-
1
-
-
84943160849
-
CRISPR-Cas immunity in prokaryotes
-
Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature 2015; 526: 55-61.
-
(2015)
Nature
, vol.526
, pp. 55-61
-
-
Marraffini, L.A.1
-
2
-
-
84974717567
-
CRISPR/Cas9 in genome editing and beyond
-
Wang H, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 2016; 85: 227-264.
-
(2016)
Annu Rev Biochem
, vol.85
, pp. 227-264
-
-
Wang, H.1
La Russa, M.2
Qi, L.S.3
-
3
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157: 1262-1278.
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
4
-
-
84954214717
-
Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering
-
Wright AV, Nunez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 2016; 164: 29-44.
-
(2016)
Cell
, vol.164
, pp. 29-44
-
-
Wright, A.V.1
Nunez, J.K.2
Doudna, J.A.3
-
5
-
-
84977839343
-
Next generation prokaryotic engineering: The CRISPR-Cas toolkit
-
Mougiakos I, Bosma EF, de Vos WM, van Kranenburg R, van der Oost J. Next generation prokaryotic engineering: the CRISPR-Cas toolkit. Trends Biotechnol 2016; 34: 575-587.
-
(2016)
Trends Biotechnol
, vol.34
, pp. 575-587
-
-
Mougiakos, I.1
Bosma, E.F.2
De Vos, W.M.3
Van Kranenburg, R.4
Van Der Oost, J.5
-
6
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi LS, Larson MH, Gilbert LA et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013; 152: 1173-1183.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
-
7
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 2013; 41: 7429-7437.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
Hochschild, A.4
Zhang, F.5
Marraffini, L.A.6
-
8
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcrip-tion in eukaryotes
-
Gilbert LA, Larson MH, Morsut L et al. CRISPR-mediated modular RNA-guided regulation of transcrip-tion in eukaryotes. Cell 2013; 154: 442-451.
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
Larson, M.H.2
Morsut, L.3
-
9
-
-
84882976110
-
Optical control of mammalian endogenous transcription and epigenetic states
-
Konermann S, Brigham MD, Trevino AE et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 2013; 500: 472-476.
-
(2013)
Nature
, vol.500
, pp. 472-476
-
-
Konermann, S.1
Brigham, M.D.2
Trevino, A.E.3
-
10
-
-
84908352138
-
Genome-scale CRISPR-mediated control of gene repression and activation
-
Gilbert LA, Horlbeck MA, Adamson B et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014; 159: 647-661.
-
(2014)
Cell
, vol.159
, pp. 647-661
-
-
Gilbert, L.A.1
Horlbeck, M.A.2
Adamson, B.3
-
11
-
-
84994418123
-
Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation
-
Horlbeck MA, Gilbert LA, Villalta JE et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife 2016; 5: e19760.
-
(2016)
Elife
, vol.5
, pp. e19760
-
-
Horlbeck, M.A.1
Gilbert, L.A.2
Villalta, J.E.3
-
12
-
-
84975485770
-
Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9
-
Wang Y, Zhang ZT, Seo SO et al. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9. Biotechnol Bioeng 2016; 113: 2739-2743.
-
(2016)
Biotechnol Bioeng
, vol.113
, pp. 2739-2743
-
-
Wang, Y.1
Zhang, Z.T.2
Seo, S.O.3
-
13
-
-
84978422579
-
Gene repression in haloarchaea using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B system
-
Stachler AE, Marchfelder A. Gene repression in haloarchaea using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B system. J Biol Chem 2016; 291: 15226-15242.
-
(2016)
J Biol Chem
, vol.291
, pp. 15226-15242
-
-
Stachler, A.E.1
Marchfelder, A.2
-
14
-
-
84954421331
-
Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9
-
Didovyk A, Borek B, Hasty J, Tsimring L. Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9. ACS Synth Biol 2016; 5: 81-88.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 81-88
-
-
Didovyk, A.1
Borek, B.2
Hasty, J.3
Tsimring, L.4
-
15
-
-
84941084492
-
Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression
-
Luo ML, Mullis AS, Leenay RT, Beisel CL. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res 2015; 43: 674-681.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 674-681
-
-
Luo, M.L.1
Mullis, A.S.2
Leenay, R.T.3
Beisel, C.L.4
-
16
-
-
84981748049
-
Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells
-
Black JB, Adler AF, Wang HG et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 2016; 19: 406-414.
-
(2016)
Cell Stem Cell
, vol.19
, pp. 406-414
-
-
Black, J.B.1
Adler, A.F.2
Wang, H.G.3
-
17
-
-
84986199979
-
Next stop for the CRISPR revolution: RNA-guided epigenetic regulators
-
Vora S, Tuttle M, Cheng J, Church G. Next stop for the CRISPR revolution: RNA-guided epigenetic regulators. FEBS J 2016; 283: 3181-3193.
-
(2016)
FEBS J
, vol.283
, pp. 3181-3193
-
-
Vora, S.1
Tuttle, M.2
Cheng, J.3
Church, G.4
-
18
-
-
84960412514
-
CRISPR/dCas9-medi-ated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy
-
Himeda CL, Jones TI, Jones. PL. CRISPR/dCas9-medi-ated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Mol Ther 2016; 24: 527-535.
-
(2016)
Mol Ther
, vol.24
, pp. 527-535
-
-
Himeda, C.L.1
Jones, T.I.2
Jones, P.L.3
-
19
-
-
84979034770
-
Repurposing the CRISPR-Cas9 system for targeted DNA methylation
-
Vojta A, Dobrinic P, Tadic V et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 2016; 44: 5615-5628.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 5615-5628
-
-
Vojta, A.1
Dobrinic, P.2
Tadic, V.3
-
21
-
-
85006870225
-
Cpf1 is a versatile tool for crispr genome editing across diverse species of cyanobacteria
-
Ungerer J, Pakrasi HB. Cpf1 is a versatile tool for crispr genome editing across diverse species of cyanobacteria. Sci Rep 2016; 6: 39681.
-
(2016)
Sci Rep
, vol.6
, pp. 39681
-
-
Ungerer, J.1
Pakrasi, H.B.2
-
22
-
-
85000542327
-
Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida
-
Endo A, Masafumi M, Kaya H, Toki S. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 2016; 6: 38169.
-
(2016)
Sci Rep
, vol.6
, pp. 38169
-
-
Endo, A.1
Masafumi, M.2
Kaya, H.3
Toki, S.4
-
23
-
-
85013471837
-
Generation of targeted mutant rice using a CRISPR-Cpf1 system
-
Xu R, Qin R, Li H et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 2017; 15: 713-717.
-
(2017)
Plant Biotechnol J
, vol.15
, pp. 713-717
-
-
Xu, R.1
Qin, R.2
Li, H.3
-
24
-
-
84987707885
-
Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells
-
Toth E, Weinhardt N, Bencsura P et al. Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells. Biol Direct 2016; 11: 46.
-
(2016)
Biol Direct
, vol.11
, pp. 46
-
-
Toth, E.1
Weinhardt, N.2
Bencsura, P.3
-
25
-
-
84981356862
-
Generation of knockout mice by Cpf1-mediated gene targeting
-
Kim Y, Cheong SA, Lee JG et al. Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 2016; 34: 808-810.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 808-810
-
-
Kim, Y.1
Cheong, S.A.2
Lee, J.G.3
-
26
-
-
84981342035
-
Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins
-
Hur JK, Kim K, Been KW et al. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 2016; 34: 807-808.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 807-808
-
-
Hur, J.K.1
Kim, K.2
Been, K.W.3
-
27
-
-
84947427248
-
The Cpf1 CRISPR-Cas protein expands genome-editing tools
-
Fagerlund RD, Staals RH, Fineran PC. The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biol 2015; 16: 251.
-
(2015)
Genome Biol
, vol.16
, pp. 251
-
-
Fagerlund, R.D.1
Staals, R.H.2
Fineran, P.C.3
-
28
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche B, Gootenberg JS, Abudayyeh OO et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163: 759-771.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
-
29
-
-
84964862130
-
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
-
Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 2016; 532: 517-521.
-
(2016)
Nature
, vol.532
, pp. 517-521
-
-
Fonfara, I.1
Richter, H.2
Bratovic, M.3
Le Rhun, A.4
Charpentier, E.5
-
30
-
-
85011072174
-
Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array
-
Zetsche B, Heidenreich M, Mohanraju P et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 2016; 35: 178.
-
(2016)
Nat Biotechnol
, vol.35
, pp. 178
-
-
Zetsche, B.1
Heidenreich, M.2
Mohanraju, P.3
-
31
-
-
85017390010
-
Multiplex gene editing in rice using the CRISPR-Cpf1 system
-
e-pub ahead of print 16 March
-
Wang M, Mao Y, Lu Y, Tao X, Zhu JK. Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant (e-pub ahead of print 16 March 2017; doi:10.1016/j. molp.2017.03.001).
-
(2017)
Mol Plant
-
-
Wang, M.1
Mao, Y.2
Lu, Y.3
Tao, X.4
Zhu, J.K.5
-
32
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier. E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816-821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
33
-
-
84964831029
-
The crystal structure of Cpf1 in complex with CRISPR RNA
-
Dong D, Ren K, Qiu X et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 2016; 532: 522-526.
-
(2016)
Nature
, vol.532
, pp. 522-526
-
-
Dong, D.1
Ren, K.2
Qiu, X.3
-
34
-
-
84963973892
-
Crystal structure of Cpf1 in complex with guide RNA and target DNA
-
Yamano T, Nishimasu H, Zetsche B et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 2016; 165: 949-962.
-
(2016)
Cell
, vol.165
, pp. 949-962
-
-
Yamano, T.1
Nishimasu, H.2
Zetsche, B.3
-
35
-
-
84979464834
-
Identifying and visualizing functional PAM diversity across CRISPR-Cas Systems
-
Leenay RT, Maksimchuk KR, Slotkowski RA et al. Identifying and visualizing functional PAM diversity across CRISPR-Cas Systems. Mol Cell 2016; 62: 137-147.
-
(2016)
Mol Cell
, vol.62
, pp. 137-147
-
-
Leenay, R.T.1
Maksimchuk, K.R.2
Slotkowski, R.A.3
-
37
-
-
84941143302
-
P2CS: Updates of the prokaryotic two-component systems database
-
Ortet P, Whitworth DE, Santaella C, Achouak W, Barakat M. P2CS: updates of the prokaryotic two-component systems database. Nucleic Acids Res 2015; 43: D536-D541.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. D536-D541
-
-
Ortet, P.1
Whitworth, D.E.2
Santaella, C.3
Achouak, W.4
Barakat, M.5
-
38
-
-
0043032929
-
Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems
-
Zhou L, Lei XH, Bochner BR, Wanner BL. Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol 2003; 185: 4956-4972.
-
(2003)
J Bacteriol
, vol.185
, pp. 4956-4972
-
-
Zhou, L.1
Lei, X.H.2
Bochner, B.R.3
Wanner, B.L.4
-
39
-
-
84906702408
-
RNAi screening comes of age: Improved techniques and complementary approaches
-
Mohr SE, Smith JA, Shamu CE, Neumuller RA, Perrimon. N. RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 2014; 15: 591-600.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 591-600
-
-
Mohr, S.E.1
Smith, J.A.2
Shamu, C.E.3
Neumuller, R.A.4
Perrimon, N.5
-
40
-
-
0037685280
-
Expression profiling reveals off-target gene regulation by RNAi
-
Jackson AL, Bartz SR, Schelter J et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21: 635-637.
-
(2003)
Nat Biotechnol
, vol.21
, pp. 635-637
-
-
Jackson, A.L.1
Bartz, S.R.2
Schelter, J.3
-
41
-
-
84981347695
-
Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells
-
Kleinstiver BP, Tsai SQ, Prew MS et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 2016; 34: 869-874.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 869-874
-
-
Kleinstiver, B.P.1
Tsai, S.Q.2
Prew, M.S.3
-
42
-
-
84981318543
-
Genome-wide analysis reveals specificities of Cpf1 endo-nucleases in human cells
-
Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS. Genome-wide analysis reveals specificities of Cpf1 endo-nucleases in human cells. Nat Biotechnol 2016; 34: 863-868.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 863-868
-
-
Kim, D.1
Kim, J.2
Hur, J.K.3
Been, K.W.4
Yoon, S.H.5
Kim, J.S.6
-
43
-
-
85013304812
-
A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants
-
Tang X, Lowder LG, Zhang T et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 2017; 3: 17018.
-
(2017)
Nat Plants
, vol.3
, pp. 17018
-
-
Tang, X.1
Lowder, L.G.2
Zhang, T.3
-
44
-
-
84884906690
-
RNA-guided gene activation by CRISPR-Cas9-based transcription factors
-
Perez-Pinera P, Kocak DD, Vockley CM et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 2013; 10: 973-976.
-
(2013)
Nat Methods
, vol.10
, pp. 973-976
-
-
Perez-Pinera, P.1
Kocak, D.D.2
Vockley, C.M.3
-
45
-
-
84920992414
-
Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
-
Zalatan JG, Lee ME, Almeida R et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 2015; 160: 339-350.
-
(2015)
Cell
, vol.160
, pp. 339-350
-
-
Zalatan, J.G.1
Lee, M.E.2
Almeida, R.3
-
46
-
-
85027931963
-
An efficient system for deletion of large DNA fragments in Escherichia coli via introduction of both Cas9 and the non-homologous end joining system from Mycobacterium smegmatis
-
Zheng X, Li SY, Zhao GP, Wang J. An efficient system for deletion of large DNA fragments in Escherichia coli via introduction of both Cas9 and the non-homologous end joining system from Mycobacterium smegmatis. Biochem Biophys Res Commun 2017; 485: 768-774.
-
(2017)
Biochem Biophys Res Commun
, vol.485
, pp. 768-774
-
-
Zheng, X.1
Li, S.Y.2
Zhao, G.P.3
Wang, J.4
-
47
-
-
85006401289
-
C-Brick: A new standard for assembly of biological parts using Cpf1
-
Li SY, Zhao GP, Wang J. C-Brick: a new standard for assembly of biological parts using Cpf1. ACS Synth Biol 2016; 5: 1383-1388.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 1383-1388
-
-
Li, S.Y.1
Zhao, G.P.2
Wang, J.3
-
48
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8: 2281-2308.
-
(2013)
Nat Protoc
, vol.8
, pp. 2281-2308
-
-
Ran, F.A.1
Hsu, P.D.2
Wright, J.3
Agarwala, V.4
Scott, D.A.5
Zhang, F.6
-
49
-
-
84930662789
-
A preliminary study of the mechanism of nitrate-stimulated remarkable increase of rifamycin production in Amycolatopsis mediterranei U32 by RNA-seq
-
Shao ZH, Ren SX, Liu XQ et al. A preliminary study of the mechanism of nitrate-stimulated remarkable increase of rifamycin production in Amycolatopsis mediterranei U32 by RNA-seq. Microb Cell Fact 2015; 14: 75.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 75
-
-
Zh, S.1
Ren, S.X.2
Liu, X.Q.3
-
50
-
-
65449136284
-
TopHat: Discovering splice junctions with RNA-Seq
-
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105-1111.
-
(2009)
Bioinformatics
, vol.25
, pp. 1105-1111
-
-
Trapnell, C.1
Pachter, L.2
Salzberg, S.L.3
-
51
-
-
77952123055
-
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
-
Trapnell C, Williams BA, Pertea G et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28: 511-515.
-
(2010)
Nat Biotechnol
, vol.28
, pp. 511-515
-
-
Trapnell, C.1
Williams, B.A.2
Pertea, G.3
-
52
-
-
54549110274
-
Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: Focus on the false discovery rate and simulation study
-
Dudoit S, Gilbert HN, van der Laan MJ. Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: focus on the false discovery rate and simulation study. Biom J 2008; 50: 716-744.
-
(2008)
Biom J
, vol.50
, pp. 716-744
-
-
Dudoit, S.1
Gilbert, H.N.2
Van Der Laan, M.J.3
|