메뉴 건너뛰기




Volumn 84, Issue 6, 2018, Pages

Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase

Author keywords

Bacillus licheniformis; CRISPR Cas9n; Deletion; Genome editing; Integration; Nattokinase production

Indexed keywords

BACTERIOLOGY; EFFICIENCY; INTEGRATION;

EID: 85042672913     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.02608-17     Document Type: Article
Times cited : (85)

References (50)
  • 1
    • 84899134190 scopus 로고    scopus 로고
    • CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity
    • Barrangou R, Marraffini LA. 2014. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54:234-244. https://doi.org/10 .1016/j.molcel.2014.03.011
    • (2014) Mol Cell , vol.54 , pp. 234-244
    • Barrangou, R.1    Marraffini, L.A.2
  • 2
    • 84943160849 scopus 로고    scopus 로고
    • CRISPR-Cas immunity in prokaryotes
    • Marraffini LA. 2015. CRISPR-Cas immunity in prokaryotes. Nature 526: 55-61. https://doi.org/10.1038/nature15386
    • (2015) Nature , vol.526 , pp. 55-61
    • Marraffini, L.A.1
  • 5
    • 85019765181 scopus 로고    scopus 로고
    • A novel and efficient method for bacteria genome editing employing both CRISPRCas9 and an antibiotic resistance cassette
    • Zhang H, Cheng QX, Liu AM, Zhao GP, Wang J. 2017. A novel and efficient method for bacteria genome editing employing both CRISPRCas9 and an antibiotic resistance cassette. Front Microbiol 8:812. https://doi.org/10.3389/fmicb.2017.00812
    • (2017) Front Microbiol , vol.8 , pp. 812
    • Zhang, H.1    Cheng, Q.X.2    Liu, A.M.3    Zhao, G.P.4    Wang, J.5
  • 8
    • 85019742802 scopus 로고    scopus 로고
    • CRISPR-Cas9 structures and mechanisms
    • Jiang F, Doudna JA. 2017. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505-529. https://doi.org/10.1146/annurev-biophys-062215-010822
    • (2017) Annu Rev Biophys , vol.46 , pp. 505-529
    • Jiang, F.1    Doudna, J.A.2
  • 9
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821. https://doi.org/10.1126/science .1225829
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3    Hauer, M.4    Doudna, J.A.5    Charpentier, E.6
  • 10
    • 35348890199 scopus 로고    scopus 로고
    • Bacterial DNA repair by nonhomologous end joining
    • Shuman S, Glickman MS. 2007. Bacterial DNA repair by nonhomologous end joining. Nat Rev Microbiol 5:852-861. https://doi .org/10.1038/nrmicro1768
    • (2007) Nat Rev Microbiol , vol.5 , pp. 852-861
    • Shuman, S.1    Glickman, M.S.2
  • 11
    • 33845604556 scopus 로고    scopus 로고
    • DNA double-strand break repair: all's well that ends well
    • Wyman C, Kanaar R. 2006. DNA double-strand break repair: all's well that ends well. Annu Rev Genet 40:363-383. https://doi.org/10.1146/annurev .genet.40.110405.090451
    • (2006) Annu Rev Genet , vol.40 , pp. 363-383
    • Wyman, C.1    Kanaar, R.2
  • 12
    • 0035671854 scopus 로고    scopus 로고
    • Homologous recombination near and far from DNA breaks: alternative roles and contrasting views
    • Smith GR. 2001. Homologous recombination near and far from DNA breaks: alternative roles and contrasting views. Annu Rev Genet 35: 243-274. https://doi.org/10.1146/annurev.genet.35.102401.090509
    • (2001) Annu Rev Genet , vol.35 , pp. 243-274
    • Smith, G.R.1
  • 13
    • 84874745737 scopus 로고    scopus 로고
    • Biotechnology: rewriting a genome
    • Charpentier E, Doudna JA. 2013. Biotechnology: rewriting a genome. Nature 495:50-51. https://doi.org/10.1038/495050a
    • (2013) Nature , vol.495 , pp. 50-51
    • Charpentier, E.1    Doudna, J.A.2
  • 14
    • 84964315717 scopus 로고    scopus 로고
    • CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
    • Oh JH, van Pijkeren JP. 2014. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42:e131. https://doi.org/10.1093/nar/gku623
    • (2014) Nucleic Acids Res , vol.42
    • Oh, J.H.1    van Pijkeren, J.P.2
  • 15
    • 84894081804 scopus 로고    scopus 로고
    • Cas9-based tools for targeted genome editing and transcriptional control
    • Xu T, Li Y, Nostrand JDV, He Z, Zhou J. 2014. Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol 80:1544-1552. https://doi.org/10.1128/AEM.03786-13
    • (2014) Appl Environ Microbiol , vol.80 , pp. 1544-1552
    • Xu, T.1    Li, Y.2    Nostrand, J.D.V.3    He, Z.4    Zhou, J.5
  • 18
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233. https://doi.org/10.1038/nbt.2508
    • (2013) Nat Biotechnol , vol.31 , pp. 233
    • Jiang, W.1    Bikard, D.2    Cox, D.3    Zhang, F.4    Marraffini, L.A.5
  • 19
    • 84997272235 scopus 로고    scopus 로고
    • A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome
    • Su T, Liu F, Gu P, Jin H, Chang Y, Wang Q, Liang Q, Qi Q. 2016. A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. Sci Rep 6:37895. https://doi.org/10 .1038/srep37895
    • (2016) Sci Rep , vol.6 , pp. 37895
    • Su, T.1    Liu, F.2    Gu, P.3    Jin, H.4    Chang, Y.5    Wang, Q.6    Liang, Q.7    Qi, Q.8
  • 20
    • 0035816444 scopus 로고    scopus 로고
    • Identification of bacterial homologues of the Ku DNA repair proteins
    • Doherty AJ, Jackson SP, Weller GR. 2001. Identification of bacterial homologues of the Ku DNA repair proteins. FEBS Lett 500:186-188. https://doi.org/10.1016/S0014-5793(01)02589-3
    • (2001) FEBS Lett , vol.500 , pp. 186-188
    • Doherty, A.J.1    Jackson, S.P.2    Weller, G.R.3
  • 21
    • 0034889360 scopus 로고    scopus 로고
    • Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system
    • Aravind L, Koonin EV. 2001. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 11:1365-1374. https://doi.org/10.1101/gr.181001
    • (2001) Genome Res , vol.11 , pp. 1365-1374
    • Aravind, L.1    Koonin, E.V.2
  • 22
    • 0030738222 scopus 로고    scopus 로고
    • Characterization of an ATP-dependent DNA ligase encoded by Haemophilus influenzae
    • Cheng C, Shuman S. 1997. Characterization of an ATP-dependent DNA ligase encoded by Haemophilus influenzae. Nucleic Acids Res 25: 1369-1374. https://doi.org/10.1093/nar/25.7.1369
    • (1997) Nucleic Acids Res , vol.25 , pp. 1369-1374
    • Cheng, C.1    Shuman, S.2
  • 23
    • 1642453835 scopus 로고    scopus 로고
    • Mechanistic and kinetic study of the ATP-dependent DNA ligase of Neisseria meningitidis
    • Magnet S, Blanchard JS. 2004. Mechanistic and kinetic study of the ATP-dependent DNA ligase of Neisseria meningitidis. Biochemistry 43: 710-717. https://doi.org/10.1021/bi0355387
    • (2004) Biochemistry , vol.43 , pp. 710-717
    • Magnet, S.1    Blanchard, J.S.2
  • 24
    • 12844250647 scopus 로고    scopus 로고
    • A primer-dependent polymerase function of Pseudomonas aeruginosa ATP-dependent DNA ligase (LigD)
    • Zhu H, Shuman S. 2005. A primer-dependent polymerase function of Pseudomonas aeruginosa ATP-dependent DNA ligase (LigD). J Biol Chem 280:418-427. https://doi.org/10.1074/jbc.M410110200
    • (2005) J Biol Chem , vol.280 , pp. 418-427
    • Zhu, H.1    Shuman, S.2
  • 25
    • 22544469168 scopus 로고    scopus 로고
    • Novel 3=-ribonuclease and 3=-phosphatase activities of the bacterial non-homologous end-joining protein, DNA ligase D
    • Zhu H, Shuman S. 2005. Novel 3=-ribonuclease and 3=-phosphatase activities of the bacterial non-homologous end-joining protein, DNA ligase D. J Biol Chem 280:25973-25981. https://doi.org/10.1074/jbc .M504002200
    • (2005) J Biol Chem , vol.280 , pp. 25973-25981
    • Zhu, H.1    Shuman, S.2
  • 27
    • 84947999145 scopus 로고    scopus 로고
    • Targeted large-scale deletion of bacterial genomes using CRISPR-nickases
    • Standage-Beier K, Zhang Q, Wang X. 2015. Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. ACS Synth Biol 4:1217-1225. https://doi.org/10.1021/acssynbio.5b00132
    • (2015) ACS Synth Biol , vol.4 , pp. 1217-1225
    • Standage-Beier, K.1    Zhang, Q.2    Wang, X.3
  • 28
    • 85032683575 scopus 로고    scopus 로고
    • CRISPR-Cas9D10A nickaseassisted genome editing in Lactobacillus casei
    • Song X, Huang H, Xiong Z, Ai L, Yang S. 2017. CRISPR-Cas9D10A nickaseassisted genome editing in Lactobacillus casei. Appl Environ Microbiol 83:e01259-17. https://doi.org/10.1128/AEM.01259-17
    • (2017) Appl Environ Microbiol , vol.83
    • Song, X.1    Huang, H.2    Xiong, Z.3    Ai, L.4    Yang, S.5
  • 29
    • 0028842609 scopus 로고
    • Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins
    • Wong SL. 1995. Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins. Curr Opin Biotech 6:517-522. https://doi.org/10.1016/0958-1669(95)80085-9
    • (1995) Curr Opin Biotech , vol.6 , pp. 517-522
    • Wong, S.L.1
  • 30
    • 85019613982 scopus 로고    scopus 로고
    • Identification and high-level production of pulcherrimin in Bacillus licheniformis DW2
    • Li X, Wang D, Cai D, Zhan Y, Wang Q, Chen S. 2017. Identification and high-level production of pulcherrimin in Bacillus licheniformis DW2. Appl Biochem Biotechnol 183:1323-1335. https://doi.org/10.1007/s12010-017-2500-x
    • (2017) Appl Biochem Biotechnol , vol.183 , pp. 1323-1335
    • Li, X.1    Wang, D.2    Cai, D.3    Zhan, Y.4    Wang, Q.5    Chen, S.6
  • 31
    • 85019844083 scopus 로고    scopus 로고
    • Precise genome-wide base editing by the CRISPR nickase system in yeast
    • Satomura A, Nishioka R, Mori H, Sato K, Kuroda K, Ueda M. 2017. Precise genome-wide base editing by the CRISPR nickase system in yeast. Sci Rep 7:2095. https://doi.org/10.1038/s41598-017-02013-7
    • (2017) Sci Rep , vol.7 , pp. 2095
    • Satomura, A.1    Nishioka, R.2    Mori, H.3    Sato, K.4    Kuroda, K.5    Ueda, M.6
  • 32
    • 0031459595 scopus 로고    scopus 로고
    • The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases
    • Konz D, Klens A, Schörgendorfer K, Marahiel MA. 1997. The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem Biol 4:927-937
    • (1997) Chem Biol , vol.4 , pp. 927-937
    • Konz, D.1    Klens, A.2    Schörgendorfer, K.3    Marahiel, M.A.4
  • 33
    • 84925501860 scopus 로고    scopus 로고
    • Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization
    • Wei X, Zhou Y, Chen J, Cai D, Wang D, Qi G, Chen S. 2015. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization. J Ind Microbiol Biotechnol 42: 287-295. https://doi.org/10.1007/s10295-014-1559-4
    • (2015) J Ind Microbiol Biotechnol , vol.42 , pp. 287-295
    • Wei, X.1    Zhou, Y.2    Chen, J.3    Cai, D.4    Wang, D.5    Qi, G.6    Chen, S.7
  • 34
    • 84934947770 scopus 로고    scopus 로고
    • High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
    • Cobb RE, Wang Y, Zhao H. 2015. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723-728. https://doi.org/10.1021/sb500351f
    • (2015) ACS Synth Biol , vol.4 , pp. 723-728
    • Cobb, R.E.1    Wang, Y.2    Zhao, H.3
  • 35
    • 85000936582 scopus 로고    scopus 로고
    • Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9
    • Zhao D, Yuan S, Xiong B, Sun H, Ye L, Li J, Zhang X, Bi C. 2016. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microb Cell Fact 15:205. https://doi.org/10 .1186/s12934-016-0605-5
    • (2016) Microb Cell Fact , vol.15 , pp. 205
    • Zhao, D.1    Yuan, S.2    Xiong, B.3    Sun, H.4    Ye, L.5    Li, J.6    Zhang, X.7    Bi, C.8
  • 37
    • 84922323689 scopus 로고    scopus 로고
    • Antimicrobial peptides of the genus Bacillus: a new era for antibiotics
    • Sumi CD, Yang BW, Yeo IC, Hahm YT. 2015. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol 61:93. https://doi.org/10.1139/cjm-2014-0613
    • (2015) Can J Microbiol , vol.61 , pp. 93
    • Sumi, C.D.1    Yang, B.W.2    Yeo, I.C.3    Hahm, Y.T.4
  • 38
    • 84893016274 scopus 로고    scopus 로고
    • Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis
    • Qi G, Kang Y, Lu L, Xiao A, Zhang S, Wen Z, Xu D, Chen S. 2014. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels 7:16. https://doi.org/10.1186/1754-6834-7-16
    • (2014) Biotechnol Biofuels , vol.7 , pp. 16
    • Qi, G.1    Kang, Y.2    Lu, L.3    Xiao, A.4    Zhang, S.5    Wen, Z.6    Xu, D.7    Chen, S.8
  • 39
    • 84987875388 scopus 로고    scopus 로고
    • Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system
    • Altenbuchner J. 2016. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl Environ Microbiol 82:5421-5427. https://doi .org/10.1128/AEM.01453-16
    • (2016) Appl Environ Microbiol , vol.82 , pp. 5421-5427
    • Altenbuchner, J.1
  • 40
    • 85021200584 scopus 로고    scopus 로고
    • A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis
    • So Y, Park SY, Park EH, Park SH, Kim EJ, Pan JG, Choi SK. 2017. A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis. Front Microbiol 8:1167. https://doi.org/10.3389/fmicb.2017 .01167
    • (2017) Front Microbiol , vol.8 , pp. 1167
    • So, Y.1    Park, S.Y.2    Park, E.H.3    Park, S.H.4    Kim, E.J.5    Pan, J.G.6    Choi, S.K.7
  • 41
    • 84929572600 scopus 로고    scopus 로고
    • Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
    • Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H. 2015. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol 4:585-594. https://doi.org/10.1021/sb500255k
    • (2015) ACS Synth Biol , vol.4 , pp. 585-594
    • Bao, Z.1    Xiao, H.2    Liang, J.3    Zhang, L.4    Xiong, X.5    Sun, N.6    Si, T.7    Zhao, H.8
  • 42
    • 84877707375 scopus 로고    scopus 로고
    • One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
    • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910-918. https://doi.org/10.1016/j.cell.2013.04.025
    • (2013) Cell , vol.153 , pp. 910-918
    • Wang, H.1    Yang, H.2    Shivalila, C.S.3    Dawlaty, M.M.4    Cheng, A.W.5    Zhang, F.6    Jaenisch, R.7
  • 43
    • 8844278305 scopus 로고    scopus 로고
    • Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism
    • Westers L, Westers H, Quax WJ. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694:299-310. https://doi.org/10 .1016/j.bbamcr.2004.02.011
    • (2004) Biochim Biophys Acta , vol.1694 , pp. 299-310
    • Westers, L.1    Westers, H.2    Quax, W.J.3
  • 44
    • 54249169161 scopus 로고    scopus 로고
    • Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP
    • Griffith KL, Grossman AD. 2008. Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP. Mol Microbiol 70: 1012-1025
    • (2008) Mol Microbiol , vol.70 , pp. 1012-1025
    • Griffith, K.L.1    Grossman, A.D.2
  • 45
    • 78049311718 scopus 로고    scopus 로고
    • Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides
    • Degering C, Eggert T, Puls M, Bongaerts J, Evers S, Maurer KH, Jaeger KE. 2010. Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Appl Environ Microbiol 76:6370-6376. https://doi.org/10.1128/AEM.01146-10
    • (2010) Appl Environ Microbiol , vol.76 , pp. 6370-6376
    • Degering, C.1    Eggert, T.2    Puls, M.3    Bongaerts, J.4    Evers, S.5    Maurer, K.H.6    Jaeger, K.E.7
  • 46
    • 33847099547 scopus 로고    scopus 로고
    • High level expression of a recombinant phospholipase C from Bacillus cereus in Bacillus subtilis
    • Durban MA, Silbersack J, Schweder T, Schauer F, Bornscheuer UT. 2007. High level expression of a recombinant phospholipase C from Bacillus cereus in Bacillus subtilis. Appl Microbiol Biot 74:634-639. https://doi .org/10.1007/s00253-006-0712-z
    • (2007) Appl Microbiol Biot , vol.74 , pp. 634-639
    • Durban, M.A.1    Silbersack, J.2    Schweder, T.3    Schauer, F.4    Bornscheuer, U.T.5
  • 47
    • 84883610225 scopus 로고    scopus 로고
    • Cloning and enhancing production of a detergent-and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800
    • Nguyen TT, Quyen TD, Le HT. 2013. Cloning and enhancing production of a detergent-and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800. Microb Cell Fact 12:79. https://doi.org/10.1186/1475-2859-12-79
    • (2013) Microb Cell Fact , vol.12 , pp. 79
    • Nguyen, T.T.1    Quyen, T.D.2    Le, H.T.3
  • 48
    • 85015931760 scopus 로고    scopus 로고
    • Untangling the transcription regulatory network of the bacitracin synthase operon in Bacillus licheniformis DW2
    • Wang D, Wang Q, Qiu Y, Nomura CT, Li J, Chen S. 2017. Untangling the transcription regulatory network of the bacitracin synthase operon in Bacillus licheniformis DW2. Res Microbiol 168:515-523. https://doi.org/10.1016/j.resmic.2017.02.010
    • (2017) Res Microbiol , vol.168 , pp. 515-523
    • Wang, D.1    Wang, Q.2    Qiu, Y.3    Nomura, C.T.4    Li, J.5    Chen, S.6
  • 49
    • 84894029848 scopus 로고    scopus 로고
    • Preparation of the antithrombotic and antimicrobial coating through layer-by-layer self-assembly of nattokinasenanosilver complex and polyethylenimine
    • Wei X, Luo M, Liu H. 2014. Preparation of the antithrombotic and antimicrobial coating through layer-by-layer self-assembly of nattokinasenanosilver complex and polyethylenimine. Colloid Surface B 116:418-423. https://doi.org/10.1016/j.colsurfb.2014.01.034
    • (2014) Colloid Surface B , vol.116 , pp. 418-423
    • Wei, X.1    Luo, M.2    Liu, H.3
  • 50
    • 85021170526 scopus 로고    scopus 로고
    • A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum
    • Wasels F, Jean-Marie J, Collas F, Lopez-Contreras AM, Lopes Ferreira N. 2017. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum. J Microbiol Methods 140:5-11. https://doi .org/10.1016/j.mimet.2017.06.010
    • (2017) J Microbiol Methods , vol.140 , pp. 5-11
    • Wasels, F.1    Jean-Marie, J.2    Collas, F.3    Lopez-Contreras, A.M.4    Lopes Ferreira, N.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.