메뉴 건너뛰기




Volumn 3, Issue , 2017, Pages

Multiplex gene regulation by CRISPR-ddCpf1

Author keywords

Cpf1; CRISPR; CRISPRi; DNase dead Cpf1 (ddCpf1); Multiplex gene regulation

Indexed keywords

CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEATS RNA; DEOXYRIBONUCLEASE; DNASE DEAD CPF1; RNA; TRANSCRIPTOME; UNCLASSIFIED DRUG;

EID: 85022113341     PISSN: None     EISSN: 20565968     Source Type: Journal    
DOI: 10.1038/celldisc.2017.18     Document Type: Article
Times cited : (158)

References (52)
  • 1
    • 84943160849 scopus 로고    scopus 로고
    • CRISPR-Cas immunity in prokaryotes
    • Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature 2015; 526: 55-61.
    • (2015) Nature , vol.526 , pp. 55-61
    • Marraffini, L.A.1
  • 2
    • 84974717567 scopus 로고    scopus 로고
    • CRISPR/Cas9 in genome editing and beyond
    • Wang H, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 2016; 85: 227-264.
    • (2016) Annu Rev Biochem , vol.85 , pp. 227-264
    • Wang, H.1    La Russa, M.2    Qi, L.S.3
  • 3
    • 84902096048 scopus 로고    scopus 로고
    • Development and applications of CRISPR-Cas9 for genome engineering
    • Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157: 1262-1278.
    • (2014) Cell , vol.157 , pp. 1262-1278
    • Hsu, P.D.1    Lander, E.S.2    Zhang, F.3
  • 4
    • 84954214717 scopus 로고    scopus 로고
    • Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering
    • Wright AV, Nunez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 2016; 164: 29-44.
    • (2016) Cell , vol.164 , pp. 29-44
    • Wright, A.V.1    Nunez, J.K.2    Doudna, J.A.3
  • 6
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • Qi LS, Larson MH, Gilbert LA et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013; 152: 1173-1183.
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1    Larson, M.H.2    Gilbert, L.A.3
  • 7
    • 84882986957 scopus 로고    scopus 로고
    • Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
    • Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 2013; 41: 7429-7437.
    • (2013) Nucleic Acids Res , vol.41 , pp. 7429-7437
    • Bikard, D.1    Jiang, W.2    Samai, P.3    Hochschild, A.4    Zhang, F.5    Marraffini, L.A.6
  • 8
    • 84880571335 scopus 로고    scopus 로고
    • CRISPR-mediated modular RNA-guided regulation of transcrip-tion in eukaryotes
    • Gilbert LA, Larson MH, Morsut L et al. CRISPR-mediated modular RNA-guided regulation of transcrip-tion in eukaryotes. Cell 2013; 154: 442-451.
    • (2013) Cell , vol.154 , pp. 442-451
    • Gilbert, L.A.1    Larson, M.H.2    Morsut, L.3
  • 9
    • 84882976110 scopus 로고    scopus 로고
    • Optical control of mammalian endogenous transcription and epigenetic states
    • Konermann S, Brigham MD, Trevino AE et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 2013; 500: 472-476.
    • (2013) Nature , vol.500 , pp. 472-476
    • Konermann, S.1    Brigham, M.D.2    Trevino, A.E.3
  • 10
    • 84908352138 scopus 로고    scopus 로고
    • Genome-scale CRISPR-mediated control of gene repression and activation
    • Gilbert LA, Horlbeck MA, Adamson B et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014; 159: 647-661.
    • (2014) Cell , vol.159 , pp. 647-661
    • Gilbert, L.A.1    Horlbeck, M.A.2    Adamson, B.3
  • 11
    • 84994418123 scopus 로고    scopus 로고
    • Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation
    • Horlbeck MA, Gilbert LA, Villalta JE et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife 2016; 5: e19760.
    • (2016) Elife , vol.5 , pp. e19760
    • Horlbeck, M.A.1    Gilbert, L.A.2    Villalta, J.E.3
  • 12
    • 84975485770 scopus 로고    scopus 로고
    • Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9
    • Wang Y, Zhang ZT, Seo SO et al. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9. Biotechnol Bioeng 2016; 113: 2739-2743.
    • (2016) Biotechnol Bioeng , vol.113 , pp. 2739-2743
    • Wang, Y.1    Zhang, Z.T.2    Seo, S.O.3
  • 13
    • 84978422579 scopus 로고    scopus 로고
    • Gene repression in haloarchaea using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B system
    • Stachler AE, Marchfelder A. Gene repression in haloarchaea using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B system. J Biol Chem 2016; 291: 15226-15242.
    • (2016) J Biol Chem , vol.291 , pp. 15226-15242
    • Stachler, A.E.1    Marchfelder, A.2
  • 14
    • 84954421331 scopus 로고    scopus 로고
    • Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9
    • Didovyk A, Borek B, Hasty J, Tsimring L. Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9. ACS Synth Biol 2016; 5: 81-88.
    • (2016) ACS Synth Biol , vol.5 , pp. 81-88
    • Didovyk, A.1    Borek, B.2    Hasty, J.3    Tsimring, L.4
  • 15
    • 84941084492 scopus 로고    scopus 로고
    • Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression
    • Luo ML, Mullis AS, Leenay RT, Beisel CL. Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res 2015; 43: 674-681.
    • (2015) Nucleic Acids Res , vol.43 , pp. 674-681
    • Luo, M.L.1    Mullis, A.S.2    Leenay, R.T.3    Beisel, C.L.4
  • 16
    • 84981748049 scopus 로고    scopus 로고
    • Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells
    • Black JB, Adler AF, Wang HG et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 2016; 19: 406-414.
    • (2016) Cell Stem Cell , vol.19 , pp. 406-414
    • Black, J.B.1    Adler, A.F.2    Wang, H.G.3
  • 17
    • 84986199979 scopus 로고    scopus 로고
    • Next stop for the CRISPR revolution: RNA-guided epigenetic regulators
    • Vora S, Tuttle M, Cheng J, Church G. Next stop for the CRISPR revolution: RNA-guided epigenetic regulators. FEBS J 2016; 283: 3181-3193.
    • (2016) FEBS J , vol.283 , pp. 3181-3193
    • Vora, S.1    Tuttle, M.2    Cheng, J.3    Church, G.4
  • 18
    • 84960412514 scopus 로고    scopus 로고
    • CRISPR/dCas9-medi-ated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy
    • Himeda CL, Jones TI, Jones. PL. CRISPR/dCas9-medi-ated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Mol Ther 2016; 24: 527-535.
    • (2016) Mol Ther , vol.24 , pp. 527-535
    • Himeda, C.L.1    Jones, T.I.2    Jones, P.L.3
  • 19
    • 84979034770 scopus 로고    scopus 로고
    • Repurposing the CRISPR-Cas9 system for targeted DNA methylation
    • Vojta A, Dobrinic P, Tadic V et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 2016; 44: 5615-5628.
    • (2016) Nucleic Acids Res , vol.44 , pp. 5615-5628
    • Vojta, A.1    Dobrinic, P.2    Tadic, V.3
  • 20
    • 84922535144 scopus 로고    scopus 로고
    • Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector
    • Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res 2014; 42: e147.
    • (2014) Nucleic Acids Res , vol.42 , pp. e147
    • Kabadi, A.M.1    Ousterout, D.G.2    Hilton, I.B.3    Gersbach, C.A.4
  • 21
    • 85006870225 scopus 로고    scopus 로고
    • Cpf1 is a versatile tool for crispr genome editing across diverse species of cyanobacteria
    • Ungerer J, Pakrasi HB. Cpf1 is a versatile tool for crispr genome editing across diverse species of cyanobacteria. Sci Rep 2016; 6: 39681.
    • (2016) Sci Rep , vol.6 , pp. 39681
    • Ungerer, J.1    Pakrasi, H.B.2
  • 22
    • 85000542327 scopus 로고    scopus 로고
    • Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida
    • Endo A, Masafumi M, Kaya H, Toki S. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 2016; 6: 38169.
    • (2016) Sci Rep , vol.6 , pp. 38169
    • Endo, A.1    Masafumi, M.2    Kaya, H.3    Toki, S.4
  • 23
    • 85013471837 scopus 로고    scopus 로고
    • Generation of targeted mutant rice using a CRISPR-Cpf1 system
    • Xu R, Qin R, Li H et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 2017; 15: 713-717.
    • (2017) Plant Biotechnol J , vol.15 , pp. 713-717
    • Xu, R.1    Qin, R.2    Li, H.3
  • 24
    • 84987707885 scopus 로고    scopus 로고
    • Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells
    • Toth E, Weinhardt N, Bencsura P et al. Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells. Biol Direct 2016; 11: 46.
    • (2016) Biol Direct , vol.11 , pp. 46
    • Toth, E.1    Weinhardt, N.2    Bencsura, P.3
  • 25
    • 84981356862 scopus 로고    scopus 로고
    • Generation of knockout mice by Cpf1-mediated gene targeting
    • Kim Y, Cheong SA, Lee JG et al. Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 2016; 34: 808-810.
    • (2016) Nat Biotechnol , vol.34 , pp. 808-810
    • Kim, Y.1    Cheong, S.A.2    Lee, J.G.3
  • 26
    • 84981342035 scopus 로고    scopus 로고
    • Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins
    • Hur JK, Kim K, Been KW et al. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 2016; 34: 807-808.
    • (2016) Nat Biotechnol , vol.34 , pp. 807-808
    • Hur, J.K.1    Kim, K.2    Been, K.W.3
  • 27
    • 84947427248 scopus 로고    scopus 로고
    • The Cpf1 CRISPR-Cas protein expands genome-editing tools
    • Fagerlund RD, Staals RH, Fineran PC. The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biol 2015; 16: 251.
    • (2015) Genome Biol , vol.16 , pp. 251
    • Fagerlund, R.D.1    Staals, R.H.2    Fineran, P.C.3
  • 28
    • 84975678715 scopus 로고    scopus 로고
    • Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
    • Zetsche B, Gootenberg JS, Abudayyeh OO et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163: 759-771.
    • (2015) Cell , vol.163 , pp. 759-771
    • Zetsche, B.1    Gootenberg, J.S.2    Abudayyeh, O.O.3
  • 29
    • 84964862130 scopus 로고    scopus 로고
    • The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
    • Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 2016; 532: 517-521.
    • (2016) Nature , vol.532 , pp. 517-521
    • Fonfara, I.1    Richter, H.2    Bratovic, M.3    Le Rhun, A.4    Charpentier, E.5
  • 30
    • 85011072174 scopus 로고    scopus 로고
    • Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array
    • Zetsche B, Heidenreich M, Mohanraju P et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 2016; 35: 178.
    • (2016) Nat Biotechnol , vol.35 , pp. 178
    • Zetsche, B.1    Heidenreich, M.2    Mohanraju, P.3
  • 31
    • 85017390010 scopus 로고    scopus 로고
    • Multiplex gene editing in rice using the CRISPR-Cpf1 system
    • e-pub ahead of print 16 March
    • Wang M, Mao Y, Lu Y, Tao X, Zhu JK. Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant (e-pub ahead of print 16 March 2017; doi:10.1016/j. molp.2017.03.001).
    • (2017) Mol Plant
    • Wang, M.1    Mao, Y.2    Lu, Y.3    Tao, X.4    Zhu, J.K.5
  • 32
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier. E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816-821.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3    Hauer, M.4    Doudna, J.A.5    Charpentier, E.6
  • 33
    • 84964831029 scopus 로고    scopus 로고
    • The crystal structure of Cpf1 in complex with CRISPR RNA
    • Dong D, Ren K, Qiu X et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 2016; 532: 522-526.
    • (2016) Nature , vol.532 , pp. 522-526
    • Dong, D.1    Ren, K.2    Qiu, X.3
  • 34
    • 84963973892 scopus 로고    scopus 로고
    • Crystal structure of Cpf1 in complex with guide RNA and target DNA
    • Yamano T, Nishimasu H, Zetsche B et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 2016; 165: 949-962.
    • (2016) Cell , vol.165 , pp. 949-962
    • Yamano, T.1    Nishimasu, H.2    Zetsche, B.3
  • 35
    • 84979464834 scopus 로고    scopus 로고
    • Identifying and visualizing functional PAM diversity across CRISPR-Cas Systems
    • Leenay RT, Maksimchuk KR, Slotkowski RA et al. Identifying and visualizing functional PAM diversity across CRISPR-Cas Systems. Mol Cell 2016; 62: 137-147.
    • (2016) Mol Cell , vol.62 , pp. 137-147
    • Leenay, R.T.1    Maksimchuk, K.R.2    Slotkowski, R.A.3
  • 38
    • 0043032929 scopus 로고    scopus 로고
    • Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems
    • Zhou L, Lei XH, Bochner BR, Wanner BL. Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol 2003; 185: 4956-4972.
    • (2003) J Bacteriol , vol.185 , pp. 4956-4972
    • Zhou, L.1    Lei, X.H.2    Bochner, B.R.3    Wanner, B.L.4
  • 40
    • 0037685280 scopus 로고    scopus 로고
    • Expression profiling reveals off-target gene regulation by RNAi
    • Jackson AL, Bartz SR, Schelter J et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21: 635-637.
    • (2003) Nat Biotechnol , vol.21 , pp. 635-637
    • Jackson, A.L.1    Bartz, S.R.2    Schelter, J.3
  • 41
    • 84981347695 scopus 로고    scopus 로고
    • Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells
    • Kleinstiver BP, Tsai SQ, Prew MS et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 2016; 34: 869-874.
    • (2016) Nat Biotechnol , vol.34 , pp. 869-874
    • Kleinstiver, B.P.1    Tsai, S.Q.2    Prew, M.S.3
  • 42
    • 84981318543 scopus 로고    scopus 로고
    • Genome-wide analysis reveals specificities of Cpf1 endo-nucleases in human cells
    • Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS. Genome-wide analysis reveals specificities of Cpf1 endo-nucleases in human cells. Nat Biotechnol 2016; 34: 863-868.
    • (2016) Nat Biotechnol , vol.34 , pp. 863-868
    • Kim, D.1    Kim, J.2    Hur, J.K.3    Been, K.W.4    Yoon, S.H.5    Kim, J.S.6
  • 43
    • 85013304812 scopus 로고    scopus 로고
    • A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants
    • Tang X, Lowder LG, Zhang T et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 2017; 3: 17018.
    • (2017) Nat Plants , vol.3 , pp. 17018
    • Tang, X.1    Lowder, L.G.2    Zhang, T.3
  • 44
    • 84884906690 scopus 로고    scopus 로고
    • RNA-guided gene activation by CRISPR-Cas9-based transcription factors
    • Perez-Pinera P, Kocak DD, Vockley CM et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 2013; 10: 973-976.
    • (2013) Nat Methods , vol.10 , pp. 973-976
    • Perez-Pinera, P.1    Kocak, D.D.2    Vockley, C.M.3
  • 45
    • 84920992414 scopus 로고    scopus 로고
    • Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
    • Zalatan JG, Lee ME, Almeida R et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 2015; 160: 339-350.
    • (2015) Cell , vol.160 , pp. 339-350
    • Zalatan, J.G.1    Lee, M.E.2    Almeida, R.3
  • 46
    • 85027931963 scopus 로고    scopus 로고
    • An efficient system for deletion of large DNA fragments in Escherichia coli via introduction of both Cas9 and the non-homologous end joining system from Mycobacterium smegmatis
    • Zheng X, Li SY, Zhao GP, Wang J. An efficient system for deletion of large DNA fragments in Escherichia coli via introduction of both Cas9 and the non-homologous end joining system from Mycobacterium smegmatis. Biochem Biophys Res Commun 2017; 485: 768-774.
    • (2017) Biochem Biophys Res Commun , vol.485 , pp. 768-774
    • Zheng, X.1    Li, S.Y.2    Zhao, G.P.3    Wang, J.4
  • 47
    • 85006401289 scopus 로고    scopus 로고
    • C-Brick: A new standard for assembly of biological parts using Cpf1
    • Li SY, Zhao GP, Wang J. C-Brick: a new standard for assembly of biological parts using Cpf1. ACS Synth Biol 2016; 5: 1383-1388.
    • (2016) ACS Synth Biol , vol.5 , pp. 1383-1388
    • Li, S.Y.1    Zhao, G.P.2    Wang, J.3
  • 49
    • 84930662789 scopus 로고    scopus 로고
    • A preliminary study of the mechanism of nitrate-stimulated remarkable increase of rifamycin production in Amycolatopsis mediterranei U32 by RNA-seq
    • Shao ZH, Ren SX, Liu XQ et al. A preliminary study of the mechanism of nitrate-stimulated remarkable increase of rifamycin production in Amycolatopsis mediterranei U32 by RNA-seq. Microb Cell Fact 2015; 14: 75.
    • (2015) Microb Cell Fact , vol.14 , pp. 75
    • Zh, S.1    Ren, S.X.2    Liu, X.Q.3
  • 50
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: Discovering splice junctions with RNA-Seq
    • Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105-1111.
    • (2009) Bioinformatics , vol.25 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.L.3
  • 51
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell C, Williams BA, Pertea G et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28: 511-515.
    • (2010) Nat Biotechnol , vol.28 , pp. 511-515
    • Trapnell, C.1    Williams, B.A.2    Pertea, G.3
  • 52
    • 54549110274 scopus 로고    scopus 로고
    • Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: Focus on the false discovery rate and simulation study
    • Dudoit S, Gilbert HN, van der Laan MJ. Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: focus on the false discovery rate and simulation study. Biom J 2008; 50: 716-744.
    • (2008) Biom J , vol.50 , pp. 716-744
    • Dudoit, S.1    Gilbert, H.N.2    Van Der Laan, M.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.