-
1
-
-
78649716727
-
Manufacturing molecules through metabolic engineering
-
Keasling JD. 2010. Manufacturing molecules through metabolic engineering. Science 330:1355-1358. http://dx.doi.org/10.1126/science.1193990.
-
(2010)
Science
, vol.330
, pp. 1355-1358
-
-
Keasling, J.D.1
-
2
-
-
84861440312
-
Systems metabolic engineering of microorganisms for natural and non-natural chemicals
-
Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY. 2012. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536-546. http://dx.doi.org/10.1038/nchembio.970.
-
(2012)
Nat Chem Biol
, vol.8
, pp. 536-546
-
-
Lee, J.W.1
Na, D.2
Park, J.M.3
Lee, J.4
Choi, S.5
Lee, S.Y.6
-
3
-
-
0032986060
-
Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum
-
Desai RP, Papoutsakis ET. 1999. Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65: 936-945.
-
(1999)
Appl Environ Microbiol
, vol.65
, pp. 936-945
-
-
Desai, R.P.1
Papoutsakis, E.T.2
-
4
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960-964. http://dx.doi.org/10.1126/science.1159689.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.H.5
Snijders, A.P.L.6
Dickman, M.J.7
Makarova, K.S.8
Koonin, E.V.9
van der Oost, J.10
-
5
-
-
38949123143
-
Phage response to CRISPRencoded resistance in Streptococcus thermophilus
-
Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S. 2008. Phage response to CRISPRencoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390-1400. http://dx.doi.org/10.1128/JB.01412-07.
-
(2008)
J Bacteriol
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
Barrangou, R.2
Garneau, J.E.3
Labonté, J.4
Fremaux, C.5
Boyaval, P.6
Romero, D.A.7
Horvath, P.8
Moineau, S.9
-
6
-
-
64049118040
-
Short motif sequences determine the targets of the prokaryotic CRISPR defence system
-
Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733-740. http://dx.doi.org/10.1099/mic.0.023960-0.
-
(2009)
Microbiology
, vol.155
, pp. 733-740
-
-
Mojica, F.J.M.1
Díez-Villaseñor, C.2
García-Martínez, J.3
Almendros, C.4
-
7
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602-607. http://dx.doi.org/10.1038/nature09886.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
Eckert, M.R.7
Vogel, J.8
Charpentier, E.9
-
8
-
-
84865070369
-
Aprogrammable dual-RNA-guidedDNAendonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. Aprogrammable dual-RNA-guidedDNAendonuclease in adaptive bacterial immunity. Science 337:816 -821. http://dx.doi.org/10.1126/science.1225829.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
9
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233-239. http://dx.doi.org/10.1038/nbt.2508.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
10
-
-
84936967101
-
Coupling the CRISPR/Cas9 system to lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli
-
Pyne ME, Moo-Young M, Chung DA, Chou CP. 22 May 2015. Coupling the CRISPR/Cas9 system to lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol http://dx.doi.org/10.1128/aem.01248-15.
-
(2015)
Appl Environ Microbiol
-
-
Pyne, M.E.1
Moo-Young, M.2
Chung, D.A.3
Chou, C.P.4
-
11
-
-
84926466507
-
One-step highefficiency CRISPR/Cas9-mediated genome editing in Streptomyces
-
Huang H, Zheng G, Jiang W, Hu H, Lu Y. 2015. One-step highefficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47:231-243. http://dx.doi.org/10.1093/abbs/gmv007.
-
(2015)
Acta Biochim Biophys Sin
, vol.47
, pp. 231-243
-
-
Huang, H.1
Zheng, G.2
Jiang, W.3
Hu, H.4
Lu, Y.5
-
12
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. 2015. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506-2514. http://dx.doi.org/10.1128/AEM.04023-14.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
Chen, B.2
Duan, C.3
Sun, B.4
Yang, J.5
Yang, S.6
-
13
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh J-H, van Pijkeren J-P. 2014. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42:e131. http://dx.doi.org/10.1093/nar/gku623.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. e131
-
-
Oh, J-H.1
van Pijkeren, J-P.2
-
14
-
-
84937538704
-
Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing
-
Li Y, Lin Z, Huang C, Zhang Y, Wang Z, Tang Y-J, Chen T, Zhao X. 2015. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng 31:13-21. http://dx.doi.org/10.1016/j.ymben.2015.06.006.
-
(2015)
Metab Eng
, vol.31
, pp. 13-21
-
-
Li, Y.1
Lin, Z.2
Huang, C.3
Zhang, Y.4
Wang, Z.5
Tang, Y-J.6
Chen, T.7
Zhao, X.8
-
15
-
-
84930787559
-
Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase
-
Xu T, Li Y, Shi Z, Hemme CL, Li Y, Zhu Y, Van Nostrand JD, He Z, Zhou J. 2015. Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl Environ Microbiol 81:4423-4431. http://dx.doi.org/10.1128/AEM.00873-15.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 4423-4431
-
-
Xu, T.1
Li, Y.2
Shi, Z.3
Hemme, C.L.4
Li, Y.5
Zhu, Y.6
Van Nostrand, J.D.7
He, Z.8
Zhou, J.9
-
16
-
-
84934947770
-
High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
-
Cobb RE, Wang Y, Zhao H. 2015. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723-728. http://dx.doi.org/10.1021/sb500351f.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 723-728
-
-
Cobb, R.E.1
Wang, Y.2
Zhao, H.3
-
17
-
-
84924425397
-
Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
-
Wang Y, Zhang Z-T, Seo S-O, Choi K, Lu T, Jin Y-S, Blaschek HP. 2015. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 200:1-5. http://dx.doi.org/10.1016/j.jbiotec.2015.02.005.
-
(2015)
J Biotechnol
, vol.200
, pp. 1-5
-
-
Wang, Y.1
Zhang, Z-T.2
Seo, S-O.3
Choi, K.4
Lu, T.5
Jin, Y-S.6
Blaschek, H.P.7
-
18
-
-
84876845227
-
Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands
-
Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, Clulow JS, Richter C, Przybilski R, Pitman AR, Fineran PC. 2013. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet 9:e1003454. http://dx.doi.org/10.1371/journal.pgen.1003454.
-
(2013)
PLoS Genet
, vol.9
, pp. e1003454
-
-
Vercoe, R.B.1
Chang, J.T.2
Dy, R.L.3
Taylor, C.4
Gristwood, T.5
Clulow, J.S.6
Richter, C.7
Przybilski, R.8
Pitman, A.R.9
Fineran, P.C.10
-
19
-
-
84944320385
-
The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli
-
Reisch CR, Prather KLJ. 2015. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli. Sci Rep 5:15096. http://dx.doi.org/10.1038/srep15096.
-
(2015)
Sci Rep
, vol.5
, pp. 15096
-
-
Reisch, C.R.1
Prather, K.L.J.2
-
20
-
-
84953635026
-
Expression of Shewanella frigidimarina fatty acid metabolic genes in E. coli by CRISPR/cas9-coupled lambda Red recombineering
-
Xia J, Wang L, Zhu J-B, Sun C-J, Zheng M-G, Zheng L, Lou Y-H, Shi L. 2016. Expression of Shewanella frigidimarina fatty acid metabolic genes in E. coli by CRISPR/cas9-coupled lambda Red recombineering. Biotechnol Lett 38:117-122.
-
(2016)
Biotechnol Lett
, vol.38
, pp. 117-122
-
-
Xia, J.1
Wang, L.2
Zhu, J-B.3
Sun, C-J.4
Zheng, M-G.5
Zheng, L.6
Lou, Y-H.7
Shi, L.8
-
21
-
-
84948382257
-
Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system
-
Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y, Deng Z, Sun Y. 2015. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol 99:10575-10585. http://dx.doi.org/10.1007/s00253-015-6931-4.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 10575-10585
-
-
Zeng, H.1
Wen, S.2
Xu, W.3
He, Z.4
Zhai, G.5
Liu, Y.6
Deng, Z.7
Sun, Y.8
-
22
-
-
84940106526
-
CRISPR-Cas9 based engineering of actinomycetal genomes
-
Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. 2015. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020-1029. http://dx.doi.org/10.1021/acssynbio.5b00038.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1020-1029
-
-
Tong, Y.1
Charusanti, P.2
Zhang, L.3
Weber, T.4
Lee, S.Y.5
-
23
-
-
84929572600
-
Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
-
Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H. 2014. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth Biol http://dx.doi.org/10.1021/sb500255k.
-
(2014)
ACS Synth Biol
-
-
Bao, Z.1
Xiao, H.2
Liang, J.3
Zhang, L.4
Xiong, X.5
Sun, N.6
Si, T.7
Zhao, H.8
-
24
-
-
84935513637
-
Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas
-
Horwitz AA, Walter JM, Schubert MG, Kung SH, Hawkins K, Platt DM, Hernday AD, Mahatdejkul-Meadows T, Szeto W, Chandran SS, Newman JD. 2015. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst 1:88-96. http://dx.doi.org/10.1016/j.cels.2015.02.001.
-
(2015)
Cell Syst
, vol.1
, pp. 88-96
-
-
Horwitz, A.A.1
Walter, J.M.2
Schubert, M.G.3
Kung, S.H.4
Hawkins, K.5
Platt, D.M.6
Hernday, A.D.7
Mahatdejkul-Meadows, T.8
Szeto, W.9
Chandran, S.S.10
Newman, J.D.11
-
25
-
-
84892437994
-
Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
-
Bassett AR, Tibbit C, Ponting CP, Liu J-L. 2013. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4:220-228. http://dx.doi.org/10.1016/j.celrep.2013.06.020.
-
(2013)
Cell Rep
, vol.4
, pp. 220-228
-
-
Bassett, A.R.1
Tibbit, C.2
Ponting, C.P.3
Liu, J-L.4
-
26
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JRJ, Joung JK. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227-229. http://dx.doi.org/10.1038/nbt.2501.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
Fu, Y.2
Reyon, D.3
Maeder, M.L.4
Tsai, S.Q.5
Sander, J.D.6
Peterson, R.T.7
Yeh, J.R.J.8
Joung, J.K.9
-
27
-
-
84883785822
-
Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688-691. http://dx.doi.org/10.1038/nbt.2654.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 688-691
-
-
Li, J-F.1
Norville, J.E.2
Aach, J.3
McCormack, M.4
Zhang, D.5
Bush, J.6
Church, G.M.7
Sheen, J.8
-
28
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. 2013. RNA-guided human genome engineering via Cas9. Science 339:823-826. http://dx.doi.org/10.1126/science.1232033.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
Norville, J.E.7
Church, G.M.8
-
29
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173-1183. http://dx.doi.org/10.1016/j.cell.2013.02.022.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
Weissman, J.S.5
Arkin, A.P.6
Lim, W.A.7
-
30
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429-7437. http://dx.doi.org/10.1093/nar/gkt520.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
Hochschild, A.4
Zhang, F.5
Marraffini, L.A.6
-
31
-
-
3042741121
-
Engineered riboregulators enable post-transcriptional control of gene expression
-
Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ. 2004. Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22:841-847. http://dx.doi.org/10.1038/nbt986.
-
(2004)
Nat Biotechnol
, vol.22
, pp. 841-847
-
-
Isaacs, F.J.1
Dwyer, D.J.2
Ding, C.3
Pervouchine, D.D.4
Cantor, C.R.5
Collins, J.J.6
-
32
-
-
84873596341
-
Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs
-
Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY. 2013. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170-174. http://dx.doi.org/10.1038/nbt.2461.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 170-174
-
-
Na, D.1
Yoo, S.M.2
Chung, H.3
Park, H.4
Park, J.H.5
Lee, S.Y.6
-
33
-
-
79955607368
-
Artificial trans-encoded small non-coding RNAs specifically silence the selected gene expression in bacteria
-
Man S, Cheng R, Miao C, Gong Q, Gu Y, Lu X, Han F, Yu W. 2011. Artificial trans-encoded small non-coding RNAs specifically silence the selected gene expression in bacteria. Nucleic Acids Res 39:e50. http://dx.doi.org/10.1093/nar/gkr034.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. e50
-
-
Man, S.1
Cheng, R.2
Miao, C.3
Gong, Q.4
Gu, Y.5
Lu, X.6
Han, F.7
Yu, W.8
-
34
-
-
0042431780
-
Down-regulation of acetate pathway through antisense strategy in Escherichia coli: improved foreign protein production
-
Kim JYH, Cha HJ. 2003. Down-regulation of acetate pathway through antisense strategy in Escherichia coli: improved foreign protein production. Biotechnol Bioeng 83:841-853. http://dx.doi.org/10.1002/bit.10735.
-
(2003)
Biotechnol Bioeng
, vol.83
, pp. 841-853
-
-
Kim, J.Y.H.1
Cha, H.J.2
-
35
-
-
84908352138
-
Genome-scale CRISPR-mediated control of gene repression and activation
-
Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647-661. http://dx.doi.org/10.1016/j.cell.2014.09.029.
-
(2014)
Cell
, vol.159
, pp. 647-661
-
-
Gilbert, L.A.1
Horlbeck, M.A.2
Adamson, B.3
Villalta, J.E.4
Chen, Y.5
Whitehead, E.H.6
Guimaraes, C.7
Panning, B.8
Ploegh, H.L.9
Bassik, M.C.10
Qi, L.S.11
Kampmann, M.12
Weissman, J.S.13
-
36
-
-
84923096541
-
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
-
Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583-588. http://dx.doi.org/10.1038/nature14136.
-
(2015)
Nature
, vol.517
, pp. 583-588
-
-
Konermann, S.1
Brigham, M.D.2
Trevino, A.E.3
Joung, J.4
Abudayyeh, O.O.5
Barcena, C.6
Hsu, P.D.7
Habib, N.8
Gootenberg, J.S.9
Nishimasu, H.10
Nureki, O.11
Zhang, F.12
-
37
-
-
84926645319
-
Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis
-
Lv L, Ren Y-L, Chen J-C, Wu Q, Chen G-Q. 2015. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab Eng 29: 160-168. http://dx.doi.org/10.1016/j.ymben.2015.03.013.
-
(2015)
Metab Eng
, vol.29
, pp. 160-168
-
-
Lv, L.1
Ren, Y-L.2
Chen, J-C.3
Wu, Q.4
Chen, G-Q.5
-
38
-
-
84940840437
-
Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli
-
Wu J, Du G, Chen J, Zhou J. 2015. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci Rep 5:13477. http://dx.doi.org/10.1038/srep13477.
-
(2015)
Sci Rep
, vol.5
, pp. 13477
-
-
Wu, J.1
Du, G.2
Chen, J.3
Zhou, J.4
-
39
-
-
84973136613
-
Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi)
-
Cleto S, Jensen JVK, Wendisch VF, Lu TK. 2016. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol http://dx.doi.org/10.1021/acssynbio.5b00216.
-
(2016)
ACS Synth Biol
-
-
Cleto, S.1
Jensen, J.V.K.2
Wendisch, V.F.3
Lu, T.K.4
-
40
-
-
84923869859
-
Gene silencing by CRISPR interference in mycobacteria
-
Choudhary E, Thakur P, Pareek M, Agarwal N. 2015. Gene silencing by CRISPR interference in mycobacteria. Nat Commun 6:6267. http://dx.doi.org/10.1038/ncomms7267.
-
(2015)
Nat Commun
, vol.6
, pp. 6267
-
-
Choudhary, E.1
Thakur, P.2
Pareek, M.3
Agarwal, N.4
-
41
-
-
22144435605
-
Hyaluronic acid production in Bacillus subtilis
-
Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, DeAngelis PL, Weigel PH, Brown S. 2005. Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71:3747-3752. http://dx.doi.org/10.1128/AEM.71.7.3747-3752.2005.
-
(2005)
Appl Environ Microbiol
, vol.71
, pp. 3747-3752
-
-
Widner, B.1
Behr, R.2
Von Dollen, S.3
Tang, M.4
Heu, T.5
Sloma, A.6
Sternberg, D.7
DeAngelis, P.L.8
Weigel, P.H.9
Brown, S.10
-
42
-
-
79960712071
-
Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression
-
Li S, Wen J, Jia X. 2011. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 91:577-589. http://dx.doi.org/10.1007/s00253-011 -3280-9.
-
(2011)
Appl Microbiol Biotechnol
, vol.91
, pp. 577-589
-
-
Li, S.1
Wen, J.2
Jia, X.3
-
43
-
-
42549084919
-
Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes
-
Zweers JC, Barák I, Becher D, Driessen AJ, Hecker M, Kontinen VP, Saller MJ, Vavrová L, van Dijl JM. 2008. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microb Cell Fact 7:10. http://dx.doi.org/10.1186/1475-2859-7-10.
-
(2008)
Microb Cell Fact
, vol.7
, pp. 10
-
-
Zweers, J.C.1
Barák, I.2
Becher, D.3
Driessen, A.J.4
Hecker, M.5
Kontinen, V.P.6
Saller, M.J.7
Vavrová, L.8
van Dijl, J.M.9
-
44
-
-
84901459476
-
Current development in genetic engineering strategies of Bacillus species
-
Dong H, Zhang D. 2014. Current development in genetic engineering strategies of Bacillus species. Microb Cell Fact 13:63. http://dx.doi.org/10.1186/1475-2859-13-1.
-
(2014)
Microb Cell Fact
, vol.13
, pp. 63
-
-
Dong, H.1
Zhang, D.2
-
45
-
-
0036034078
-
A new mutation delivery system for genome-scale approaches in Bacillus subtilis
-
Fabret C, Ehrlich SD, Noirot P. 2002. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 46:25-36. http://dx.doi.org/10.1046/j.1365-2958.2002.03140.x.
-
(2002)
Mol Microbiol
, vol.46
, pp. 25-36
-
-
Fabret, C.1
Ehrlich, S.D.2
Noirot, P.3
-
46
-
-
84896698691
-
Establishment of a markerless mutation delivery system in Bacillus subtilis stimulated by a double-strand break in the chromosome
-
Shi T, Wang G, Wang Z, Fu J, Chen T, Zhao X. 2013. Establishment of a markerless mutation delivery system in Bacillus subtilis stimulated by a double-strand break in the chromosome. PLoS One 8:e81370. http://dx.doi.org/10.1371/journal.pone.0081370.
-
(2013)
PLoS One
, vol.8
, pp. e81370
-
-
Shi, T.1
Wang, G.2
Wang, Z.3
Fu, J.4
Chen, T.5
Zhao, X.6
-
47
-
-
10444251869
-
New integrative method to generate Bacillus subtilis recombinant strains free of selection markers
-
Brans A, Filée P, Chevigné A, Claessens A, Joris B. 2004. New integrative method to generate Bacillus subtilis recombinant strains free of selection markers. Appl Environ Microbiol 70:7241-7250. http://dx.doi.org/10.1128/AEM.70.12.7241-7250.2004.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 7241-7250
-
-
Brans, A.1
Filée, P.2
Chevigné, A.3
Claessens, A.4
Joris, B.5
-
48
-
-
33646943851
-
mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis
-
Zhang X-Z, Yan X, Cui Z-L, Hong Q, Li S-P. 2006. mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Res 34:e71-e71. http://dx.doi.org/10.1093/nar/gkl358.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. e71
-
-
Zhang, X-Z.1
Yan, X.2
Cui, Z-L.3
Hong, Q.4
Li, S-P.5
-
49
-
-
50949129295
-
Cre/lox system and PCR-based genome engineering in Bacillus subtilis
-
Yan X, Yu H-J, Hong Q, Li S-P. 2008. Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl Environ Microbiol 74:5556-5562. http://dx.doi.org/10.1128/AEM.01156-08.
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 5556-5562
-
-
Yan, X.1
Yu, H-J.2
Hong, Q.3
Li, S-P.4
-
50
-
-
77952175929
-
Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis
-
Chen PT, Shaw J-F, Chao Y-P, David Ho T-H, Yu S-M. 2010. Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis. J Agric Food Chem 58:5392-5399. http://dx.doi.org/10.1021/jf100445a.
-
(2010)
J Agric Food Chem
, vol.58
, pp. 5392-5399
-
-
Chen, P.T.1
Shaw, J-F.2
Chao, Y-P.3
David Ho, T-H.4
Yu, S-M.5
-
51
-
-
84863187862
-
Bacillus subtilis genome editing using ssDNA with short homology regions
-
Wang Y, Weng J, Waseem R, Yin X, Zhang R, Shen Q. 2012. Bacillus subtilis genome editing using ssDNA with short homology regions. Nucleic Acids Res 40:e91. http://dx.doi.org/10.1093/nar/gks248.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. e91
-
-
Wang, Y.1
Weng, J.2
Waseem, R.3
Yin, X.4
Zhang, R.5
Shen, Q.6
-
52
-
-
0003903343
-
Molecular cloning: a laboratory manual
-
3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
-
Sambrook J, Russell D. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
-
(2001)
-
-
Sambrook, J.1
Russell, D.2
-
53
-
-
0030597337
-
Plasmids for ectopic integration in Bacillus subtilis
-
Guérout-Fleury A-M, Frandsen N, Stragier P. 1996. Plasmids for ectopic integration in Bacillus subtilis. Gene 180:57-61. http://dx.doi.org/10.1016/S0378-1119(96)00404-0.
-
(1996)
Gene
, vol.180
, pp. 57-61
-
-
Guérout-Fleury, A-M.1
Frandsen, N.2
Stragier, P.3
-
54
-
-
0035091245
-
Development of a new integration site within the Bacillus subtilis chromosome and construction of compatible expression cassettes
-
Härtl B, Wehrl W, Wiegert T, Homuth G, Schumann W. 2001. Development of a new integration site within the Bacillus subtilis chromosome and construction of compatible expression cassettes. J Bacteriol 183: 2696-2699. http://dx.doi.org/10.1128/JB.183.8.2696-2699.2001.
-
(2001)
J Bacteriol
, vol.183
, pp. 2696-2699
-
-
Härtl, B.1
Wehrl, W.2
Wiegert, T.3
Homuth, G.4
Schumann, W.5
-
55
-
-
0141480274
-
Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis
-
Inácio JM, Costa C, de Sá-Nogueira I. 2003. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis. Microbiology 149:2345-2355. http://dx.doi.org/10.1099/mic.0.26326-0.
-
(2003)
Microbiology
, vol.149
, pp. 2345-2355
-
-
Inácio, J.M.1
Costa, C.2
de Sá-Nogueira, I.3
-
56
-
-
0003492044
-
Molecular biological methods for Bacillus
-
Wiley, Chichester, United Kingdom.
-
Harwood CR, Cutting SM. 1990. Molecular biological methods for Bacillus. Wiley, Chichester, United Kingdom.
-
(1990)
-
-
Harwood, C.R.1
Cutting, S.M.2
-
57
-
-
35348881459
-
Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin
-
Chien L-J, Lee C-K. 2007. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol Prog 23: 1017-1022.
-
(2007)
Biotechnol Prog
, vol.23
, pp. 1017-1022
-
-
Chien, L-J.1
Lee, C-K.2
-
58
-
-
50549161624
-
A modified uronic acid carbazole reaction
-
Bitter T, Muir HM. 1962. A modified uronic acid carbazole reaction. Anal Biochem 4:330-334. http://dx.doi.org/10.1016/0003-2697(62)90095-7.
-
(1962)
Anal Biochem
, vol.4
, pp. 330-334
-
-
Bitter, T.1
Muir, H.M.2
-
59
-
-
80655148694
-
Improved agarose gel electrophoresis method and molecular mass calculation for high molecular mass hyaluronan
-
Cowman MK, Chen CC, Pandya M, Yuan H, Ramkishun D, LoBello J, Bhilocha S, Russell-Puleri S, Skendaj E, Mijovic J, Jing W. 2011. Improved agarose gel electrophoresis method and molecular mass calculation for high molecular mass hyaluronan. Anal Biochem 417:50-56. http://dx.doi.org/10.1016/j.ab.2011.05.023.
-
(2011)
Anal Biochem
, vol.417
, pp. 50-56
-
-
Cowman, M.K.1
Chen, C.C.2
Pandya, M.3
Yuan, H.4
Ramkishun, D.5
LoBello, J.6
Bhilocha, S.7
Russell-Puleri, S.8
Skendaj, E.9
Mijovic, J.10
Jing, W.11
-
60
-
-
84863205849
-
NIH Image to ImageJ: 25 years of image analysis
-
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671-675. http://dx.doi.org/10.1038/nmeth.2089.
-
(2012)
Nat Methods
, vol.9
, pp. 671-675
-
-
Schneider, C.A.1
Rasband, W.S.2
Eliceiri, K.W.3
-
61
-
-
0003785155
-
Experiments in molecular genetics
-
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
-
Miller JH. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
-
(1972)
-
-
Miller, J.H.1
-
62
-
-
64549150047
-
Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data
-
Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM. 2009. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45. http://dx.doi.org/10.1093/nar/gkp045.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. e45
-
-
Ruijter, J.M.1
Ramakers, C.2
Hoogaars, W.M.H.3
Karlen, Y.4
Bakker, O.5
van den Hoff, M.J.B.6
Moorman, A.F.M.7
-
63
-
-
84892749369
-
Genetic screens in human cells using the CRISPR-Cas9 system
-
Wang T, Wei JJ, Sabatini DM, Lander ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80-84. http://dx.doi.org/10.1126/science.1246981.
-
(2014)
Science
, vol.343
, pp. 80-84
-
-
Wang, T.1
Wei, J.J.2
Sabatini, D.M.3
Lander, E.S.4
-
64
-
-
84886993480
-
CRISPR interference (CRISPRi) for sequence-specific control of gene expression
-
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. 2013. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8:2180-2196. http://dx.doi.org/10.1038/nprot.2013.132.
-
(2013)
Nat Protoc
, vol.8
, pp. 2180-2196
-
-
Larson, M.H.1
Gilbert, L.A.2
Wang, X.3
Lim, W.A.4
Weissman, J.S.5
Qi, L.S.6
-
65
-
-
0024042175
-
Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose
-
Gärtner D, Geissendörfer M, Hillen W. 1988. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. J Bacteriol 170:3102-3109.
-
(1988)
J Bacteriol
, vol.170
, pp. 3102-3109
-
-
Gärtner, D.1
Geissendörfer, M.2
Hillen, W.3
-
66
-
-
0036818734
-
Functional characteristics and catalytic mechanisms of the bacterial hyaluronan synthases
-
Weigel PH. 2002. Functional characteristics and catalytic mechanisms of the bacterial hyaluronan synthases. IUBMB Life 54:201-211. http://dx.doi.org/10.1080/15216540214931.
-
(2002)
IUBMB Life
, vol.54
, pp. 201-211
-
-
Weigel, P.H.1
-
67
-
-
33645414326
-
Novel plasmid-based expression vectors for intra-and extracellular production of recombinant proteins in Bacillus subtilis
-
Phan TTP, Nguyen HD, Schumann W. 2006. Novel plasmid-based expression vectors for intra-and extracellular production of recombinant proteins in Bacillus subtilis. Protein Expr Purif 46:189-195. http://dx.doi.org/10.1016/j.pep.2005.07.005.
-
(2006)
Protein Expr Purif
, vol.46
, pp. 189-195
-
-
Phan, T.T.P.1
Nguyen, H.D.2
Schumann, W.3
-
68
-
-
0031453134
-
Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from group C Streptococcus equisimilis
-
Kumari K, Weigel PH. 1997. Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from group C Streptococcus equisimilis. J Biol Chem 272:32539-32546. http://dx.doi.org/10.1074/jbc.272.51.32539.
-
(1997)
J Biol Chem
, vol.272
, pp. 32539-32546
-
-
Kumari, K.1
Weigel, P.H.2
-
69
-
-
84956868583
-
Production of specificmolecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168
-
Jin P, Kang Z, Yuan P, Du G, Chen J. 2016. Production of specificmolecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab Eng 35:21-30. http://dx.doi.org/10.1016/j.ymben.2016.01.008.
-
(2016)
Metab Eng
, vol.35
, pp. 21-30
-
-
Jin, P.1
Kang, Z.2
Yuan, P.3
Du, G.4
Chen, J.5
-
70
-
-
84875251441
-
Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights
-
Jia Y, Zhu J, Chen X, Tang D, Su D, Yao W, Gao X. 2013. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresour Technol 132:427-431. http://dx.doi.org/10.1016/j.biortech.2012.12.150.
-
(2013)
Bioresour Technol
, vol.132
, pp. 427-431
-
-
Jia, Y.1
Zhu, J.2
Chen, X.3
Tang, D.4
Su, D.5
Yao, W.6
Gao, X.7
-
71
-
-
45149118469
-
Engineering BioBrick vectors from BioBrick parts
-
Shetty R, Endy D, Knight T. 2008. Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5. http://dx.doi.org/10.1186/1754-1611-2-5.
-
(2008)
J Biol Eng
, vol.2
, pp. 5
-
-
Shetty, R.1
Endy, D.2
Knight, T.3
-
72
-
-
84905665662
-
A Co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans
-
Kim H, Ishidate T, Ghanta KS, Seth M, Conte D, Shirayama M, Mello CC. 2014. A Co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans. Genetics 197:1069 -1080. http://dx.doi.org/10.1534/genetics.114.166389.
-
(2014)
Genetics
, vol.197
, pp. 1069-1080
-
-
Kim, H.1
Ishidate, T.2
Ghanta, K.S.3
Seth, M.4
Conte, D.5
Shirayama, M.6
Mello, C.C.7
-
73
-
-
0026752273
-
Bacillus subtilis and its relatives: molecular biological and industrial workhorses
-
Harwood CR. 1992. Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol 10:247-256. http://dx.doi.org/10.1016/0167-7799(92)90233-L.
-
(1992)
Trends Biotechnol
, vol.10
, pp. 247-256
-
-
Harwood, C.R.1
-
74
-
-
84872143710
-
Bacillus subtilis: from soil bacterium to super-secreting cell factory
-
van Dijl JM, Hecker M. 2013. Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact 12:3. http://dx.doi.org/10.1186/1475-2859-12-3.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 3
-
-
van Dijl, J.M.1
Hecker, M.2
-
75
-
-
0025743282
-
Parameters affecting plasmid stability in Bacillus subtilis
-
Leonhardt H, Alonso JC. 1991. Parameters affecting plasmid stability in Bacillus subtilis. Gene 103:107-111. http://dx.doi.org/10.1016/0378 -1119(91)90400-6.
-
(1991)
Gene
, vol.103
, pp. 107-111
-
-
Leonhardt, H.1
Alonso, J.C.2
-
76
-
-
0025778362
-
Plasmid deletion formation between short direct repeats in Bacillus subtilis is stimulated by single-stranded rolling-circle replication intermediates
-
Bron S, Holsappel S, Venema G, Peeters BH. 1991. Plasmid deletion formation between short direct repeats in Bacillus subtilis is stimulated by single-stranded rolling-circle replication intermediates. Mol Gen Genet 226:88-96.
-
(1991)
Mol Gen Genet
, vol.226
, pp. 88-96
-
-
Bron, S.1
Holsappel, S.2
Venema, G.3
Peeters, B.H.4
-
77
-
-
0026326477
-
Plasmid instability and molecular cloning in Bacillus subtilis
-
Bron S, Meijer W, Holsappel S, Haima P. 1991. Plasmid instability and molecular cloning in Bacillus subtilis. Res Microbiol 142:875-883. http://dx.doi.org/10.1016/0923-2508(91)90068-L.
-
(1991)
Res Microbiol
, vol.142
, pp. 875-883
-
-
Bron, S.1
Meijer, W.2
Holsappel, S.3
Haima, P.4
-
78
-
-
79951667638
-
Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis
-
Zhang XZ, Zhang YHP. 2011. Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb Biotechnol 4:98-105. http://dx.doi.org/10.1111/j.1751-7915.2010.00230.x.
-
(2011)
Microb Biotechnol
, vol.4
, pp. 98-105
-
-
Zhang, X.Z.1
Zhang, Y.H.P.2
-
79
-
-
0025755517
-
Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization
-
Rygus T, Scheler A, Allmansberger R, Hillen W. 1991. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Arch Microbiol 155:535-542. http://dx.doi.org/10.1007/BF00245346.
-
(1991)
Arch Microbiol
, vol.155
, pp. 535-542
-
-
Rygus, T.1
Scheler, A.2
Allmansberger, R.3
Hillen, W.4
-
80
-
-
17144450611
-
Construction of long DNA molecules using long PCRbased fusion of several fragments simultaneously
-
Shevchuk NA, Bryksin AV, Nusinovich YA, Cabello FC, Sutherland M, Ladisch S. 2004. Construction of long DNA molecules using long PCRbased fusion of several fragments simultaneously. Nucleic Acids Res 32: e19. http://dx.doi.org/10.1093/nar/gnh014.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. e19
-
-
Shevchuk, N.A.1
Bryksin, A.V.2
Nusinovich, Y.A.3
Cabello, F.C.4
Sutherland, M.5
Ladisch, S.6
-
81
-
-
84874682725
-
Effects of DNA size on transformation and recombination efficiencies in Xylella fastidiosa
-
Kung SH, Retchless AC, Kwan JY, Almeida RPP. 2013. Effects of DNA size on transformation and recombination efficiencies in Xylella fastidiosa. Appl Environ Microbiol 79:1712-1717. http://dx.doi.org/10.1128/AEM.03525-12.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 1712-1717
-
-
Kung, S.H.1
Retchless, A.C.2
Kwan, J.Y.3
Almeida, R.P.P.4
-
82
-
-
0028962948
-
Genes encoding xylan and β-glucan hydrolysing enzymes in Bacillus subtilis: characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase
-
Wolf M, Geczi A, Simon O, Borriss R. 1995. Genes encoding xylan and β-glucan hydrolysing enzymes in Bacillus subtilis: characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. Microbiology 141:281-290. http://dx.doi.org/10.1099/13500872 -141-2-281.
-
(1995)
Microbiology
, vol.141
, pp. 281-290
-
-
Wolf, M.1
Geczi, A.2
Simon, O.3
Borriss, R.4
|