-
1
-
-
84899134190
-
CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity
-
Barrangou R, Marraffini LA. 2014. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54:234-244. https://doi.org/10 .1016/j.molcel.2014.03.011
-
(2014)
Mol Cell
, vol.54
, pp. 234-244
-
-
Barrangou, R.1
Marraffini, L.A.2
-
2
-
-
84943160849
-
CRISPR-Cas immunity in prokaryotes
-
Marraffini LA. 2015. CRISPR-Cas immunity in prokaryotes. Nature 526: 55-61. https://doi.org/10.1038/nature15386
-
(2015)
Nature
, vol.526
, pp. 55-61
-
-
Marraffini, L.A.1
-
3
-
-
84969916078
-
A comprehensive, CRISPR-based functional analysis of essential genes in bacteria
-
Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, Hawkins JS, Lu CHS, Koo BM, Marta E, Shiver AL, Whitehead EH, Weissman JS, Brown ED, Qi LS, Huang KC, Gross CA. 2016. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165:1493-1506. https://doi.org/10.1016/j.cell.2016.05.003
-
(2016)
Cell
, vol.165
, pp. 1493-1506
-
-
Peters, J.M.1
Colavin, A.2
Shi, H.3
Czarny, T.L.4
Larson, M.H.5
Wong, S.6
Hawkins, J.S.7
Lu, C.H.S.8
Koo, B.M.9
Marta, E.10
Shiver, A.L.11
Whitehead, E.H.12
Weissman, J.S.13
Brown, E.D.14
Qi, L.S.15
Huang, K.C.16
Gross, C.A.17
-
4
-
-
84930787559
-
Efficient genome editing in Clostridium cellulolyticum via CRISPRCas9 nickase
-
Xu T, Li Y, Shi Z, Hemme CL, Li Y, Zhu Y, Van Nostrand JD, He Z, Zhou J. 2015. Efficient genome editing in Clostridium cellulolyticum via CRISPRCas9 nickase. Appl Environ Microbiol 81:4423-4431. https://doi.org/10 .1128/AEM.00873-15
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 4423-4431
-
-
Xu, T.1
Li, Y.2
Shi, Z.3
Hemme, C.L.4
Li, Y.5
Zhu, Y.6
Van Nostrand, J.D.7
He, Z.8
Zhou, J.9
-
5
-
-
85019765181
-
A novel and efficient method for bacteria genome editing employing both CRISPRCas9 and an antibiotic resistance cassette
-
Zhang H, Cheng QX, Liu AM, Zhao GP, Wang J. 2017. A novel and efficient method for bacteria genome editing employing both CRISPRCas9 and an antibiotic resistance cassette. Front Microbiol 8:812. https://doi.org/10.3389/fmicb.2017.00812
-
(2017)
Front Microbiol
, vol.8
, pp. 812
-
-
Zhang, H.1
Cheng, Q.X.2
Liu, A.M.3
Zhao, G.P.4
Wang, J.5
-
6
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602-607. https://doi.org/10.1038/nature09886
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
Eckert, M.R.7
Vogel, J.8
Charpentier, E.9
-
7
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960-964. https://doi.org/10.1126/science.1159689
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.5
Snijders, A.P.6
Dickman, M.J.7
Makarova, K.S.8
Koonin, E.V.9
van der Oost, J.10
-
8
-
-
85019742802
-
CRISPR-Cas9 structures and mechanisms
-
Jiang F, Doudna JA. 2017. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505-529. https://doi.org/10.1146/annurev-biophys-062215-010822
-
(2017)
Annu Rev Biophys
, vol.46
, pp. 505-529
-
-
Jiang, F.1
Doudna, J.A.2
-
9
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821. https://doi.org/10.1126/science .1225829
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
10
-
-
35348890199
-
Bacterial DNA repair by nonhomologous end joining
-
Shuman S, Glickman MS. 2007. Bacterial DNA repair by nonhomologous end joining. Nat Rev Microbiol 5:852-861. https://doi .org/10.1038/nrmicro1768
-
(2007)
Nat Rev Microbiol
, vol.5
, pp. 852-861
-
-
Shuman, S.1
Glickman, M.S.2
-
11
-
-
33845604556
-
DNA double-strand break repair: all's well that ends well
-
Wyman C, Kanaar R. 2006. DNA double-strand break repair: all's well that ends well. Annu Rev Genet 40:363-383. https://doi.org/10.1146/annurev .genet.40.110405.090451
-
(2006)
Annu Rev Genet
, vol.40
, pp. 363-383
-
-
Wyman, C.1
Kanaar, R.2
-
12
-
-
0035671854
-
Homologous recombination near and far from DNA breaks: alternative roles and contrasting views
-
Smith GR. 2001. Homologous recombination near and far from DNA breaks: alternative roles and contrasting views. Annu Rev Genet 35: 243-274. https://doi.org/10.1146/annurev.genet.35.102401.090509
-
(2001)
Annu Rev Genet
, vol.35
, pp. 243-274
-
-
Smith, G.R.1
-
13
-
-
84874745737
-
Biotechnology: rewriting a genome
-
Charpentier E, Doudna JA. 2013. Biotechnology: rewriting a genome. Nature 495:50-51. https://doi.org/10.1038/495050a
-
(2013)
Nature
, vol.495
, pp. 50-51
-
-
Charpentier, E.1
Doudna, J.A.2
-
14
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh JH, van Pijkeren JP. 2014. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42:e131. https://doi.org/10.1093/nar/gku623
-
(2014)
Nucleic Acids Res
, vol.42
-
-
Oh, J.H.1
van Pijkeren, J.P.2
-
15
-
-
84894081804
-
Cas9-based tools for targeted genome editing and transcriptional control
-
Xu T, Li Y, Nostrand JDV, He Z, Zhou J. 2014. Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol 80:1544-1552. https://doi.org/10.1128/AEM.03786-13
-
(2014)
Appl Environ Microbiol
, vol.80
, pp. 1544-1552
-
-
Xu, T.1
Li, Y.2
Nostrand, J.D.V.3
He, Z.4
Zhou, J.5
-
16
-
-
84955501754
-
Chd5 regulates MuERV-L/MERVL expression in mouse embryonic stem cells via H3K27me3 modification and histone H3.1/H3.2
-
Hayashi M, Maehara K, Harada A, Semba Y, Kudo K, Takahashi H, Oki S, Meno C, Ichiyanagi K, Akashi K. 2016. Chd5 regulates MuERV-L/MERVL expression in mouse embryonic stem cells via H3K27me3 modification and histone H3.1/H3.2. J Cell Biochem 117:780. https://doi.org/10.1002/jcb.25368
-
(2016)
J Cell Biochem
, vol.117
, pp. 780
-
-
Hayashi, M.1
Maehara, K.2
Harada, A.3
Semba, Y.4
Kudo, K.5
Takahashi, H.6
Oki, S.7
Meno, C.8
Ichiyanagi, K.9
Akashi, K.10
-
17
-
-
85000819280
-
In vivo genome editing via CRISPR-Cas9 mediated homology-independent targeted integration
-
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nunez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JC. 2016. In vivo genome editing via CRISPR-Cas9 mediated homology-independent targeted integration. Nature 540: 144-149. https://doi.org/10.1038/nature20565
-
(2016)
Nature
, vol.540
, pp. 144-149
-
-
Suzuki, K.1
Tsunekawa, Y.2
Hernandez-Benitez, R.3
Wu, J.4
Zhu, J.5
Kim, E.J.6
Hatanaka, F.7
Yamamoto, M.8
Araoka, T.9
Li, Z.10
Kurita, M.11
Hishida, T.12
Li, M.13
Aizawa, E.14
Guo, S.15
Chen, S.16
Goebl, A.17
Soligalla, R.D.18
Qu, J.19
Jiang, T.20
Fu, X.21
Jafari, M.22
Esteban, C.R.23
Berggren, W.T.24
Lajara, J.25
Nunez-Delicado, E.26
Guillen, P.27
Campistol, J.M.28
Matsuzaki, F.29
Liu, G.H.30
Magistretti, P.31
Zhang, K.32
Callaway, E.M.33
Zhang, K.34
Belmonte, J.C.35
more..
-
18
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233. https://doi.org/10.1038/nbt.2508
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
19
-
-
84997272235
-
A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome
-
Su T, Liu F, Gu P, Jin H, Chang Y, Wang Q, Liang Q, Qi Q. 2016. A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. Sci Rep 6:37895. https://doi.org/10 .1038/srep37895
-
(2016)
Sci Rep
, vol.6
, pp. 37895
-
-
Su, T.1
Liu, F.2
Gu, P.3
Jin, H.4
Chang, Y.5
Wang, Q.6
Liang, Q.7
Qi, Q.8
-
20
-
-
0035816444
-
Identification of bacterial homologues of the Ku DNA repair proteins
-
Doherty AJ, Jackson SP, Weller GR. 2001. Identification of bacterial homologues of the Ku DNA repair proteins. FEBS Lett 500:186-188. https://doi.org/10.1016/S0014-5793(01)02589-3
-
(2001)
FEBS Lett
, vol.500
, pp. 186-188
-
-
Doherty, A.J.1
Jackson, S.P.2
Weller, G.R.3
-
21
-
-
0034889360
-
Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system
-
Aravind L, Koonin EV. 2001. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 11:1365-1374. https://doi.org/10.1101/gr.181001
-
(2001)
Genome Res
, vol.11
, pp. 1365-1374
-
-
Aravind, L.1
Koonin, E.V.2
-
22
-
-
0030738222
-
Characterization of an ATP-dependent DNA ligase encoded by Haemophilus influenzae
-
Cheng C, Shuman S. 1997. Characterization of an ATP-dependent DNA ligase encoded by Haemophilus influenzae. Nucleic Acids Res 25: 1369-1374. https://doi.org/10.1093/nar/25.7.1369
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 1369-1374
-
-
Cheng, C.1
Shuman, S.2
-
23
-
-
1642453835
-
Mechanistic and kinetic study of the ATP-dependent DNA ligase of Neisseria meningitidis
-
Magnet S, Blanchard JS. 2004. Mechanistic and kinetic study of the ATP-dependent DNA ligase of Neisseria meningitidis. Biochemistry 43: 710-717. https://doi.org/10.1021/bi0355387
-
(2004)
Biochemistry
, vol.43
, pp. 710-717
-
-
Magnet, S.1
Blanchard, J.S.2
-
24
-
-
12844250647
-
A primer-dependent polymerase function of Pseudomonas aeruginosa ATP-dependent DNA ligase (LigD)
-
Zhu H, Shuman S. 2005. A primer-dependent polymerase function of Pseudomonas aeruginosa ATP-dependent DNA ligase (LigD). J Biol Chem 280:418-427. https://doi.org/10.1074/jbc.M410110200
-
(2005)
J Biol Chem
, vol.280
, pp. 418-427
-
-
Zhu, H.1
Shuman, S.2
-
25
-
-
22544469168
-
Novel 3=-ribonuclease and 3=-phosphatase activities of the bacterial non-homologous end-joining protein, DNA ligase D
-
Zhu H, Shuman S. 2005. Novel 3=-ribonuclease and 3=-phosphatase activities of the bacterial non-homologous end-joining protein, DNA ligase D. J Biol Chem 280:25973-25981. https://doi.org/10.1074/jbc .M504002200
-
(2005)
J Biol Chem
, vol.280
, pp. 25973-25981
-
-
Zhu, H.1
Shuman, S.2
-
26
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380. https://doi.org/10.1016/j.cell.2013.08.021
-
(2013)
Cell
, vol.154
, pp. 1380
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
Gootenberg, J.S.4
Konermann, S.5
Trevino, A.E.6
Scott, D.A.7
Inoue, A.8
Matoba, S.9
Zhang, Y.10
-
27
-
-
84947999145
-
Targeted large-scale deletion of bacterial genomes using CRISPR-nickases
-
Standage-Beier K, Zhang Q, Wang X. 2015. Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. ACS Synth Biol 4:1217-1225. https://doi.org/10.1021/acssynbio.5b00132
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1217-1225
-
-
Standage-Beier, K.1
Zhang, Q.2
Wang, X.3
-
28
-
-
85032683575
-
CRISPR-Cas9D10A nickaseassisted genome editing in Lactobacillus casei
-
Song X, Huang H, Xiong Z, Ai L, Yang S. 2017. CRISPR-Cas9D10A nickaseassisted genome editing in Lactobacillus casei. Appl Environ Microbiol 83:e01259-17. https://doi.org/10.1128/AEM.01259-17
-
(2017)
Appl Environ Microbiol
, vol.83
-
-
Song, X.1
Huang, H.2
Xiong, Z.3
Ai, L.4
Yang, S.5
-
29
-
-
0028842609
-
Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins
-
Wong SL. 1995. Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins. Curr Opin Biotech 6:517-522. https://doi.org/10.1016/0958-1669(95)80085-9
-
(1995)
Curr Opin Biotech
, vol.6
, pp. 517-522
-
-
Wong, S.L.1
-
30
-
-
85019613982
-
Identification and high-level production of pulcherrimin in Bacillus licheniformis DW2
-
Li X, Wang D, Cai D, Zhan Y, Wang Q, Chen S. 2017. Identification and high-level production of pulcherrimin in Bacillus licheniformis DW2. Appl Biochem Biotechnol 183:1323-1335. https://doi.org/10.1007/s12010-017-2500-x
-
(2017)
Appl Biochem Biotechnol
, vol.183
, pp. 1323-1335
-
-
Li, X.1
Wang, D.2
Cai, D.3
Zhan, Y.4
Wang, Q.5
Chen, S.6
-
31
-
-
85019844083
-
Precise genome-wide base editing by the CRISPR nickase system in yeast
-
Satomura A, Nishioka R, Mori H, Sato K, Kuroda K, Ueda M. 2017. Precise genome-wide base editing by the CRISPR nickase system in yeast. Sci Rep 7:2095. https://doi.org/10.1038/s41598-017-02013-7
-
(2017)
Sci Rep
, vol.7
, pp. 2095
-
-
Satomura, A.1
Nishioka, R.2
Mori, H.3
Sato, K.4
Kuroda, K.5
Ueda, M.6
-
32
-
-
0031459595
-
The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases
-
Konz D, Klens A, Schörgendorfer K, Marahiel MA. 1997. The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem Biol 4:927-937
-
(1997)
Chem Biol
, vol.4
, pp. 927-937
-
-
Konz, D.1
Klens, A.2
Schörgendorfer, K.3
Marahiel, M.A.4
-
33
-
-
84925501860
-
Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization
-
Wei X, Zhou Y, Chen J, Cai D, Wang D, Qi G, Chen S. 2015. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization. J Ind Microbiol Biotechnol 42: 287-295. https://doi.org/10.1007/s10295-014-1559-4
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 287-295
-
-
Wei, X.1
Zhou, Y.2
Chen, J.3
Cai, D.4
Wang, D.5
Qi, G.6
Chen, S.7
-
34
-
-
84934947770
-
High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
-
Cobb RE, Wang Y, Zhao H. 2015. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723-728. https://doi.org/10.1021/sb500351f
-
(2015)
ACS Synth Biol
, vol.4
, pp. 723-728
-
-
Cobb, R.E.1
Wang, Y.2
Zhao, H.3
-
35
-
-
85000936582
-
Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9
-
Zhao D, Yuan S, Xiong B, Sun H, Ye L, Li J, Zhang X, Bi C. 2016. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microb Cell Fact 15:205. https://doi.org/10 .1186/s12934-016-0605-5
-
(2016)
Microb Cell Fact
, vol.15
, pp. 205
-
-
Zhao, D.1
Yuan, S.2
Xiong, B.3
Sun, H.4
Ye, L.5
Li, J.6
Zhang, X.7
Bi, C.8
-
36
-
-
85029178739
-
Microbial production of poly-β-glutamic acid
-
Sirisansaneeyakul S, Cao M, Kongklom N, Chuensangjun C, Shi Z, Chisti Y. 2017. Microbial production of poly-β-glutamic acid. World J Microb Biot 33:173. https://doi.org/10.1007/s11274-017-2338-y
-
(2017)
World J Microb Biot
, vol.33
, pp. 173
-
-
Sirisansaneeyakul, S.1
Cao, M.2
Kongklom, N.3
Chuensangjun, C.4
Shi, Z.5
Chisti, Y.6
-
37
-
-
84922323689
-
Antimicrobial peptides of the genus Bacillus: a new era for antibiotics
-
Sumi CD, Yang BW, Yeo IC, Hahm YT. 2015. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol 61:93. https://doi.org/10.1139/cjm-2014-0613
-
(2015)
Can J Microbiol
, vol.61
, pp. 93
-
-
Sumi, C.D.1
Yang, B.W.2
Yeo, I.C.3
Hahm, Y.T.4
-
38
-
-
84893016274
-
Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis
-
Qi G, Kang Y, Lu L, Xiao A, Zhang S, Wen Z, Xu D, Chen S. 2014. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels 7:16. https://doi.org/10.1186/1754-6834-7-16
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 16
-
-
Qi, G.1
Kang, Y.2
Lu, L.3
Xiao, A.4
Zhang, S.5
Wen, Z.6
Xu, D.7
Chen, S.8
-
39
-
-
84987875388
-
Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system
-
Altenbuchner J. 2016. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl Environ Microbiol 82:5421-5427. https://doi .org/10.1128/AEM.01453-16
-
(2016)
Appl Environ Microbiol
, vol.82
, pp. 5421-5427
-
-
Altenbuchner, J.1
-
40
-
-
85021200584
-
A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis
-
So Y, Park SY, Park EH, Park SH, Kim EJ, Pan JG, Choi SK. 2017. A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis. Front Microbiol 8:1167. https://doi.org/10.3389/fmicb.2017 .01167
-
(2017)
Front Microbiol
, vol.8
, pp. 1167
-
-
So, Y.1
Park, S.Y.2
Park, E.H.3
Park, S.H.4
Kim, E.J.5
Pan, J.G.6
Choi, S.K.7
-
41
-
-
84929572600
-
Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
-
Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H. 2015. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4:585-594. https://doi.org/10.1021/sb500255k
-
(2015)
ACS Synth Biol
, vol.4
, pp. 585-594
-
-
Bao, Z.1
Xiao, H.2
Liang, J.3
Zhang, L.4
Xiong, X.5
Sun, N.6
Si, T.7
Zhao, H.8
-
42
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
-
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910-918. https://doi.org/10.1016/j.cell.2013.04.025
-
(2013)
Cell
, vol.153
, pp. 910-918
-
-
Wang, H.1
Yang, H.2
Shivalila, C.S.3
Dawlaty, M.M.4
Cheng, A.W.5
Zhang, F.6
Jaenisch, R.7
-
43
-
-
8844278305
-
Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism
-
Westers L, Westers H, Quax WJ. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694:299-310. https://doi.org/10 .1016/j.bbamcr.2004.02.011
-
(2004)
Biochim Biophys Acta
, vol.1694
, pp. 299-310
-
-
Westers, L.1
Westers, H.2
Quax, W.J.3
-
44
-
-
54249169161
-
Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP
-
Griffith KL, Grossman AD. 2008. Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP. Mol Microbiol 70: 1012-1025
-
(2008)
Mol Microbiol
, vol.70
, pp. 1012-1025
-
-
Griffith, K.L.1
Grossman, A.D.2
-
45
-
-
78049311718
-
Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides
-
Degering C, Eggert T, Puls M, Bongaerts J, Evers S, Maurer KH, Jaeger KE. 2010. Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Appl Environ Microbiol 76:6370-6376. https://doi.org/10.1128/AEM.01146-10
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 6370-6376
-
-
Degering, C.1
Eggert, T.2
Puls, M.3
Bongaerts, J.4
Evers, S.5
Maurer, K.H.6
Jaeger, K.E.7
-
46
-
-
33847099547
-
High level expression of a recombinant phospholipase C from Bacillus cereus in Bacillus subtilis
-
Durban MA, Silbersack J, Schweder T, Schauer F, Bornscheuer UT. 2007. High level expression of a recombinant phospholipase C from Bacillus cereus in Bacillus subtilis. Appl Microbiol Biot 74:634-639. https://doi .org/10.1007/s00253-006-0712-z
-
(2007)
Appl Microbiol Biot
, vol.74
, pp. 634-639
-
-
Durban, M.A.1
Silbersack, J.2
Schweder, T.3
Schauer, F.4
Bornscheuer, U.T.5
-
47
-
-
84883610225
-
Cloning and enhancing production of a detergent-and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800
-
Nguyen TT, Quyen TD, Le HT. 2013. Cloning and enhancing production of a detergent-and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800. Microb Cell Fact 12:79. https://doi.org/10.1186/1475-2859-12-79
-
(2013)
Microb Cell Fact
, vol.12
, pp. 79
-
-
Nguyen, T.T.1
Quyen, T.D.2
Le, H.T.3
-
48
-
-
85015931760
-
Untangling the transcription regulatory network of the bacitracin synthase operon in Bacillus licheniformis DW2
-
Wang D, Wang Q, Qiu Y, Nomura CT, Li J, Chen S. 2017. Untangling the transcription regulatory network of the bacitracin synthase operon in Bacillus licheniformis DW2. Res Microbiol 168:515-523. https://doi.org/10.1016/j.resmic.2017.02.010
-
(2017)
Res Microbiol
, vol.168
, pp. 515-523
-
-
Wang, D.1
Wang, Q.2
Qiu, Y.3
Nomura, C.T.4
Li, J.5
Chen, S.6
-
49
-
-
84894029848
-
Preparation of the antithrombotic and antimicrobial coating through layer-by-layer self-assembly of nattokinasenanosilver complex and polyethylenimine
-
Wei X, Luo M, Liu H. 2014. Preparation of the antithrombotic and antimicrobial coating through layer-by-layer self-assembly of nattokinasenanosilver complex and polyethylenimine. Colloid Surface B 116:418-423. https://doi.org/10.1016/j.colsurfb.2014.01.034
-
(2014)
Colloid Surface B
, vol.116
, pp. 418-423
-
-
Wei, X.1
Luo, M.2
Liu, H.3
-
50
-
-
85021170526
-
A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum
-
Wasels F, Jean-Marie J, Collas F, Lopez-Contreras AM, Lopes Ferreira N. 2017. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum. J Microbiol Methods 140:5-11. https://doi .org/10.1016/j.mimet.2017.06.010
-
(2017)
J Microbiol Methods
, vol.140
, pp. 5-11
-
-
Wasels, F.1
Jean-Marie, J.2
Collas, F.3
Lopez-Contreras, A.M.4
Lopes Ferreira, N.5
|