-
1
-
-
0033514996
-
Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage
-
Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF. 1999. Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage. PNAS 96:2192-97
-
(1999)
PNAS
, vol.96
, pp. 2192-2197
-
-
Hendrix, R.W.1
Smith, M.C.2
Burns, R.N.3
Ford, M.E.4
Hatfull, G.F.5
-
2
-
-
84992034884
-
Viruses as winners in the game of life
-
Cobián Güemes AG, YouleM, Cantú VA, Felts B, Nulton J, Rohwer F. 2016. Viruses as winners in the game of life. Annu. Rev. Virol. 3:197-214
-
(2016)
Annu. Rev. Virol.
, vol.3
, pp. 197-214
-
-
Cobián Güemes, A.G.1
Youle, M.2
Cantú, V.A.3
Felts, B.4
Nulton, J.5
Rohwer, F.6
-
3
-
-
84936803332
-
Battling phages: How bacteria defend against viral attack
-
Seed KD. 2015. Battling phages: how bacteria defend against viral attack. PLOS Pathog. 11:e1004847
-
(2015)
PLOS Pathog.
, vol.11
, pp. e1004847
-
-
Seed, K.D.1
-
4
-
-
84879507534
-
X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target
-
Bebeacua C, Lorenzo Fajardo JC, Blangy S, Spinelli S, Bollmann S, et al. 2013. X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target. Mol. Microbiol. 89:152-65
-
(2013)
Mol. Microbiol.
, vol.89
, pp. 152-165
-
-
Bebeacua, C.1
Lorenzo Fajardo, J.C.2
Blangy, S.3
Spinelli, S.4
Bollmann, S.5
-
5
-
-
84866389227
-
The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein
-
Cumby N, Edwards AM, Davidson AR, Maxwell KL. 2012. The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. J. Bacteriol. 194:5012-19
-
(2012)
J. Bacteriol.
, vol.194
, pp. 5012-5019
-
-
Cumby, N.1
Edwards, A.M.2
Davidson, A.R.3
Maxwell, K.L.4
-
6
-
-
84928402372
-
The phage tail tape measure protein, an inner membrane protein, and a periplasmic chaperone play connected roles in the genome injection process of e coli phage HK97
-
Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL. 2014. The phage tail tape measure protein, an inner membrane protein, and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol. Microbiol. 96:437-47
-
(2014)
Mol. Microbiol.
, vol.96
, pp. 437-447
-
-
Cumby, N.1
Reimer, K.2
Mengin-Lecreulx, D.3
Davidson, A.R.4
Maxwell, K.L.5
-
8
-
-
84870180587
-
The CRISPRs, they are a-changin': How prokaryotes generate adaptive immunity
-
Westra ER, Swarts DC, Staals RHJ, Jore MM, Brouns SJJ, van der Oost J. 2012. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu. Rev. Genet. 46:311-39
-
(2012)
Annu. Rev. Genet.
, vol.46
, pp. 311-339
-
-
Westra, E.R.1
Swarts, D.C.2
Staals, R.H.J.3
Jore, M.M.4
Brouns, S.J.J.5
Van Der Oost, J.6
-
9
-
-
84921283583
-
BREX is a novel phage resistance system widespread in microbial genomes
-
Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, et al. 2015. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 34:169-83
-
(2015)
EMBO J.
, vol.34
, pp. 169-183
-
-
Goldfarb, T.1
Sberro, H.2
Weinstock, E.3
Cohen, O.4
Doron, S.5
-
10
-
-
84874388110
-
A bacteriophage encodes its ownCRISPR/Cas adaptive response to evade host innate immunity
-
Seed KD,LazinskiDW,Calderwood SB, Camilli A. 2013.A bacteriophage encodes its ownCRISPR/Cas adaptive response to evade host innate immunity. Nature 494:489-91
-
(2013)
Nature
, vol.494
, pp. 489-491
-
-
Seed, K.D.1
Lazinski, D.W.2
Calderwood, S.B.3
Camilli, A.4
-
12
-
-
84861639567
-
Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
-
Yosef I, Goren MG, Qimron U. 2012. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40:5569-76
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 5569-5576
-
-
Yosef, I.1
Goren, M.G.2
Qimron, U.3
-
13
-
-
84928473578
-
CRISPR adaptation biases explain preference for acquisition of foreign DNA
-
Levy A, Goren MG, Yosef I, Auster O, Manor M, et al. 2015. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520:505-10
-
(2015)
Nature
, vol.520
, pp. 505-510
-
-
Levy, A.1
Goren, M.G.2
Yosef, I.3
Auster, O.4
Manor, M.5
-
14
-
-
84864864464
-
Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
-
Datsenko KA,Pougach K, Tikhonov A, WannerBL, Severinov K, Semenova E. 2012. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3:945
-
(2012)
Nat. Commun.
, vol.3
, pp. 945
-
-
Datsenko, K.A.1
Pougach, K.2
Tikhonov, A.3
Wanner, B.L.4
Severinov, K.5
Semenova, E.6
-
15
-
-
15844390228
-
CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
-
Pourcel C, Salvignol G, Vergnaud G. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(Pt. 3):653-63
-
(2005)
Microbiology
, vol.151
, pp. 653-663
-
-
Pourcel, C.1
Salvignol, G.2
Vergnaud, G.3
-
16
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
-
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(Pt. 8):2551-61
-
(2005)
Microbiology
, vol.151
, pp. 2551-2561
-
-
Bolotin, A.1
Quinquis, B.2
Sorokin, A.3
Ehrlich, S.D.4
-
17
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
Mojica FJM, Dez-Villasenor C, Garca-Martnez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60:174-82
-
(2005)
J. Mol. Evol.
, vol.60
, pp. 174-182
-
-
Mojica, F.J.M.1
Dez-Villasenor, C.2
Garcá-Martnez, J.3
Soria, E.4
-
18
-
-
77956498326
-
Sequence-and structure-specific RNA processing by a CRISPR endonuclease
-
Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. 2010. Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355-58
-
(2010)
Science
, vol.329
, pp. 1355-1358
-
-
Haurwitz, R.E.1
Jinek, M.2
Wiedenheft, B.3
Zhou, K.4
Doudna, J.A.5
-
19
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602-7
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
-
20
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
Makarova KS,Wolf YI, Alkhnbashi OS, Costa F, Shah SA, et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13:722-36
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
Wolf, Y.I.2
Alkhnbashi, O.S.3
Costa, F.4
Shah, S.A.5
-
21
-
-
84861996069
-
CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
-
Westra ER, van Erp PBG, Künne T, Wong SP, Staals RHJ, et al. 2012. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46:595-605
-
(2012)
Mol. Cell
, vol.46
, pp. 595-605
-
-
Westra, E.R.1
Van Erp, P.B.G.2
Künne, T.3
Wong, S.P.4
Staals, R.H.J.5
-
22
-
-
84881256166
-
In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target
-
Mulepati S, Bailey S. 2013. In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target. J. Biol. Chem. 288:22184-92
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 22184-22192
-
-
Mulepati, S.1
Bailey, S.2
-
23
-
-
84946215320
-
Conformational control ofDNAtarget cleavage by CRISPR-Cas9
-
Sternberg SH, LaFrance B, Kaplan M, Doudna JA. 2015. Conformational control ofDNAtarget cleavage by CRISPR-Cas9. Nature 527:110-13
-
(2015)
Nature
, vol.527
, pp. 110-113
-
-
Sternberg, S.H.1
LaFrance, B.2
Kaplan, M.3
Doudna, J.A.4
-
24
-
-
84958125062
-
Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity
-
JiangW, Samai P, Marraffini LA. 2016. Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity. Cell 164:710-21
-
(2016)
Cell
, vol.164
, pp. 710-721
-
-
Jiang, W.1
Samai, P.2
Marraffini, L.A.3
-
25
-
-
84943160849
-
CRISPR-Cas immunity in prokaryotes
-
Marraffini LA. 2015. CRISPR-Cas immunity in prokaryotes. Nature 526:55-61
-
(2015)
Nature
, vol.526
, pp. 55-61
-
-
Marraffini, L.A.1
-
26
-
-
84982855973
-
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
-
Mohanraju P,MakarovaKS, Zetsche B, Zhang F, Koonin EV, van derOost J. 2016. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353:aad5147
-
(2016)
Science
, vol.353
, pp. aad5147
-
-
Mohanraju, P.1
Makarova, K.S.2
Zetsche, B.3
Zhang, F.4
Koonin, E.V.5
Van Deroost, J.6
-
27
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960-64
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.H.5
-
28
-
-
84868125172
-
Cascade-mediated binding and bending of negatively supercoiled DNA
-
Westra ER, Nilges B, van Erp PBG, van der Oost J, Dame RT, Brouns SJJ. 2012. Cascade-mediated binding and bending of negatively supercoiled DNA. RNA Biol. 9:1134-38
-
(2012)
RNA Biol.
, vol.9
, pp. 1134-1138
-
-
Westra, E.R.1
Nilges, B.2
Van Erp, P.B.G.3
Van Der Oost, J.4
Dame, R.T.5
Brouns, S.J.J.6
-
29
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579-86
-
(2012)
PNAS
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
30
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Sciece 337:816-21
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
31
-
-
84924705939
-
Cas9 specifies functional viral targets during CRISPR-Cas adaptation
-
Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, et al. 2015. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519:199-202
-
(2015)
Nature
, vol.519
, pp. 199-202
-
-
Heler, R.1
Samai, P.2
Modell, J.W.3
Weiner, C.4
Goldberg, G.W.5
-
32
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau JE, DupuisME, VillionM, Romero DA, Barrangou R, et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67-71
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.E.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
-
33
-
-
84986898390
-
Applications of CRISPR technologies in research and beyond
-
Barrangou R, Doudna JA. 2016. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34:933-41
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 933-941
-
-
Barrangou, R.1
Doudna, J.A.2
-
35
-
-
38949214103
-
Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus
-
Horvath P, Romero DA, Coûté-Monvoisin AC, Richards M, Deveau H, et al. 2008. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190:1401-12
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1401-1412
-
-
Horvath, P.1
Romero, D.A.2
Coûte-Monvoisin, A.C.3
Richards, M.4
Deveau, H.5
-
36
-
-
38949123143
-
Phage response to CRISPRencoded resistance in Streptococcus thermophilus
-
Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, et al. 2008. Phage response to CRISPRencoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:1390-400
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
Barrangou, R.2
Garneau, J.E.3
Labonté, J.4
Fremaux, C.5
-
37
-
-
79959963663
-
Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
-
Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS 108:10098-103
-
(2011)
PNAS
, vol.108
, pp. 10098-10103
-
-
Semenova, E.1
Jore, M.M.2
Datsenko, K.A.3
Semenova, A.4
Westra, E.R.5
-
38
-
-
61449134105
-
Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa
-
Winstanley C, Langille MGI, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, et al. 2009. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res. 19:12-23
-
(2009)
Genome Res.
, vol.19
, pp. 12-23
-
-
Winstanley, C.1
Langille, M.G.I.2
Fothergill, J.L.3
Kukavica-Ibrulj, I.4
Paradis-Bleau, C.5
-
39
-
-
0032950921
-
The complete nucleotide sequence ofCTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: Implications for phage evolution and horizontal gene transfer via bacteriophages
-
Nakayama K, Kanaya S, Ohnishi M, Terawaki Y, Hayashi T. 1999. The complete nucleotide sequence ofCTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages. Mol. Microbiol. 31:399-419
-
(1999)
Mol. Microbiol.
, vol.31
, pp. 399-419
-
-
Nakayama, K.1
Kanaya, S.2
Ohnishi, M.3
Terawaki, Y.4
Hayashi, T.5
-
40
-
-
84976274304
-
Prophages mediate defense against phage infection through diverse mechanisms
-
Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, et al. 2016. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 10:2854-66
-
(2016)
ISME J.
, vol.10
, pp. 2854-2866
-
-
Bondy-Denomy, J.1
Qian, J.2
Westra, E.R.3
Buckling, A.4
Guttman, D.S.5
-
41
-
-
84872607723
-
Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system
-
Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. 2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429-32
-
(2013)
Nature
, vol.493
, pp. 429-432
-
-
Bondy-Denomy, J.1
Pawluk, A.2
Maxwell, K.L.3
Davidson, A.R.4
-
42
-
-
84868143545
-
TheCRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages
-
Cady KC, Bondy-Denomy J, Heussler GE, Davidson AR,O'Toole GA. 2012. TheCRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol. 194:5728-38
-
(2012)
J. Bacteriol.
, vol.194
, pp. 5728-5738
-
-
Cady, K.C.1
Bondy-Denomy, J.2
Heussler, G.E.3
Davidson, A.R.4
O'Toole, G.A.5
-
43
-
-
84952772389
-
Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa
-
van Belkum A, Soriaga LB, LaFave MC, Akella S, Veyrieras JB, et al. 2015. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. mBio 6:e01796-15
-
(2015)
MBio
, vol.6
, pp. e01796-e01815
-
-
Van Belkum, A.1
Soriaga, L.B.2
LaFave, M.C.3
Akella, S.4
Veyrieras, J.B.5
-
44
-
-
58149479228
-
Interaction between bacteriophageDMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa
-
Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH, O'Toole GA. 2009. Interaction between bacteriophageDMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J. Bacteriol. 191:210-19
-
(2009)
J. Bacteriol.
, vol.191
, pp. 210-219
-
-
Zegans, M.E.1
Wagner, J.C.2
Cady, K.C.3
Murphy, D.M.4
Hammond, J.H.5
O'Toole, G.A.6
-
45
-
-
79960393323
-
Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins
-
Cady KC, O'Toole GA. 2011. Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins. J. Bacteriol. 193:3433-45
-
(2011)
J. Bacteriol.
, vol.193
, pp. 3433-3445
-
-
Cady, K.C.1
O'Toole, G.A.2
-
46
-
-
79951505084
-
Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates
-
Cady KC, White AS, Hammond JH, Abendroth MD, Karthikeyan RSG, et al. 2011. Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates. Microbiology 157:430-37
-
(2011)
Microbiology
, vol.157
, pp. 430-437
-
-
Cady, K.C.1
White, A.S.2
Hammond, J.H.3
Abendroth, M.D.4
Karthikeyan, R.S.G.5
-
47
-
-
84936952891
-
Clustered regularly interspaced short palindromic repeat-dependent, biofilm-specific death of Pseudomonas aeruginosa mediated by increased expression of phage-related genes
-
Heussler GE, Cady KC, KoeppenK, Bhuju S, Stanton BA, O'Toole GA. 2015. Clustered regularly interspaced short palindromic repeat-dependent, biofilm-specific death of Pseudomonas aeruginosa mediated by increased expression of phage-related genes. mBio 6:e00129-15
-
(2015)
MBio
, vol.6
, pp. e00129-e00215
-
-
Heussler, G.E.1
Cady, K.C.2
Koeppen, K.3
Bhuju, S.4
Stanton, B.A.5
O'Toole, G.A.6
-
48
-
-
84899866053
-
A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa
-
Pawluk A, Bondy-Denomy J, Cheung VHW, Maxwell KL, Davidson AR. 2014. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. mBio 5:e00896-14
-
(2014)
MBio
, vol.5
, pp. e00896-e00914
-
-
Pawluk, A.1
Bondy-Denomy, J.2
Cheung, V.H.W.3
Maxwell, K.L.4
Davidson, A.R.5
-
49
-
-
84990838988
-
Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species
-
Pawluk A, Staals RHJ, Taylor C,Watson BNJ, Saha S, et al. 2016. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol. 1:1-6
-
(2016)
Nat. Microbiol.
, vol.1
, pp. 1-6
-
-
Pawluk, A.1
Staals, R.H.J.2
Taylor, C.3
Watson, B.N.J.4
Saha, S.5
-
50
-
-
85006307718
-
Naturally occurring off-switches for CRISPR-Cas9
-
Pawluk A, AmraniN, Zhang Y, Garcia B, Hidalgo-Reyes Y, et al. 2016. Naturally occurring off-switches for CRISPR-Cas9. Cell 167:1829-29
-
(2016)
Cell
, vol.167
, pp. 1829-1929
-
-
Pawluk, A.1
Amrani, N.2
Zhang, Y.3
Garcia, B.4
Hidalgo-Reyes, Y.5
-
51
-
-
85009201750
-
Inhibition of CRISPR-Cas9 with bacteriophage proteins
-
Rauch BJ, Silvis MR, Hultquist JF,Waters CS, McGregor MJ, et al. 2016. Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168:150-58
-
(2016)
Cell
, vol.168
, pp. 150-158
-
-
Rauch, B.J.1
Silvis, M.R.2
Hultquist, J.F.3
Waters, C.S.4
McGregor, M.J.5
-
52
-
-
84897440729
-
To acquire or resist: The complex biological effects of CRISPRCas systems
-
Bondy-Denomy J, Davidson AR. 2014. To acquire or resist: the complex biological effects of CRISPRCas systems. Trends Microbiol. 22:218-25
-
(2014)
Trends Microbiol.
, vol.22
, pp. 218-225
-
-
Bondy-Denomy, J.1
Davidson, A.R.2
-
53
-
-
84943188033
-
Multiple mechanisms for CRISPRCas inhibition by anti-CRISPR proteins
-
Bondy-Denomy J, Garcia B, Strum S,DuM, RollinsMF, et al. 2015. Multiple mechanisms for CRISPRCas inhibition by anti-CRISPR proteins. Nature 526:136-39
-
(2015)
Nature
, vol.526
, pp. 136-139
-
-
Bondy-Denomy, J.1
Garcia, B.2
Strum, S.3
Du, M.4
Rollins, M.F.5
-
54
-
-
84980348236
-
Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3
-
Wang X, YaoD, Xu JG, Li AR, Xu J, et al. 2016. Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3. Nat. Struct. Mol. Biol. 23:868-70
-
(2016)
Nat. Struct. Mol. Biol.
, vol.23
, pp. 868-870
-
-
Wang, X.1
Yao, D.2
Xu, J.G.3
Li, A.R.4
Xu, J.5
-
55
-
-
84984903773
-
A CRISPR evolutionary arms race: Structural insights into viral anti-CRISPR/Cas responses
-
Wang J, Ma J, Cheng Z, Meng X, You L, et al. 2016. A CRISPR evolutionary arms race: structural insights into viral anti-CRISPR/Cas responses. Cell Res. 26:1165-68
-
(2016)
Cell Res.
, vol.26
, pp. 1165-1168
-
-
Wang, J.1
Ma, J.2
Cheng, Z.3
Meng, X.4
You, L.5
-
56
-
-
84991489888
-
The solution structure of an anti-CRISPR protein
-
Maxwell KL, Garcia B, Bondy-Denomy J, Bona D, Hidalgo-Reyes Y, Davidson AR. 2016. The solution structure of an anti-CRISPR protein. Nat. Commun. 7:13134
-
(2016)
Nat. Commun.
, vol.7
, pp. 13134
-
-
Maxwell, K.L.1
Garcia, B.2
Bondy-Denomy, J.3
Bona, D.4
Hidalgo-Reyes, Y.5
Davidson, A.R.6
-
57
-
-
78650045540
-
The phage-host arms race: Shaping the evolution of microbes
-
Stern A, Sorek R. 2011. The phage-host arms race: shaping the evolution of microbes. Bioessays 33:43-51
-
(2011)
Bioessays
, vol.33
, pp. 43-51
-
-
Stern, A.1
Sorek, R.2
-
58
-
-
0001875393
-
Host specificity of DNA produced by Escherichia coli I. Host controlled modification of bacteriophage
-
Arber W, Dussoix D. 1962. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage. J. Mol. Biol. 5:18-36
-
(1962)
J. Mol. Biol.
, vol.5
, pp. 18-36
-
-
Arber, W.1
Dussoix, D.2
-
59
-
-
0020575930
-
Bacteriophage survival: Multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts
-
Krüger DH, Bickle TA. 1983. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol. Rev. 47:345-60
-
(1983)
Microbiol. Rev.
, vol.47
, pp. 345-360
-
-
Krüger, D.H.1
Bickle, T.A.2
-
61
-
-
0036161805
-
Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA
-
Walkinshaw MD, Taylor P, Sturrock SS, Atanasiu C, Berge T, et al. 2002. Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol. Cell 9:187-94
-
(2002)
Mol. Cell
, vol.9
, pp. 187-194
-
-
Walkinshaw, M.D.1
Taylor, P.2
Sturrock, S.S.3
Atanasiu, C.4
Berge, T.5
-
62
-
-
69849087746
-
Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance
-
McMahon SA, Roberts GA, Johnson KA, Cooper LP, Liu H, et al. 2009. Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Res. 37:4887-97
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 4887-4897
-
-
McMahon, S.A.1
Roberts, G.A.2
Johnson, K.A.3
Cooper, L.P.4
Liu, H.5
-
63
-
-
58549094285
-
White spot syndrome virus protein ICP11: A histone-binding DNA mimic that disrupts nucleosome assembly
-
Wang HC,WangHC, Ko TP, Lee YM, Leu JH, et al. 2008. White spot syndrome virus protein ICP11: a histone-binding DNA mimic that disrupts nucleosome assembly. PNAS 105:20758-63
-
(2008)
PNAS
, vol.105
, pp. 20758-20763
-
-
Wang, H.C.1
Wang, H.C.2
Ko, T.P.3
Lee, Y.M.4
Leu, J.H.5
-
64
-
-
84974606818
-
C2c2 is a singlecomponent programmable RNA-guided RNA-targeting CRISPR effector
-
Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, et al. 2016. C2c2 is a singlecomponent programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573
-
(2016)
Science
, vol.353
, pp. aaf5573
-
-
Abudayyeh, O.O.1
Gootenberg, J.S.2
Konermann, S.3
Joung, J.4
Slaymaker, I.M.5
-
65
-
-
84878502476
-
Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile
-
Soutourina OA, Monot M, Boudry P, Saujet L, Pichon C, et al. 2013. Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLOS Genet. 9:e1003493
-
(2013)
PLOS Genet.
, vol.9
, pp. e1003493
-
-
Soutourina, O.A.1
Monot, M.2
Boudry, P.3
Saujet, L.4
Pichon, C.5
-
66
-
-
66349134987
-
Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense
-
Wiedenheft B, Zhou K, JinekM,Coyle SM,MaW,Doudna JA. 2009. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17:904-12
-
(2009)
Structure
, vol.17
, pp. 904-912
-
-
Wiedenheft, B.1
Zhou, K.2
Jinek, M.3
Coyle, S.M.4
Ma, W.5
Doudna, J.A.6
-
67
-
-
84941084492
-
Repurposing endogenous type ICRISPR-Cas systems for programmable gene repression
-
LuoML, Mullis AS, Leenay RT, BeiselCL. 2014. Repurposing endogenous type ICRISPR-Cas systems for programmable gene repression. Nucleic Acids Res. 43:674-81
-
(2014)
Nucleic Acids Res.
, vol.43
, pp. 674-681
-
-
Luo, M.L.1
Mullis, A.S.2
Leenay, R.T.3
Beisel, C.L.4
-
68
-
-
84941084368
-
Efficient programmable gene silencing by Cascade
-
Rath D, Amlinger L, Hoekzema M, Devulapally PR, Lundgren M. 2015. Efficient programmable gene silencing by Cascade. Nucleic Acids Res. 43:237-46
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 237-246
-
-
Rath, D.1
Amlinger, L.2
Hoekzema, M.3
Devulapally, P.R.4
Lundgren, M.5
-
69
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173-83
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
Weissman, J.S.5
-
70
-
-
84880571335
-
CRISPR-mediated modular RNAguided regulation of transcription in eukaryotes
-
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, et al. 2013. CRISPR-mediated modular RNAguided regulation of transcription in eukaryotes. Cell 154:442-51
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
Larson, M.H.2
Morsut, L.3
Liu, Z.4
Brar, G.A.5
-
71
-
-
84964556762
-
ForeignDNA acquisition by the I-F CRISPR-Cas system requires all components of the interferencemachinery
-
Vorontsova D, Datsenko KA,Medvedeva S, Bondy-Denomy J, Savitskaya EE, et al. 2015. ForeignDNA acquisition by the I-F CRISPR-Cas system requires all components of the interferencemachinery. Nucleic Acids Res. 43:10848-60
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 10848-10860
-
-
Vorontsova, D.1
Datsenko, K.A.2
Medvedeva, S.3
Bondy-Denomy, J.4
Savitskaya, E.E.5
-
72
-
-
84936970575
-
Covalent modification of bacteriophage T4 DNA inhibits CRISPR-Cas9
-
Bryson AL, Hwang Y, Sherrill-Mix S, Wu GD, Lewis JD, et al. 2015. Covalent modification of bacteriophage T4 DNA inhibits CRISPR-Cas9. mBio 6:e00648-15
-
(2015)
MBio
, vol.6
, pp. e00648-e00715
-
-
Bryson, A.L.1
Hwang, Y.2
Sherrill-Mix, S.3
Wu, G.D.4
Lewis, J.D.5
-
73
-
-
85020305827
-
The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies
-
Strotskaya A, Savitskaya E, Metlitskaya A, Morozova N, Datsenko KA, et al. 2017. The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies. Nucleic Acids Res. 45:1946-57
-
(2017)
Nucleic Acids Res.
, vol.45
, pp. 1946-1957
-
-
Strotskaya, A.1
Savitskaya, E.2
Metlitskaya, A.3
Morozova, N.4
Datsenko, K.A.5
-
74
-
-
84902338476
-
CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4
-
Yaung SJ, Esvelt KM, Church GM. 2014. CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4. PLOS ONE 9:e98811
-
(2014)
PLOS ONE
, vol.9
, pp. e98811
-
-
Yaung, S.J.1
Esvelt, K.M.2
Church, G.M.3
-
76
-
-
0019231684
-
A theory of modular evolution for bacteriophages
-
Botstein D. 1980. A theory of modular evolution for bacteriophages. Ann. N. Y. Acad. Sci. 354:484-90
-
(1980)
Ann. N. Y. Acad. Sci.
, vol.354
, pp. 484-490
-
-
Botstein, D.1
-
77
-
-
34247602006
-
Modular architecture of the T4 phage superfamily: A conserved core genome and a plastic periphery
-
Comeau AM, Bertrand C, Letarov A, Tétart F, KrischHM. 2007. Modular architecture of the T4 phage superfamily: a conserved core genome and a plastic periphery. Virology 362:384-96
-
(2007)
Virology
, vol.362
, pp. 384-396
-
-
Comeau, A.M.1
Bertrand, C.2
Letarov, A.3
Tétart, F.4
Krisch, H.M.5
-
79
-
-
84938150477
-
Dark matter of the biosphere: The amazing world of bacteriophage diversity
-
Hatfull GF. 2015. Dark matter of the biosphere: the amazing world of bacteriophage diversity. J. Virol. 89:8107-10
-
(2015)
J. Virol.
, vol.89
, pp. 8107-8110
-
-
Hatfull, G.F.1
-
80
-
-
0034716946
-
Genomic sequences of bacteriophages HK97 and HK022: Pervasive genetic mosaicism in the lambdoid bacteriophages
-
Juhala RJ, Ford ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW. 2000. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299:27-51
-
(2000)
J. Mol. Biol.
, vol.299
, pp. 27-51
-
-
Juhala, R.J.1
Ford, M.E.2
Duda, R.L.3
Youlton, A.4
Hatfull, G.F.5
Hendrix, R.W.6
-
82
-
-
84895098499
-
When a virus is not a parasite: The beneficial effects of prophages on bacterial fitness
-
Bondy-Denomy J, Davidson AR. 2014. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52:235-42
-
(2014)
J. Microbiol.
, vol.52
, pp. 235-242
-
-
Bondy-Denomy, J.1
Davidson, A.R.2
-
83
-
-
4544321685
-
Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion
-
Brüssow H, Canchaya C, Hardt WD. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:560-602
-
(2004)
Microbiol. Mol. Biol. Rev.
, vol.68
, pp. 560-602
-
-
Brüssow, H.1
Canchaya, C.2
Hardt, W.D.3
-
84
-
-
85009084204
-
Prophagemediated defence against viral attack and viral counter-defence
-
Dedrick RM, Jacobs-Sera D, Bustamante CAG, Garlena RA, Mavrich TN, et al. 2017. Prophagemediated defence against viral attack and viral counter-defence. Nat. Microbiol. 2:16251
-
(2017)
Nat. Microbiol.
, vol.2
, pp. 16251
-
-
Dedrick, R.M.1
Jacobs-Sera, D.2
Bustamante, C.A.G.3
Garlena, R.A.4
Mavrich, T.N.5
-
85
-
-
0018734713
-
Arms races between and within species
-
Dawkins R, Krebs JR. 1979. Arms races between and within species. Proc. R. Soc. B 205:489-511
-
(1979)
Proc. R. Soc. B
, vol.205
, pp. 489-511
-
-
Dawkins, R.1
Krebs, J.R.2
-
86
-
-
84905024103
-
Contrasted coevolutionary dynamics between a bacterial pathogen and its bacteriophages
-
Betts A, KaltzO,HochbergME. 2014. Contrasted coevolutionary dynamics between a bacterial pathogen and its bacteriophages. PNAS 111:11109-14
-
(2014)
PNAS
, vol.111
, pp. 11109-11114
-
-
Betts, A.1
Kaltz, O.2
Hochberg, M.E.3
-
87
-
-
84865206647
-
Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses
-
Elde NC, Child SJ, Eickbush MT, Kitzman JO, Rogers KS, et al. 2012. Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell 150:831-41
-
(2012)
Cell
, vol.150
, pp. 831-841
-
-
Elde, N.C.1
Child, S.J.2
Eickbush, M.T.3
Kitzman, J.O.4
Rogers, K.S.5
-
88
-
-
84925602702
-
Core and accessory genome architecture in a group of Pseudomonas aeruginosa Mu-like phages
-
Cazares A, Mendoza-Hernández G, Guarneros G. 2014. Core and accessory genome architecture in a group of Pseudomonas aeruginosa Mu-like phages. BMC Genom. 15:1146
-
(2014)
BMC Genom.
, vol.15
, pp. 1146
-
-
Cazares, A.1
Mendoza-Hernández, G.2
Guarneros, G.3
-
89
-
-
84928658828
-
Parasite exposure drives selective evolution of constitutive versus inducible defense
-
Westra ER, van Houte S, Oyesiku-Blakemore S,Makin B, Broniewski JM, et al. 2015. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr. Biol. 25:1043-49
-
(2015)
Curr. Biol.
, vol.25
, pp. 1043-1049
-
-
Westra, E.R.1
Van Houte, S.2
Oyesiku-Blakemore, S.3
Makin, B.4
Broniewski, J.M.5
-
90
-
-
84904345925
-
CRISPR-induced distributed immunity in microbial populations
-
Childs LM, England WE, Young MJ, Weitz JS, Whitaker RJ. 2014. CRISPR-induced distributed immunity in microbial populations. PLOS ONE 9:e101710
-
(2014)
PLOS ONE
, vol.9
, pp. e101710
-
-
Childs, L.M.1
England, W.E.2
Young, M.J.3
Weitz, J.S.4
Whitaker, R.J.5
-
91
-
-
84964433283
-
The diversity-generating benefits of a prokaryotic adaptive immune system
-
van Houte S, Ekroth AKE, Broniewski JM, Chabas H, Ashby B, et al. 2016. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532:385-88
-
(2016)
Nature
, vol.532
, pp. 385-388
-
-
Van Houte, S.1
Ekroth, A.K.E.2
Broniewski, J.M.3
Chabas, H.4
Ashby, B.5
-
92
-
-
85010207605
-
Diversity and evolution of class 2 CRISPR-Cas systems
-
Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, et al. 2017. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 15:169-82
-
(2017)
Nat. Rev. Microbiol.
, vol.15
, pp. 169-182
-
-
Shmakov, S.1
Smargon, A.2
Scott, D.3
Cox, D.4
Pyzocha, N.5
-
93
-
-
84903465255
-
The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus
-
Carte J, Christopher RT, Smith JT, Olson S, Barrangou R, et al. 2014. The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Mol. Microbiol. 93:98-112
-
(2014)
Mol. Microbiol.
, vol.93
, pp. 98-112
-
-
Carte, J.1
Christopher, R.T.2
Smith, J.T.3
Olson, S.4
Barrangou, R.5
-
94
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709-12
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
-
95
-
-
85006707424
-
Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems
-
Patterson AG, Jackson SA, Taylor C, Evans GB, Salmond GPC, et al. 2016. Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Mol. Cell 64:1102-8
-
(2016)
Mol. Cell
, vol.64
, pp. 1102-1108
-
-
Patterson, A.G.1
Jackson, S.A.2
Taylor, C.3
Evans, G.B.4
Salmond, G.P.C.5
-
96
-
-
85007529875
-
Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system
-
Høyland-Kroghsbo NM, Paczkowski J, Mukherjee S, Broniewski J, Westra E, et al. 2016. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. PNAS 114:131-35
-
(2016)
PNAS
, vol.114
, pp. 131-135
-
-
Høyland-Kroghsbo, N.M.1
Paczkowski, J.2
Mukherjee, S.3
Broniewski, J.4
Westra, E.5
-
97
-
-
79956064746
-
The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and leucine-responsive regulatory protein in Salmonella enterica serovar Typhi
-
Medina-Aparicio L, Rebollar-Flores JE, Gallego-Hernández AL, Vázquez A, Olvera L, et al. 2011. The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and leucine-responsive regulatory protein in Salmonella enterica serovar Typhi. J. Bacteriol. 193:2396-407
-
(2011)
J. Bacteriol.
, vol.193
, pp. 2396-2407
-
-
Medina-Aparicio, L.1
Rebollar-Flores, J.E.2
Gallego-Hernández, A.L.3
Vázquez, A.4
Olvera, L.5
-
98
-
-
84942279889
-
Regulation of the type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference
-
Patterson AG, Chang JT, Taylor C, Fineran PC. 2015. Regulation of the type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference. Nucleic Acids Res. 43:6038-48
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 6038-6048
-
-
Patterson, A.G.1
Chang, J.T.2
Taylor, C.3
Fineran, P.C.4
-
99
-
-
73149087453
-
Transcription profile of Thermus thermophilus CRISPR systems after phage infection
-
Agari Y, Sakamoto K, TamakoshiM, Oshima T, Kuramitsu S, Shinkai A. 2010. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J. Mol. Biol. 395:270-81
-
(2010)
J. Mol. Biol.
, vol.395
, pp. 270-281
-
-
Agari, Y.1
Sakamoto, K.2
Tamakoshi, M.3
Oshima, T.4
Kuramitsu, S.5
Shinkai, A.6
-
100
-
-
84861632698
-
Phage-induced expression of CRISPRassociated proteins is revealed by shotgun proteomics in Streptococcus thermophilus
-
Young JC, Dill BD, Pan C, Hettich RL, Banfield JF, et al. 2012. Phage-induced expression of CRISPRassociated proteins is revealed by shotgun proteomics in Streptococcus thermophilus. PLOS ONE 7:e38077
-
(2012)
PLOS ONE
, vol.7
, pp. e38077
-
-
Young, J.C.1
Dill, B.D.2
Pan, C.3
Hettich, R.L.4
Banfield, J.F.5
-
101
-
-
84908456823
-
Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting
-
Goldberg GW, JiangW, Bikard D,Marraffini LA. 2014. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514:633-37
-
(2014)
Nature
, vol.514
, pp. 633-637
-
-
Goldberg, G.W.1
Jiang, W.2
Bikard, D.3
Marraffini, L.A.4
-
103
-
-
84877782955
-
A CRISPR/Cas system mediates bacterial innate immune evasion and virulence
-
Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS. 2013. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:254-57
-
(2013)
Nature
, vol.497
, pp. 254-257
-
-
Sampson, T.R.1
Saroj, S.D.2
Llewellyn, A.C.3
Tzeng, Y.L.4
Weiss, D.S.5
-
104
-
-
84995755265
-
Type i CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity
-
Li R, Fang L, Tan S, Yu M, Li X, et al. 2016. Type I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity. Cell Res. 26:1273-87
-
(2016)
Cell Res.
, vol.26
, pp. 1273-1287
-
-
Li, R.1
Fang, L.2
Tan, S.3
Yu, M.4
Li, X.5
-
105
-
-
57849137502
-
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
-
Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843-45
-
(2008)
Science
, vol.322
, pp. 1843-1845
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
106
-
-
84865144676
-
CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection
-
Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA. 2012. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12:177-86
-
(2012)
Cell Host Microbe
, vol.12
, pp. 177-186
-
-
Bikard, D.1
Hatoum-Aslan, A.2
Mucida, D.3
Marraffini, L.A.4
-
107
-
-
79952168979
-
Multidrug-resistant enterococci lack CRISPR-cas
-
Palmer KL, Gilmore MS. 2010. Multidrug-resistant enterococci lack CRISPR-cas. mBio 1:e00227-10
-
(2010)
MBio
, vol.1
, pp. e00227-e00310
-
-
Palmer, K.L.1
Gilmore, M.S.2
-
108
-
-
78649342032
-
The Escherichia coli CRISPR system protects from lysogenization, lysogens, and prophage induction
-
Edgar R,QimronU. 2010. The Escherichia coli CRISPR system protects from lysogenization, lysogens, and prophage induction. J. Bacteriol. 192:6291-94
-
(2010)
J. Bacteriol.
, vol.192
, pp. 6291-6294
-
-
Edgar, R.1
Qimron, U.2
-
109
-
-
84939574199
-
No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales
-
Gophna U, Kristensen DM,Wolf YI, Popa O, Drevet C, Koonin EV. 2015. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales. ISME J. 9:2021-27
-
(2015)
ISME J.
, vol.9
, pp. 2021-2027
-
-
Gopha, U.1
Kristensen, D.M.2
Wolf, Y.I.3
Popa, O.4
Drevet, C.5
Koonin, E.V.6
-
110
-
-
84905668783
-
A phage protein that inhibits the bacterial ATPase required for type IV pilus assembly
-
Chung IY, Jang HJ, BaeHW,Cho YH. 2014. A phage protein that inhibits the bacterial ATPase required for type IV pilus assembly. PNAS 111:11503-8
-
(2014)
PNAS
, vol.111
, pp. 11503-11508
-
-
Chung, I.Y.1
Jang, H.J.2
Bae, H.W.3
Cho, Y.H.4
|