85045122442
-
Metabolic engineering tools in model cyanobacteria
-
pii: S1096-7176(18)30038-7
-
Carroll, A.L., Case, A.E., Zhang, A., Atsumi, S., Metabolic engineering tools in model cyanobacteria. Metab Eng, 2018 pii: S1096-7176(18)30038-7.
-
(2018)
Metab Eng
-
-
Carroll, A.L.1
Case, A.E.2
Zhang, A.3
Atsumi, S.4
-
138
-
-
84994626819
-
The NDH-1L-PSI supercomplex is important for efficient cyclic electron transport in cyanobacteria
-
Gao, F., Zhao, J., Chen, L., Battchikova, N., Ran, Z., Aro, E.M., Ogawa, T., Ma, W., The NDH-1L-PSI supercomplex is important for efficient cyclic electron transport in cyanobacteria. Plant Physiol 172 (2016), 1451–1464.
-
(2016)
Plant Physiol
, vol.172
, pp. 1451-1464
-
-
Gao, F.1
Zhao, J.2
Chen, L.3
Battchikova, N.4
Ran, Z.5
Aro, E.M.6
Ogawa, T.7
Ma, W.8
-
139
-
-
85048283429
-
Three substrains of the cyanobacterium Anabaena sp. strain PCC 7120 display divergence in genomic sequences and hetC function
-
Wang, Y., Gao, Y., Li, C., Gao, H., Zhang, C.C., Xu, X., Three substrains of the cyanobacterium Anabaena sp. strain PCC 7120 display divergence in genomic sequences and hetC function. J Bacteriol, 200, 2018.
-
(2018)
J Bacteriol
, vol.200
-
-
Wang, Y.1
Gao, Y.2
Li, C.3
Gao, H.4
Zhang, C.C.5
Xu, X.6
-
140
-
-
85042908493
-
Tailoring cyanobacterial cell factory for improved industrial properties
-
Luan, G., Lu, X., Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnol Adv 36 (2018), 430–442.
-
(2018)
Biotechnol Adv
, vol.36
, pp. 430-442
-
-
Luan, G.1
Lu, X.2
-
141
-
-
85007460155
-
Versatility of hydrocarbon production in cyanobacteria
-
Xie, M., Wang, W., Zhang, W., Chen, L., Lu, X., Versatility of hydrocarbon production in cyanobacteria. Appl Microbiol Biotechnol 101 (2017), 905–919.
-
(2017)
Appl Microbiol Biotechnol
, vol.101
, pp. 905-919
-
-
Xie, M.1
Wang, W.2
Zhang, W.3
Chen, L.4
Lu, X.5
-
142
-
-
85020904626
-
Single-step production of the simvastatin precursor monacolin J by engineering of an industrial strain of Aspergillus terreus
-
Huang, X., Liang, Y., Yang, Y., Lu, X., Single-step production of the simvastatin precursor monacolin J by engineering of an industrial strain of Aspergillus terreus. Metab Eng 42 (2017), 109–114.
-
(2017)
Metab Eng
, vol.42
, pp. 109-114
-
-
Huang, X.1
Liang, Y.2
Yang, Y.3
Lu, X.4
-
143
-
-
84964313772
-
Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria
-
Taton, A., Unglaub, F., Wright, N.E., Zeng, W.Y., Paz-Yepes, J., Brahamsha, B., Palenik, B., Peterson, T.C., Haerizadeh, F., Golden, S.S., et al. Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic Acids Res, 42, 2014, e136.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. e136
-
-
Taton, A.1
Unglaub, F.2
Wright, N.E.3
Zeng, W.Y.4
Paz-Yepes, J.5
Brahamsha, B.6
Palenik, B.7
Peterson, T.C.8
Haerizadeh, F.9
Golden, S.S.10
-
144
-
-
85051406002
-
Direct photosynthetic production of plastic building block chemicals from CO2
-
Song, X., Wang, Y., Diao, J., Li, S., Chen, L., Zhang, W., Direct photosynthetic production of plastic building block chemicals from CO2. Adv Exp Med Biol 1080 (2018), 215–238.
-
(2018)
Adv Exp Med Biol
, vol.1080
, pp. 215-238
-
-
Song, X.1
Wang, Y.2
Diao, J.3
Li, S.4
Chen, L.5
Zhang, W.6
-
145
-
-
85048557105
-
Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973
-
Li, S., Sun, T., Xu, C., Chen, L., Zhang, W., Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Metab Eng 48 (2018), 163–174.
-
(2018)
Metab Eng
, vol.48
, pp. 163-174
-
-
Li, S.1
Sun, T.2
Xu, C.3
Chen, L.4
Zhang, W.5
-
146
-
-
85051403212
-
Production of industrial chemicals from CO2 by engineering cyanobacteria
-
Zhou, J., Meng, H., Zhang, W., Li, Y., Production of industrial chemicals from CO2 by engineering cyanobacteria. Adv Exp Med Biol 1080 (2018), 97–116.
-
(2018)
Adv Exp Med Biol
, vol.1080
, pp. 97-116
-
-
Zhou, J.1
Meng, H.2
Zhang, W.3
Li, Y.4
-
147
-
-
84984831746
-
Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria
-
Zhou, J., Zhang, F., Meng, H., Zhang, Y., Li, Y., Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria. Metab Eng 38 (2016), 217–227.
-
(2016)
Metab Eng
, vol.38
, pp. 217-227
-
-
Zhou, J.1
Zhang, F.2
Meng, H.3
Zhang, Y.4
Li, Y.5
-
148
-
-
84953395638
-
From cyanochemicals to cyanofactories: a review and perspective
-
Zhou, J., Zhu, T., Cai, Z., Li, Y., From cyanochemicals to cyanofactories: a review and perspective. Microb Cell Fact, 15, 2016, 2.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 2
-
-
Zhou, J.1
Zhu, T.2
Cai, Z.3
Li, Y.4
-
149
-
-
85051411213
-
Engineering cyanobacteria for photosynthetic production of C3 platform chemicals and terpenoids from CO2
-
Ni, J., Tao, F., Xu, P., Yang, C., Engineering cyanobacteria for photosynthetic production of C3 platform chemicals and terpenoids from CO2. Adv Exp Med Biol 1080 (2018), 239–259.
-
(2018)
Adv Exp Med Biol
, vol.1080
, pp. 239-259
-
-
Ni, J.1
Tao, F.2
Xu, P.3
Yang, C.4
-
150
-
-
84978153360
-
CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973
-
Wendt, K.E., Ungerer, J., Cobb, R.E., Zhao, H., Pakrasi, H.B., CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Fact, 15, 2016, 115.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 115
-
-
Wendt, K.E.1
Ungerer, J.2
Cobb, R.E.3
Zhao, H.4
Pakrasi, H.B.5
-
151
-
-
85053015435
-
Developing a Cas9-based tool to engineer native plasmids in Synechocystis sp. PCC 6803
-
Xiao, Y., Wang, S., Rommelfanger, S., Balassy, A., Barba-Ostria, C., Gu, P., Galazka, J.M., Zhang, F., Developing a Cas9-based tool to engineer native plasmids in Synechocystis sp. PCC 6803. Biotechnol Bioeng 115 (2018), 2305–2314.
-
(2018)
Biotechnol Bioeng
, vol.115
, pp. 2305-2314
-
-
Xiao, Y.1
Wang, S.2
Rommelfanger, S.3
Balassy, A.4
Barba-Ostria, C.5
Gu, P.6
Galazka, J.M.7
Zhang, F.8
-
152
-
-
80052898017
-
Ploidy in cyanobacteria
-
Griese, M., Lange, C., Soppa, J., Ploidy in cyanobacteria. FEMS Microbiol Lett 323 (2011), 124–131.
-
(2011)
FEMS Microbiol Lett
, vol.323
, pp. 124-131
-
-
Griese, M.1
Lange, C.2
Soppa, J.3
-
153
-
-
84992202389
-
CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production
-
Li, H., Shen, C.R., Huang, C.H., Sung, L.Y., Wu, M.Y., Hu, Y.C., CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng 38 (2016), 293–302.
-
(2016)
Metab Eng
, vol.38
, pp. 293-302
-
-
Li, H.1
Shen, C.R.2
Huang, C.H.3
Sung, L.Y.4
Wu, M.Y.5
Hu, Y.C.6
-
154
-
-
85033718927
-
Toward systems metabolic engineering of streptomycetes for secondary metabolites production
-
Robertsen, H.L., Weber, T., Kim, H.U., Lee, S.Y., Toward systems metabolic engineering of streptomycetes for secondary metabolites production. Biotechnol J, 13, 2018.
-
(2018)
Biotechnol J
, vol.13
-
-
Robertsen, H.L.1
Weber, T.2
Kim, H.U.3
Lee, S.Y.4
-
155
-
-
84901396861
-
Natural products from mangrove actinomycetes
-
Xu, D.B., Ye, W.W., Han, Y., Deng, Z.X., Hong, K., Natural products from mangrove actinomycetes. Mar Drugs 12 (2014), 2590–2613.
-
(2014)
Mar Drugs
, vol.12
, pp. 2590-2613
-
-
Xu, D.B.1
Ye, W.W.2
Han, Y.3
Deng, Z.X.4
Hong, K.5
-
156
-
-
84971408219
-
Characterization of a C3 deoxygenation pathway reveals a key branch point in aminoglycoside biosynthesis
-
Lv, M., Ji, X., Zhao, J., Li, Y., Zhang, C., Su, L., Ding, W., Deng, Z., Yu, Y., Zhang, Q., Characterization of a C3 deoxygenation pathway reveals a key branch point in aminoglycoside biosynthesis. J Am Chem Soc 138 (2016), 6427–6435.
-
(2016)
J Am Chem Soc
, vol.138
, pp. 6427-6435
-
-
Lv, M.1
Ji, X.2
Zhao, J.3
Li, Y.4
Zhang, C.5
Su, L.6
Ding, W.7
Deng, Z.8
Yu, Y.9
Zhang, Q.10
-
157
-
-
85020935736
-
Heterologous biosynthesis of spinosad: an omics-guided large polyketide synthase gene cluster reconstitution in Streptomyces
-
Tan, G.Y., Deng, K., Liu, X., Tao, H., Chang, Y., Chen, J., Chen, K., Sheng, Z., Deng, Z., Liu, T., Heterologous biosynthesis of spinosad: an omics-guided large polyketide synthase gene cluster reconstitution in Streptomyces. ACS Synth Biol 6 (2017), 995–1005.
-
(2017)
ACS Synth Biol
, vol.6
, pp. 995-1005
-
-
Tan, G.Y.1
Deng, K.2
Liu, X.3
Tao, H.4
Chang, Y.5
Chen, J.6
Chen, K.7
Sheng, Z.8
Deng, Z.9
Liu, T.10
-
158
-
-
85009413806
-
Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria
-
Tan, G.Y., Liu, T., Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria. Metab Eng 39 (2017), 228–236.
-
(2017)
Metab Eng
, vol.39
, pp. 228-236
-
-
Tan, G.Y.1
Liu, T.2
-
159
-
-
85021790419
-
Catalysis of extracellular deamination by a FAD-linked oxidoreductase after prodrug maturation in the biosynthesis of saframycin A
-
Song, L.Q., Zhang, Y.Y., Pu, J.Y., Tang, M.C., Peng, C., Tang, G.L., Catalysis of extracellular deamination by a FAD-linked oxidoreductase after prodrug maturation in the biosynthesis of saframycin A. Angew Chem Int Ed Engl 56 (2017), 9116–9120.
-
(2017)
Angew Chem Int Ed Engl
, vol.56
, pp. 9116-9120
-
-
Song, L.Q.1
Zhang, Y.Y.2
Pu, J.Y.3
Tang, M.C.4
Peng, C.5
Tang, G.L.6
-
160
-
-
85021396817
-
Bio-inspired engineering of thiopeptide antibiotics advances the expansion of molecular diversity and utility
-
Lin, Z., He, Q., Liu, W., Bio-inspired engineering of thiopeptide antibiotics advances the expansion of molecular diversity and utility. Curr Opin Biotechnol 48 (2017), 210–219.
-
(2017)
Curr Opin Biotechnol
, vol.48
, pp. 210-219
-
-
Lin, Z.1
He, Q.2
Liu, W.3
-
161
-
-
85031732591
-
Learn from microbial intelligence for avermectins overproduction
-
Gao, Q., Tan, G.Y., Xia, X., Zhang, L., Learn from microbial intelligence for avermectins overproduction. Curr Opin Biotechnol 48 (2017), 251–257.
-
(2017)
Curr Opin Biotechnol
, vol.48
, pp. 251-257
-
-
Gao, Q.1
Tan, G.Y.2
Xia, X.3
Zhang, L.4
-
162
-
-
85048132850
-
Angucycline glycosides from mangrove-derived streptomycesdiastaticus subsp. SCSIO GJ056
-
Gui, C., Liu, Y., Zhou, Z., Zhang, S., Hu, Y., Gu, Y.C., Huang, H., Ju, J., Angucycline glycosides from mangrove-derived streptomycesdiastaticus subsp. SCSIO GJ056. Mar Drugs, 2018, 16.
-
(2018)
Mar Drugs
, pp. 16
-
-
Gui, C.1
Liu, Y.2
Zhou, Z.3
Zhang, S.4
Hu, Y.5
Gu, Y.C.6
Huang, H.7
Ju, J.8
-
163
-
-
85047296963
-
Implication of orphan histidine kinase (OhkAsp) in biosynthesis of doxorubicin and daunorubicin in Streptomyces peucetius ATCC 27952
-
Pokhrel, A.R., Nguyen, H.T., Dhakal, D., Chaudhary, A.K., Sohng, J.K., Implication of orphan histidine kinase (OhkAsp) in biosynthesis of doxorubicin and daunorubicin in Streptomyces peucetius ATCC 27952. Microbiol Res 214 (2018), 37–46.
-
(2018)
Microbiol Res
, vol.214
, pp. 37-46
-
-
Pokhrel, A.R.1
Nguyen, H.T.2
Dhakal, D.3
Chaudhary, A.K.4
Sohng, J.K.5
-
164
-
-
67249096170
-
Albucidin: a novel bleaching herbicide from Streptomyces albus subsp. chlorinus NRRL B-24108
-
Hahn, D.R., Graupner, P.R., Chapin, E., Gray, J., Heim, D., Gilbert, J.R., Gerwick, B.C., Albucidin: a novel bleaching herbicide from Streptomyces albus subsp. chlorinus NRRL B-24108. J Antibiot (Tokyo) 62 (2009), 191–194.
-
(2009)
J Antibiot (Tokyo)
, vol.62
, pp. 191-194
-
-
Hahn, D.R.1
Graupner, P.R.2
Chapin, E.3
Gray, J.4
Heim, D.5
Gilbert, J.R.6
Gerwick, B.C.7
-
165
-
-
84906949001
-
Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in Streptomyces coelicolor A3(2)
-
Kim, M., Sang Yi, J., Kim, J., Kim, J.N., Kim, M.W., Kim, B.G., Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in Streptomyces coelicolor A3(2). Biotechnol J 9 (2014), 1185–1194.
-
(2014)
Biotechnol J
, vol.9
, pp. 1185-1194
-
-
Kim, M.1
Sang Yi, J.2
Kim, J.3
Kim, J.N.4
Kim, M.W.5
Kim, B.G.6
-
166
-
-
79953173626
-
Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate
-
Andexer, J.N., Kendrew, S.G., Nur-e-Alam, M., Lazos, O., Foster, T.A., Zimmermann, A.S., Warneck, T.D., Suthar, D., Coates, N.J., Koehn, F.E., et al. Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc Natl Acad Sci U S A 108 (2011), 4776–4781.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 4776-4781
-
-
Andexer, J.N.1
Kendrew, S.G.2
Nur-e-Alam, M.3
Lazos, O.4
Foster, T.A.5
Zimmermann, A.S.6
Warneck, T.D.7
Suthar, D.8
Coates, N.J.9
Koehn, F.E.10
-
167
-
-
84982082472
-
Gifted microbes for genome mining and natural product discovery
-
Baltz, R.H., Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 44 (2017), 573–588.
-
(2017)
J Ind Microbiol Biotechnol
, vol.44
, pp. 573-588
-
-
Baltz, R.H.1
-
168
-
-
85010931314
-
Activation and characterization of a cryptic gene cluster reveals a cyclization cascade for polycyclic tetramate macrolactams
-
Saha, S., Zhang, W., Zhang, G., Zhu, Y., Chen, Y., Liu, W., Yuan, C., Zhang, Q., Zhang, H., Zhang, L., et al. Activation and characterization of a cryptic gene cluster reveals a cyclization cascade for polycyclic tetramate macrolactams. Chem Sci 8 (2017), 1607–1612.
-
(2017)
Chem Sci
, vol.8
, pp. 1607-1612
-
-
Saha, S.1
Zhang, W.2
Zhang, G.3
Zhu, Y.4
Chen, Y.5
Liu, W.6
Yuan, C.7
Zhang, Q.8
Zhang, H.9
Zhang, L.10
-
169
-
-
85050190393
-
Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action
-
Yan, Y., Liu, Q., Zang, X., Yuan, S., Bat-Erdene, U., Nguyen, C., Gan, J., Zhou, J., Jacobsen, S.E., Tang, Y., Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature 559 (2018), 415–418.
-
(2018)
Nature
, vol.559
, pp. 415-418
-
-
Yan, Y.1
Liu, Q.2
Zang, X.3
Yuan, S.4
Bat-Erdene, U.5
Nguyen, C.6
Gan, J.7
Zhou, J.8
Jacobsen, S.E.9
Tang, Y.10
-
170
-
-
84922466451
-
A roadmap for natural product discovery based on large-scale genomics and metabolomics
-
Doroghazi, J.R., Albright, J.C., Goering, A.W., Ju, K.S., Haines, R.R., Tchalukov, K.A., Labeda, D.P., Kelleher, N.L., Metcalf, W.W., A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 10 (2014), 963–968.
-
(2014)
Nat Chem Biol
, vol.10
, pp. 963-968
-
-
Doroghazi, J.R.1
Albright, J.C.2
Goering, A.W.3
Ju, K.S.4
Haines, R.R.5
Tchalukov, K.A.6
Labeda, D.P.7
Kelleher, N.L.8
Metcalf, W.W.9
-
171
-
-
84926466507
-
One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces
-
Huang, H., Zheng, G., Jiang, W., Hu, H., Lu, Y., One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin (Shanghai) 47 (2015), 231–243.
-
(2015)
Acta Biochim Biophys Sin (Shanghai)
, vol.47
, pp. 231-243
-
-
Huang, H.1
Zheng, G.2
Jiang, W.3
Hu, H.4
Lu, Y.5
-
172
-
-
84934947770
-
High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
-
Cobb, R.E., Wang, Y., Zhao, H., High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4 (2015), 723–728.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 723-728
-
-
Cobb, R.E.1
Wang, Y.2
Zhao, H.3
-
173
-
-
84948382257
-
Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system
-
Zeng, H., Wen, S., Xu, W., He, Z., Zhai, G., Liu, Y., Deng, Z., Sun, Y., Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99 (2015), 10575–10585.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 10575-10585
-
-
Zeng, H.1
Wen, S.2
Xu, W.3
He, Z.4
Zhai, G.5
Liu, Y.6
Deng, Z.7
Sun, Y.8
-
174
-
-
85053483261
-
CRISPR-Cpf1 assisted multiplex genome editing and transcriptional repression in Streptomyces
-
pii: e00827-18
-
Li, L., Wei, K., Zheng, G., Liu, X., Chen, S., Jiang, W., Lu, Y., CRISPR-Cpf1 assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl Environ Microbiol, 2018 pii: e00827-18.
-
(2018)
Appl Environ Microbiol
-
-
Li, L.1
Wei, K.2
Zheng, G.3
Liu, X.4
Chen, S.5
Jiang, W.6
Lu, Y.7
-
175
-
-
85028055069
-
Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus
-
Jia, H., Zhang, L., Wang, T., Han, J., Tang, H., Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology 163 (2017), 1148–1155.
-
(2017)
Microbiology
, vol.163
, pp. 1148-1155
-
-
Jia, H.1
Zhang, L.2
Wang, T.3
Han, J.4
Tang, H.5
-
176
-
-
84940106526
-
CRISPR-Cas9 based engineering of actinomycetal genomes
-
Tong, Y., Charusanti, P., Zhang, L., Weber, T., Lee, S.Y., CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4 (2015), 1020–1029.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1020-1029
-
-
Tong, Y.1
Charusanti, P.2
Zhang, L.3
Weber, T.4
Lee, S.Y.5
-
177
-
-
85017266739
-
CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters
-
Zhang, M.M., Wong, F.T., Wang, Y., Luo, S., Lim, Y.H., Heng, E., Yeo, W.L., Cobb, R.E., Enghiad, B., Ang, E.L., et al. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol 13 (2017), 607–611.
-
(2017)
Nat Chem Biol
, vol.13
, pp. 607-611
-
-
Zhang, M.M.1
Wong, F.T.2
Wang, Y.3
Luo, S.4
Lim, Y.H.5
Heng, E.6
Yeo, W.L.7
Cobb, R.E.8
Enghiad, B.9
Ang, E.L.10
-
178
-
-
84929572600
-
Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
-
Bao, Z., Xiao, H., Liang, J., Zhang, L., Xiong, X., Sun, N., Si, T., Zhao, H., Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4 (2015), 585–594.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 585-594
-
-
Bao, Z.1
Xiao, H.2
Liang, J.3
Zhang, L.4
Xiong, X.5
Sun, N.6
Si, T.7
Zhao, H.8
-
179
-
-
0020607444
-
Carbohydrate metabolism in lactic acid bacteria
-
Kandler, O., Carbohydrate metabolism in lactic acid bacteria. Antonie Leeuwenhoek 49 (1983), 209–224.
-
(1983)
Antonie Leeuwenhoek
, vol.49
, pp. 209-224
-
-
Kandler, O.1
-
180
-
-
85019570372
-
The efficient clade: lactic acid bacteria for industrial chemical production
-
Sauer, M., Russmayer, H., Grabherr, R., Peterbauer, C.K., Marx, H., The efficient clade: lactic acid bacteria for industrial chemical production. Trends Biotechnol 35 (2017), 756–769.
-
(2017)
Trends Biotechnol
, vol.35
, pp. 756-769
-
-
Sauer, M.1
Russmayer, H.2
Grabherr, R.3
Peterbauer, C.K.4
Marx, H.5
-
181
-
-
84956948917
-
Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species
-
Vlasova, A.N., Kandasamy, S., Chattha, K.S., Rajashekara, G., Saif, L.J., Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Vet Immunol Immunopathol 172 (2016), 72–84.
-
(2016)
Vet Immunol Immunopathol
, vol.172
, pp. 72-84
-
-
Vlasova, A.N.1
Kandasamy, S.2
Chattha, K.S.3
Rajashekara, G.4
Saif, L.J.5
-
182
-
-
84994036215
-
Effect of carbon pulsing on the redox household of Lactobacillus diolivorans in order to enhance 1,3-propanediol production
-
Lindlbauer, K.A., Marx, H., Sauer, M., Effect of carbon pulsing on the redox household of Lactobacillus diolivorans in order to enhance 1,3-propanediol production. N Biotechnol 34 (2017), 32–39.
-
(2017)
N Biotechnol
, vol.34
, pp. 32-39
-
-
Lindlbauer, K.A.1
Marx, H.2
Sauer, M.3
-
183
-
-
84939990992
-
Efficient production of reuterin from glycerol by magnetically immobilized Lactobacillus reuteri
-
Liu, F., Yu, B., Efficient production of reuterin from glycerol by magnetically immobilized Lactobacillus reuteri. Appl Microbiol Biotechnol 99 (2015), 4659–4666.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 4659-4666
-
-
Liu, F.1
Yu, B.2
-
184
-
-
84954170297
-
Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis
-
Dishisha, T., Pyo, S.H., Hatti-Kaul, R., Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Microb Cell Fact, 14, 2015, 200.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 200
-
-
Dishisha, T.1
Pyo, S.H.2
Hatti-Kaul, R.3
-
185
-
-
84920708600
-
High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine
-
Yang, Y., Kang, Z., Zhou, J., Chen, J., Du, G., High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine. Appl Microbiol Biotechnol 99 (2015), 301–308.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 301-308
-
-
Yang, Y.1
Kang, Z.2
Zhou, J.3
Chen, J.4
Du, G.5
-
186
-
-
85032683575
-
CRISPR-Cas9(D10A) nickase-assisted genome editing in Lactobacillus casei
-
Song, X., Huang, H., Xiong, Z., Ai, L., Yang, S., CRISPR-Cas9(D10A) nickase-assisted genome editing in Lactobacillus casei. Appl Environ Microbiol, 83, 2017.
-
(2017)
Appl Environ Microbiol
, vol.83
-
-
Song, X.1
Huang, H.2
Xiong, Z.3
Ai, L.4
Yang, S.5
-
187
-
-
85053244950
-
Deletion-based escape of CRISPR-Cas9 targeting in Lactobacillus gasseri
-
Stout, E.A., Sanozky-Dawes, R., Goh, Y.J., Crawley, A.B., Klaenhammer, T.R., Barrangou, R., Deletion-based escape of CRISPR-Cas9 targeting in Lactobacillus gasseri. Microbiology 164 (2018), 1098–1111.
-
(2018)
Microbiology
, vol.164
, pp. 1098-1111
-
-
Stout, E.A.1
Sanozky-Dawes, R.2
Goh, Y.J.3
Crawley, A.B.4
Klaenhammer, T.R.5
Barrangou, R.6
-
188
-
-
84871990888
-
Emergence and global spread of epidemic healthcare-associated Clostridium difficile
-
He, M., Miyajima, F., Roberts, P., Ellison, L., Pickard, D.J., Martin, M.J., Connor, T.R., Harris, S.R., Fairley, D., Bamford, K.B., et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 45 (2013), 109–113.
-
(2013)
Nat Genet
, vol.45
, pp. 109-113
-
-
He, M.1
Miyajima, F.2
Roberts, P.3
Ellison, L.4
Pickard, D.J.5
Martin, M.J.6
Connor, T.R.7
Harris, S.R.8
Fairley, D.9
Bamford, K.B.10
-
189
-
-
85038894881
-
Comparative analysis of high butanol tolerance and production in clostridia
-
Patakova, P., Kolek, J., Sedlar, K., Koscova, P., Branska, B., Kupkova, K., Paulova, L., Provaznik, I., Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol Adv 36 (2018), 721–738.
-
(2018)
Biotechnol Adv
, vol.36
, pp. 721-738
-
-
Patakova, P.1
Kolek, J.2
Sedlar, K.3
Koscova, P.4
Branska, B.5
Kupkova, K.6
Paulova, L.7
Provaznik, I.8
-
190
-
-
84986309362
-
Clostridia: a flexible microbial platform for the production of alcohols
-
Ren, C., Wen, Z., Xu, Y., Jiang, W., Gu, Y., Clostridia: a flexible microbial platform for the production of alcohols. Curr Opin Chem Biol 35 (2016), 65–72.
-
(2016)
Curr Opin Chem Biol
, vol.35
, pp. 65-72
-
-
Ren, C.1
Wen, Z.2
Xu, Y.3
Jiang, W.4
Gu, Y.5
-
191
-
-
85041904982
-
Recent developments of the synthetic biology toolkit for Clostridium
-
Joseph, R.C., Kim, N.M., Sandoval, N.R., Recent developments of the synthetic biology toolkit for Clostridium. Front Microbiol, 9, 2018, 154.
-
(2018)
Front Microbiol
, vol.9
, pp. 154
-
-
Joseph, R.C.1
Kim, N.M.2
Sandoval, N.R.3
-
192
-
-
85011333326
-
Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum
-
Xue, C., Zhao, J., Chen, L., Yang, S.T., Bai, F., Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol Adv 35 (2017), 310–322.
-
(2017)
Biotechnol Adv
, vol.35
, pp. 310-322
-
-
Xue, C.1
Zhao, J.2
Chen, L.3
Yang, S.T.4
Bai, F.5
-
193
-
-
84924425397
-
Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
-
Wang, Y., Zhang, Z.T., Seo, S.O., Choi, K., Lu, T., Jin, Y.S., Blaschek, H.P., Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 200 (2015), 1–5.
-
(2015)
J Biotechnol
, vol.200
, pp. 1-5
-
-
Wang, Y.1
Zhang, Z.T.2
Seo, S.O.3
Choi, K.4
Lu, T.5
Jin, Y.S.6
Blaschek, H.P.7
-
194
-
-
84978699037
-
Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable “clean” mutant selection in Clostridium beijerinckii as an example
-
Wang, Y., Zhang, Z.T., Seo, S.O., Lynn, P., Lu, T., Jin, Y.S., Blaschek, H.P., Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable “clean” mutant selection in Clostridium beijerinckii as an example. ACS Synth Biol 5 (2016), 721–732.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 721-732
-
-
Wang, Y.1
Zhang, Z.T.2
Seo, S.O.3
Lynn, P.4
Lu, T.5
Jin, Y.S.6
Blaschek, H.P.7
-
195
-
-
85018276292
-
Genome editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 system
-
Wang, S., Dong, S., Wang, P., Tao, Y., Wang, Y., Genome editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 system. Appl Environ Microbiol, 83, 2017.
-
(2017)
Appl Environ Microbiol
, vol.83
-
-
Wang, S.1
Dong, S.2
Wang, P.3
Tao, Y.4
Wang, Y.5
-
196
-
-
84977527317
-
CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii
-
Li, Q., Chen, J., Minton, N.P., Zhang, Y., Wen, Z., Liu, J., Yang, H., Zeng, Z., Ren, X., Yang, J., et al. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol J 11 (2016), 961–972.
-
(2016)
Biotechnol J
, vol.11
, pp. 961-972
-
-
Li, Q.1
Chen, J.2
Minton, N.P.3
Zhang, Y.4
Wen, Z.5
Liu, J.6
Yang, H.7
Zeng, Z.8
Ren, X.9
Yang, J.10
-
197
-
-
84992316948
-
Genome editing of Clostridium autoethanogenum using CRISPR/Cas9
-
Nagaraju, S., Davies, N.K., Walker, D.J., Kopke, M., Simpson, S.D., Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol Biofuels, 9, 2016, 219.
-
(2016)
Biotechnol Biofuels
, vol.9
, pp. 219
-
-
Nagaraju, S.1
Davies, N.K.2
Walker, D.J.3
Kopke, M.4
Simpson, S.D.5
-
198
-
-
85006485809
-
CRISPR/Cas9-Based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium
-
Huang, H., Chai, C., Li, N., Rowe, P., Minton, N.P., Yang, S., Jiang, W., Gu, Y., CRISPR/Cas9-Based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol 5 (2016), 1355–1361.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 1355-1361
-
-
Huang, H.1
Chai, C.2
Li, N.3
Rowe, P.4
Minton, N.P.5
Yang, S.6
Jiang, W.7
Gu, Y.8
-
199
-
-
85045795429
-
Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production
-
Zhang, J., Zong, W., Hong, W., Zhang, Z.T., Wang, Y., Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab Eng 47 (2018), 49–59.
-
(2018)
Metab Eng
, vol.47
, pp. 49-59
-
-
Zhang, J.1
Zong, W.2
Hong, W.3
Zhang, Z.T.4
Wang, Y.5
-
200
-
-
84971265340
-
Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium
-
Pyne, M.E., Bruder, M.R., Moo-Young, M., Chung, D.A., Chou, C.P., Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Sci Rep, 6, 2016, 25666.
-
(2016)
Sci Rep
, vol.6
, pp. 25666
-
-
Pyne, M.E.1
Bruder, M.R.2
Moo-Young, M.3
Chung, D.A.4
Chou, C.P.5
-
201
-
-
85048754323
-
Multiplexed CRISPR-Cpf1-mediated genome editing in Clostridium difficile toward the understanding of pathogenesis of C. difficile infection
-
Hong, W., Zhang, J., Cui, G., Wang, L., Wang, Y., Multiplexed CRISPR-Cpf1-mediated genome editing in Clostridium difficile toward the understanding of pathogenesis of C. difficile infection. ACS Synth Biol 7 (2018), 1588–1600.
-
(2018)
ACS Synth Biol
, vol.7
, pp. 1588-1600
-
-
Hong, W.1
Zhang, J.2
Cui, G.3
Wang, L.4
Wang, Y.5
-
202
-
-
84930787559
-
Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase
-
Xu, T., Li, Y., Shi, Z., Hemme, C.L., Zhu, Y., Van Nostrand, J.D., He, Z., Zhou, J., Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl Environ Microbiol 81 (2015), 4423–4431.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 4423-4431
-
-
Xu, T.1
Li, Y.2
Shi, Z.3
Hemme, C.L.4
Zhu, Y.5
Van Nostrand, J.D.6
He, Z.7
Zhou, J.8
-
203
-
-
85028929435
-
Cas9 nickase-assisted RNA repression enables stable and efficient manipulation of essential metabolic genes in Clostridium cellulolyticum
-
Xu, T., Li, Y., He, Z., Van Nostrand, J.D., Zhou, J., Cas9 nickase-assisted RNA repression enables stable and efficient manipulation of essential metabolic genes in Clostridium cellulolyticum. Front Microbiol, 8, 2017, 1744.
-
(2017)
Front Microbiol
, vol.8
, pp. 1744
-
-
Xu, T.1
Li, Y.2
He, Z.3
Van Nostrand, J.D.4
Zhou, J.5
-
204
-
-
84991281155
-
Extending CRISPR-Cas9 technology from genome editing to transcriptional engineering in the genus Clostridium
-
Bruder, M.R., Pyne, M.E., Moo-Young, M., Chung, D.A., Chou, C.P., Extending CRISPR-Cas9 technology from genome editing to transcriptional engineering in the genus Clostridium. Appl Environ Microbiol 82 (2016), 6109–6119.
-
(2016)
Appl Environ Microbiol
, vol.82
, pp. 6109-6119
-
-
Bruder, M.R.1
Pyne, M.E.2
Moo-Young, M.3
Chung, D.A.4
Chou, C.P.5
-
205
-
-
84975485770
-
Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9
-
Wang, Y., Zhang, Z.T., Seo, S.O., Lynn, P., Lu, T., Jin, Y.S., Blaschek, H.P., Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9. Biotechnol Bioeng 113 (2016), 2739–2743.
-
(2016)
Biotechnol Bioeng
, vol.113
, pp. 2739-2743
-
-
Wang, Y.1
Zhang, Z.T.2
Seo, S.O.3
Lynn, P.4
Lu, T.5
Jin, Y.S.6
Blaschek, H.P.7
-
206
-
-
85006141763
-
Enhanced solvent production by metabolic engineering of a twin-clostridial consortium
-
Wen, Z., Minton, N.P., Zhang, Y., Li, Q., Liu, J., Jiang, Y., Yang, S., Enhanced solvent production by metabolic engineering of a twin-clostridial consortium. Metab Eng 39 (2017), 38–48.
-
(2017)
Metab Eng
, vol.39
, pp. 38-48
-
-
Wen, Z.1
Minton, N.P.2
Zhang, Y.3
Li, Q.4
Liu, J.5
Jiang, Y.6
Yang, S.7
-
207
-
-
85040865494
-
Corynebacterium glutamicum chassis C1*: building and testing a novel platform host for synthetic biology and industrial biotechnology
-
Baumgart, M., Unthan, S., Kloss, R., Radek, A., Polen, T., Tenhaef, N., Muller, M.F., Kuberl, A., Siebert, D., Bruhl, N., et al. Corynebacterium glutamicum chassis C1*: building and testing a novel platform host for synthetic biology and industrial biotechnology. ACS Synth Biol 7 (2018), 132–144.
-
(2018)
ACS Synth Biol
, vol.7
, pp. 132-144
-
-
Baumgart, M.1
Unthan, S.2
Kloss, R.3
Radek, A.4
Polen, T.5
Tenhaef, N.6
Muller, M.F.7
Kuberl, A.8
Siebert, D.9
Bruhl, N.10
-
208
-
-
85052073647
-
Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products
-
pii: S1096-7176(18)30152-6
-
Becker, J., Rohles, C.M., Wittmann, C., Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng, 2018 pii: S1096-7176(18)30152-6.
-
(2018)
Metab Eng
-
-
Becker, J.1
Rohles, C.M.2
Wittmann, C.3
-
209
-
-
85020726978
-
CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum
-
Jiang, Y., Qian, F., Yang, J., Liu, Y., Dong, F., Xu, C., Sun, B., Chen, B., Xu, X., Li, Y., et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun, 8, 2017, 15179.
-
(2017)
Nat Commun
, vol.8
, pp. 15179
-
-
Jiang, Y.1
Qian, F.2
Yang, J.3
Liu, Y.4
Dong, F.5
Xu, C.6
Sun, B.7
Chen, B.8
Xu, X.9
Li, Y.10
-
210
-
-
85034250678
-
Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum
-
Liu, J., Wang, Y., Lu, Y., Zheng, P., Sun, J., Ma, Y., Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb Cell Fact, 16, 2017, 205.
-
(2017)
Microb Cell Fact
, vol.16
, pp. 205
-
-
Liu, J.1
Wang, Y.2
Lu, Y.3
Zheng, P.4
Sun, J.5
Ma, Y.6
-
211
-
-
85034083694
-
Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system
-
Peng, F., Wang, X., Sun, Y., Dong, G., Yang, Y., Liu, X., Bai, Z., Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Fact, 16, 2017, 201.
-
(2017)
Microb Cell Fact
, vol.16
, pp. 201
-
-
Peng, F.1
Wang, X.2
Sun, Y.3
Dong, G.4
Yang, Y.5
Liu, X.6
Bai, Z.7
-
212
-
-
85021307199
-
CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum
-
Cho, J.S., Choi, K.R., Prabowo, C.P.S., Shin, J.H., Yang, D., Jang, J., Lee, S.Y., CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng 42 (2017), 157–167.
-
(2017)
Metab Eng
, vol.42
, pp. 157-167
-
-
Cho, J.S.1
Choi, K.R.2
Prabowo, C.P.S.3
Shin, J.H.4
Yang, D.5
Jang, J.6
Lee, S.Y.7
-
213
-
-
85045746004
-
A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum
-
Wang, B., Hu, Q., Zhang, Y., Shi, R., Chai, X., Liu, Z., Shang, X., Wen, T., A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Microb Cell Fact, 17, 2018, 63.
-
(2018)
Microb Cell Fact
, vol.17
, pp. 63
-
-
Wang, B.1
Hu, Q.2
Zhang, Y.3
Shi, R.4
Chai, X.5
Liu, Z.6
Shang, X.7
Wen, T.8
-
214
-
-
85044579211
-
MACBETH: multiplex automated Corynebacterium glutamicum base editing method
-
Wang, Y., Liu, Y., Liu, J., Guo, Y., Fan, L., Ni, X., Zheng, X., Wang, M., Zheng, P., Sun, J., et al. MACBETH: multiplex automated Corynebacterium glutamicum base editing method. Metab Eng 47 (2018), 200–210.
-
(2018)
Metab Eng
, vol.47
, pp. 200-210
-
-
Wang, Y.1
Liu, Y.2
Liu, J.3
Guo, Y.4
Fan, L.5
Ni, X.6
Zheng, X.7
Wang, M.8
Zheng, P.9
Sun, J.10
-
215
-
-
84973136613
-
Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi)
-
Cleto, S., Jensen, J.V., Wendisch, V.F., Lu, T.K., Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol 5 (2016), 375–385.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 375-385
-
-
Cleto, S.1
Jensen, J.V.2
Wendisch, V.F.3
Lu, T.K.4
-
216
-
-
85040323809
-
RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain
-
Park, J., Shin, H., Lee, S.M., Um, Y., Woo, H.M., RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain. Microb Cell Fact, 17, 2018, 4.
-
(2018)
Microb Cell Fact
, vol.17
, pp. 4
-
-
Park, J.1
Shin, H.2
Lee, S.M.3
Um, Y.4
Woo, H.M.5
-
217
-
-
85046549174
-
CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production
-
Yoon, J., Woo, H.M., CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production. Biotechnol Bioeng 115 (2018), 2067–2074.
-
(2018)
Biotechnol Bioeng
, vol.115
, pp. 2067-2074
-
-
Yoon, J.1
Woo, H.M.2
-
218
-
-
85048835854
-
Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications
-
pii: S1096-7176(17)30482-2
-
Gu, Y., Xu, X., Wu, Y., Niu, T., Liu, Y., Li, J., Du, G., Liu, L., Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metab Eng, 2018 pii: S1096-7176(17)30482-2.
-
(2018)
Metab Eng
-
-
Gu, Y.1
Xu, X.2
Wu, Y.3
Niu, T.4
Liu, Y.5
Li, J.6
Du, G.7
Liu, L.8
-
219
-
-
84982107482
-
Development of a CRISPR-Cas9 tool kit for Comprehensive engineering of Bacillus subtilis
-
Westbrook, A.W., Moo-Young, M., Chou, C.P., Development of a CRISPR-Cas9 tool kit for Comprehensive engineering of Bacillus subtilis. Appl Environ Microbiol 82 (2016), 4876–4895.
-
(2016)
Appl Environ Microbiol
, vol.82
, pp. 4876-4895
-
-
Westbrook, A.W.1
Moo-Young, M.2
Chou, C.P.3
-
220
-
-
85053760225
-
Metabolic engineering of Bacillus subtilis for L-valine overproduction
-
Westbrook, A.W., Ren, X., Moo-Young, M., Chou, C.P., Metabolic engineering of Bacillus subtilis for L-valine overproduction. Biotechnol Bioeng, 2018, 10.1002/bit.26789.
-
(2018)
Biotechnol Bioeng
-
-
Westbrook, A.W.1
Ren, X.2
Moo-Young, M.3
Chou, C.P.4
-
221
-
-
85046700155
-
Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis
-
Westbrook, A.W., Ren, X., Oh, J., Moo-Young, M., Chou, C.P., Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metab Eng 47 (2018), 401–413.
-
(2018)
Metab Eng
, vol.47
, pp. 401-413
-
-
Westbrook, A.W.1
Ren, X.2
Oh, J.3
Moo-Young, M.4
Chou, C.P.5
-
222
-
-
85052874280
-
CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis
-
Wu, Y., Chen, T., Liu, Y., Lv, X., Li, J., Du, G., Ledesma-Amaro, R., Liu, L., CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Metab Eng 49 (2018), 232–241.
-
(2018)
Metab Eng
, vol.49
, pp. 232-241
-
-
Wu, Y.1
Chen, T.2
Liu, Y.3
Lv, X.4
Li, J.5
Du, G.6
Ledesma-Amaro, R.7
Liu, L.8
-
223
-
-
84975061735
-
Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system
-
Zhang, K., Duan, X., Wu, J., Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci Rep, 6, 2016, 27943.
-
(2016)
Sci Rep
, vol.6
, pp. 27943
-
-
Zhang, K.1
Duan, X.2
Wu, J.3
-
224
-
-
85045751365
-
Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding
-
Zhang, K., Su, L., Wu, J., Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding. Appl Microbiol Biotechnol 102 (2018), 5089–5103.
-
(2018)
Appl Microbiol Biotechnol
, vol.102
, pp. 5089-5103
-
-
Zhang, K.1
Su, L.2
Wu, J.3
-
225
-
-
85019610018
-
Efficient genome editing of a facultative thermophile using mesophilic spCas9
-
Mougiakos, I., Bosma, E.F., Weenink, K., Vossen, E., Goijvaerts, K., van der Oost, J., van Kranenburg, R., Efficient genome editing of a facultative thermophile using mesophilic spCas9. ACS Synth Biol 6 (2017), 849–861.
-
(2017)
ACS Synth Biol
, vol.6
, pp. 849-861
-
-
Mougiakos, I.1
Bosma, E.F.2
Weenink, K.3
Vossen, E.4
Goijvaerts, K.5
van der Oost, J.6
van Kranenburg, R.7
-
226
-
-
85034733585
-
Characterizing a thermostable Cas9 for bacterial genome editing and silencing
-
Mougiakos, I., Mohanraju, P., Bosma, E.F., Vrouwe, V., Finger Bou, M., Naduthodi, M.I.S., Gussak, A., Brinkman, R.B.L., van Kranenburg, R., van der Oost, J., Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat Commun, 8, 2017, 1647.
-
(2017)
Nat Commun
, vol.8
, pp. 1647
-
-
Mougiakos, I.1
Mohanraju, P.2
Bosma, E.F.3
Vrouwe, V.4
Finger Bou, M.5
Naduthodi, M.I.S.6
Gussak, A.7
Brinkman, R.B.L.8
van Kranenburg, R.9
van der Oost, J.10
-
227
-
-
85042672913
-
Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase
-
Li, K., Cai, D., Wang, Z., He, Z., Chen, S., Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase. Appl Environ Microbiol, 84, 2018.
-
(2018)
Appl Environ Microbiol
, vol.84
-
-
Li, K.1
Cai, D.2
Wang, Z.3
He, Z.4
Chen, S.5
-
228
-
-
85032687462
-
Antibiotic resistance: current perspectives
-
Petchiappan, A., Chatterji, D., Antibiotic resistance: current perspectives. ACS Omega 2 (2017), 7400–7409.
-
(2017)
ACS Omega
, vol.2
, pp. 7400-7409
-
-
Petchiappan, A.1
Chatterji, D.2
-
229
-
-
85044427879
-
Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase
-
Gu, T., Zhao, S., Pi, Y., Chen, W., Chen, C., Liu, Q., Li, M., Han, D., Ji, Q., Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase. Chem Sci 9 (2018), 3248–3253.
-
(2018)
Chem Sci
, vol.9
, pp. 3248-3253
-
-
Gu, T.1
Zhao, S.2
Pi, Y.3
Chen, W.4
Chen, C.5
Liu, Q.6
Li, M.7
Han, D.8
Ji, Q.9
-
230
-
-
85015230298
-
Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system
-
Chen, W., Zhang, Y., Yeo, W.S., Bae, T., Ji, Q., Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system. J Am Chem Soc 139 (2017), 3790–3795.
-
(2017)
J Am Chem Soc
, vol.139
, pp. 3790-3795
-
-
Chen, W.1
Zhang, Y.2
Yeo, W.S.3
Bae, T.4
Ji, Q.5
-
231
-
-
85019857816
-
CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus
-
Dong, X., Jin, Y., Ming, D., Li, B., Dong, H., Wang, L., Wang, T., Wang, D., CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus. J Microbiol Methods 139 (2017), 79–86.
-
(2017)
J Microbiol Methods
, vol.139
, pp. 79-86
-
-
Dong, X.1
Jin, Y.2
Ming, D.3
Li, B.4
Dong, H.5
Wang, L.6
Wang, T.7
Wang, D.8
-
232
-
-
84923869859
-
Gene silencing by CRISPR interference in mycobacteria
-
Choudhary, E., Thakur, P., Pareek, M., Agarwal, N., Gene silencing by CRISPR interference in mycobacteria. Nat Commun, 6, 2015, 6267.
-
(2015)
Nat Commun
, vol.6
, pp. 6267
-
-
Choudhary, E.1
Thakur, P.2
Pareek, M.3
Agarwal, N.4
-
233
-
-
85011705463
-
Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform
-
Rock, J.M., Hopkins, F.F., Chavez, A., Diallo, M., Chase, M.R., Gerrick, E.R., Pritchard, J.R., Church, G.M., Rubin, E.J., Sassetti, C.M., et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat Microbiol, 2, 2017, 16274.
-
(2017)
Nat Microbiol
, vol.2
, pp. 16274
-
-
Rock, J.M.1
Hopkins, F.F.2
Chavez, A.3
Diallo, M.4
Chase, M.R.5
Gerrick, E.R.6
Pritchard, J.R.7
Church, G.M.8
Rubin, E.J.9
Sassetti, C.M.10
-
234
-
-
84992170651
-
Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system
-
Singh, A.K., Carette, X., Potluri, L.P., Sharp, J.D., Xu, R., Prisic, S., Husson, R.N., Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system. Nucleic Acids Res, 44, 2016, e143.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. e143
-
-
Singh, A.K.1
Carette, X.2
Potluri, L.P.3
Sharp, J.D.4
Xu, R.5
Prisic, S.6
Husson, R.N.7
-
235
-
-
85052617295
-
A CRISPR-Cpf1-Assisted Non-Homologous End Joining Genome Editing System of Mycobacterium smegmatis
-
Sun, B., Yang, J., Yang, S., Ye, R.D., Chen, D., Jiang, Y., A CRISPR-Cpf1-Assisted Non-Homologous End Joining Genome Editing System of Mycobacterium smegmatis. Biotechnol J, 2018, e1700588.
-
(2018)
Biotechnol J
-
-
Sun, B.1
Yang, J.2
Yang, S.3
Ye, R.D.4
Chen, D.5
Jiang, Y.6
-
236
-
-
84971373700
-
Constitutive expression of a nag-like dioxygenase gene through an internal promoter in the 2-Chloronitrobenzene Catabolism gene cluster of Pseudomonas stutzeri ZWLR2-1
-
Gao, Y.Z., Liu, H., Chao, H.J., Zhou, N.Y., Constitutive expression of a nag-like dioxygenase gene through an internal promoter in the 2-Chloronitrobenzene Catabolism gene cluster of Pseudomonas stutzeri ZWLR2-1. Appl Environ Microbiol 82 (2016), 3461–3470.
-
(2016)
Appl Environ Microbiol
, vol.82
, pp. 3461-3470
-
-
Gao, Y.Z.1
Liu, H.2
Chao, H.J.3
Zhou, N.Y.4
-
237
-
-
84908080020
-
Mechanism of the 6-hydroxy-3-succinoyl-pyridine 3-monooxygenase flavoprotein from Pseudomonas putida S16
-
Yu, H., Hausinger, R.P., Tang, H.Z., Xu, P., Mechanism of the 6-hydroxy-3-succinoyl-pyridine 3-monooxygenase flavoprotein from Pseudomonas putida S16. J Biol Chem 289 (2014), 29158–29170.
-
(2014)
J Biol Chem
, vol.289
, pp. 29158-29170
-
-
Yu, H.1
Hausinger, R.P.2
Tang, H.Z.3
Xu, P.4
-
238
-
-
85037347493
-
CRISPR/Cas9-Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida
-
Aparicio, T., de Lorenzo, V., Martinez-Garcia, E., CRISPR/Cas9-Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida. Biotechnol J, 13, 2018, e1700161.
-
(2018)
Biotechnol J
, vol.13
-
-
Aparicio, T.1
de Lorenzo, V.2
Martinez-Garcia, E.3
-
239
-
-
85043454615
-
Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system
-
Sun, J., Wang, Q., Jiang, Y., Wen, Z., Yang, L., Wu, J., Yang, S., Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system. Microb Cell Fact, 17, 2018, 41.
-
(2018)
Microb Cell Fact
, vol.17
, pp. 41
-
-
Sun, J.1
Wang, Q.2
Jiang, Y.3
Wen, Z.4
Yang, L.5
Wu, J.6
Yang, S.7
-
240
-
-
85043512916
-
A robust CRISPR interference gene repression system in Pseudomonas
-
Tan, S.Z., Reisch, C.R., Prather, K.L.J., A robust CRISPR interference gene repression system in Pseudomonas. J Bacteriol, 200, 2018.
-
(2018)
J Bacteriol
, vol.200
-
-
Tan, S.Z.1
Reisch, C.R.2
Prather, K.L.J.3
-
241
-
-
85051801192
-
Efficient genome engineering of a virulent Klebsiella bacteriophage using CRISPR-Cas9
-
Shen, J., Zhou, J., Chen, G.Q., Xiu, Z.L., Efficient genome engineering of a virulent Klebsiella bacteriophage using CRISPR-Cas9. J Virol, 92, 2018.
-
(2018)
J Virol
, vol.92
-
-
Shen, J.1
Zhou, J.2
Chen, G.Q.3
Xiu, Z.L.4
-
242
-
-
85044984145
-
Engineering CRISPR interference system in Klebsiella pneumoniae for attenuating lactic acid synthesis
-
Wang, J., Zhao, P., Li, Y., Xu, L., Tian, P., Engineering CRISPR interference system in Klebsiella pneumoniae for attenuating lactic acid synthesis. Microb Cell Fact, 17, 2018, 56.
-
(2018)
Microb Cell Fact
, vol.17
, pp. 56
-
-
Wang, J.1
Zhao, P.2
Li, Y.3
Xu, L.4
Tian, P.5
-
243
-
-
85027463310
-
CRISPR-Cas12a-Assisted recombineering in bacteria
-
Yan, M.Y., Yan, H.Q., Ren, G.X., Zhao, J.P., Guo, X.P., Sun, Y.C., CRISPR-Cas12a-Assisted recombineering in bacteria. Appl Environ Microbiol, 83, 2017.
-
(2017)
Appl Environ Microbiol
, vol.83
-
-
Yan, M.Y.1
Yan, H.Q.2
Ren, G.X.3
Zhao, J.P.4
Guo, X.P.5
Sun, Y.C.6
-
244
-
-
84879101651
-
Synthetic biology: advancing the design of diverse genetic systems
-
Wang, Y.H., Wei, K.Y., Smolke, C.D., Synthetic biology: advancing the design of diverse genetic systems. Annu Rev Chem Biomol Eng 4 (2012), 69–102.
-
(2012)
Annu Rev Chem Biomol Eng
, vol.4
, pp. 69-102
-
-
Wang, Y.H.1
Wei, K.Y.2
Smolke, C.D.3
-
245
-
-
84878854426
-
Next generation biofuel engineering in prokaryotes
-
Gronenberg, L.S., Marcheschi, R.J., Liao, J.C., Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 17 (2013), 462–471.
-
(2013)
Curr Opin Chem Biol
, vol.17
, pp. 462-471
-
-
Gronenberg, L.S.1
Marcheschi, R.J.2
Liao, J.C.3
-
246
-
-
84884586013
-
Metabolic engineering: past and future
-
Woolston, B.M., Edgar, S., Stephanopoulos, G., Metabolic engineering: past and future. Annu Rev Chem Biomol Eng 4 (2013), 259–288.
-
(2013)
Annu Rev Chem Biomol Eng
, vol.4
, pp. 259-288
-
-
Woolston, B.M.1
Edgar, S.2
Stephanopoulos, G.3
-
247
-
-
85049967681
-
Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation
-
Shao, J., Wang, M., Yu, G., Zhu, S., Yu, Y., Heng, B.C., Wu, J., Ye, H., Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation. Proc Natl Acad Sci U S A 115 (2018), E6722–E6730.
-
(2018)
Proc Natl Acad Sci U S A
, vol.115
, pp. E6722-E6730
-
-
Shao, J.1
Wang, M.2
Yu, G.3
Zhu, S.4
Yu, Y.5
Heng, B.C.6
Wu, J.7
Ye, H.8
-
248
-
-
85021437995
-
Inhibition of CRISPR-Cas systems by mobile genetic elements
-
Sontheimer, E.J., Davidson, A.R., Inhibition of CRISPR-Cas systems by mobile genetic elements. Curr Opin Microbiol 37 (2017), 120–127.
-
(2017)
Curr Opin Microbiol
, vol.37
, pp. 120-127
-
-
Sontheimer, E.J.1
Davidson, A.R.2
-
249
-
-
85046878848
-
Review of CRISPR/Cas9 sgRNA design tools
-
Cui, Y., Xu, J., Cheng, M., Liao, X., Peng, S., Review of CRISPR/Cas9 sgRNA design tools. Interdiscip Sci 10 (2018), 455–465.
-
(2018)
Interdiscip Sci
, vol.10
, pp. 455-465
-
-
Cui, Y.1
Xu, J.2
Cheng, M.3
Liao, X.4
Peng, S.5
-
250
-
-
84945926658
-
Wu-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system
-
Wong, N., Liu, W., Wang, X., Wu-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol, 16, 2015, 218.
-
(2015)
Genome Biol
, vol.16
, pp. 218
-
-
Wong, N.1
Liu, W.2
Wang, X.3
-
251
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31 (2013), 827–832.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 827-832
-
-
Hsu, P.D.1
Scott, D.A.2
Weinstein, J.A.3
Ran, F.A.4
Konermann, S.5
Agarwala, V.6
Li, Y.7
Fine, E.J.8
Wu, X.9
Shalem, O.10
-
252
-
-
85017363648
-
GuideScan software for improved single and paired CRISPR guide RNA design
-
Perez, A.R., Pritykin, Y., Vidigal, J.A., Chhangawala, S., Zamparo, L., Leslie, C.S., Ventura, A., GuideScan software for improved single and paired CRISPR guide RNA design. Nat Biotechnol 35 (2017), 347–349.
-
(2017)
Nat Biotechnol
, vol.35
, pp. 347-349
-
-
Perez, A.R.1
Pritykin, Y.2
Vidigal, J.A.3
Chhangawala, S.4
Zamparo, L.5
Leslie, C.S.6
Ventura, A.7
-
253
-
-
84929494345
-
CCTop: an Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool
-
Stemmer, M., Thumberger, T., Del Sol Keyer, M., Wittbrodt, J., Mateo, J.L., CCTop: an Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool. PloS One, 10, 2015, e0124633.
-
(2015)
PloS One
, vol.10
-
-
Stemmer, M.1
Thumberger, T.2
Del Sol Keyer, M.3
Wittbrodt, J.4
Mateo, J.L.5
-
254
-
-
85019592417
-
sgRNA scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity
-
Chari, R., Yeo, N.C., Chavez, A., Church, G.M., sgRNA scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol 6 (2017), 902–904.
-
(2017)
ACS Synth Biol
, vol.6
, pp. 902-904
-
-
Chari, R.1
Yeo, N.C.2
Chavez, A.3
Church, G.M.4
-
255
-
-
84904813279
-
CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing
-
Montague, T.G., Cruz, J.M., Gagnon, J.A., Church, G.M., Valen, E., CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42 (2014), W401–W407.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. W401-W407
-
-
Montague, T.G.1
Cruz, J.M.2
Gagnon, J.A.3
Church, G.M.4
Valen, E.5
-
256
-
-
84959123021
-
CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo
-
Moreno-Mateos, M.A., Vejnar, C.E., Beaudoin, J.D., Fernandez, J.P., Mis, E.K., Khokha, M.K., Giraldez, A.J., CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12 (2015), 982–988.
-
(2015)
Nat Methods
, vol.12
, pp. 982-988
-
-
Moreno-Mateos, M.A.1
Vejnar, C.E.2
Beaudoin, J.D.3
Fernandez, J.P.4
Mis, E.K.5
Khokha, M.K.6
Giraldez, A.J.7
-
257
-
-
84961626370
-
CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries
-
Heigwer, F., Zhan, T., Breinig, M., Winter, J., Brugemann, D., Leible, S., Boutros, M., CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries. Genome Biol, 17, 2016, 55.
-
(2016)
Genome Biol
, vol.17
, pp. 55
-
-
Heigwer, F.1
Zhan, T.2
Breinig, M.3
Winter, J.4
Brugemann, D.5
Leible, S.6
Boutros, M.7
-
258
-
-
84893287073
-
E-CRISP: fast CRISPR target site identification
-
Heigwer, F., Kerr, G., Boutros, M., E-CRISP: fast CRISPR target site identification. Nat Methods 11 (2014), 122–123.
-
(2014)
Nat Methods
, vol.11
, pp. 122-123
-
-
Heigwer, F.1
Kerr, G.2
Boutros, M.3
-
259
-
-
85048314977
-
p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells
-
Ihry, R.J., Worringer, K.A., Salick, M.R., Frias, E., Ho, D., Theriault, K., Kommineni, S., Chen, J., Sondey, M., Ye, C., et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 24 (2018), 939–946.
-
(2018)
Nat Med
, vol.24
, pp. 939-946
-
-
Ihry, R.J.1
Worringer, K.A.2
Salick, M.R.3
Frias, E.4
Ho, D.5
Theriault, K.6
Kommineni, S.7
Chen, J.8
Sondey, M.9
Ye, C.10
|