-
1
-
-
85016096074
-
Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering
-
Zhao H, Zeng A-P, editors. Cham: Springer.
-
Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. In: Zhao H, Zeng A-P, editors. Synthetic biology-metabolic engineering. Advances in Biochemical Engineering/Biotechnology. vol 162. Cham: Springer; 2016. p. 217-63.
-
(2016)
Synthetic biology-metabolic engineering. Advances in Biochemical Engineering/Biotechnology
, vol.162
, pp. 217-263
-
-
Becker, J.1
Gießelmann, G.2
Hoffmann, S.L.3
Wittmann, C.4
-
2
-
-
85016102229
-
Industrial microorganisms: Corynebacterium glutamicum
-
Wittmann C, Liao JC, editors. Hoboken: Wiley.
-
Becker J, Wittmann C. Industrial microorganisms: Corynebacterium glutamicum. In: Wittmann C, Liao JC, editors. Industrial biotechnology: microorganisms. Hoboken: Wiley; 2016. p. 183-220.
-
(2016)
Industrial biotechnology: microorganisms
, pp. 183-220
-
-
Becker, J.1
Wittmann, C.2
-
3
-
-
84973136613
-
Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi)
-
Cleto S, Jensen JV, Wendisch VF, Lu TK. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol. 2016;5:375-85.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 375-385
-
-
Cleto, S.1
Jensen, J.V.2
Wendisch, V.F.3
Lu, T.K.4
-
4
-
-
29144494634
-
Manipulating corynebacteria, from individual genes to chromosomes
-
Vertes AA, Inui M, Yukawa H. Manipulating corynebacteria, from individual genes to chromosomes. Appl Environ Microbiol. 2005;71:7633-42.
-
(2005)
Appl Environ Microbiol
, vol.71
, pp. 7633-7642
-
-
Vertes, A.A.1
Inui, M.2
Yukawa, H.3
-
5
-
-
0021134920
-
Functional expression of the genes of Escherichia coli in gram-positive Corynebacterium glutamicum
-
Ozaki A, Katsumata R, Oka T, Furuya A. Functional expression of the genes of Escherichia coli in gram-positive Corynebacterium glutamicum. Mol Gen Genet. 1984;196:175-8.
-
(1984)
Mol Gen Genet
, vol.196
, pp. 175-178
-
-
Ozaki, A.1
Katsumata, R.2
Oka, T.3
Furuya, A.4
-
6
-
-
0028289983
-
Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum
-
Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145:69-73.
-
(1994)
Gene
, vol.145
, pp. 69-73
-
-
Schafer, A.1
Tauch, A.2
Jager, W.3
Kalinowski, J.4
Thierbach, G.5
Puhler, A.6
-
7
-
-
85006705751
-
CRISPR-based technologies for the manipulation of eukaryotic genomes
-
Komor AC, Badran AH, Liu DR. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell. 2017;168:20-36.
-
(2017)
Cell
, vol.168
, pp. 20-36
-
-
Komor, A.C.1
Badran, A.H.2
Liu, D.R.3
-
8
-
-
85012887817
-
Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy
-
Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 2017;8:14454.
-
(2017)
Nat Commun
, vol.8
, pp. 14454
-
-
Bengtsson, N.E.1
Hall, J.K.2
Odom, G.L.3
Phelps, M.P.4
Andrus, C.R.5
Hawkins, R.D.6
Hauschka, S.D.7
Chamberlain, J.R.8
Chamberlain, J.S.9
-
9
-
-
85013155616
-
CRISPR/Cpf1-mediated DNA-free plant genome editing
-
Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun. 2017;8:14406.
-
(2017)
Nat Commun
, vol.8
, pp. 14406
-
-
Kim, H.1
Kim, S.T.2
Ryu, J.3
Kang, B.C.4
Kim, J.S.5
Kim, S.G.6
-
10
-
-
84994391729
-
CRISPR technologies for bacterial systems: current achievements and future directions
-
Choi KR, Lee SY. CRISPR technologies for bacterial systems: current achievements and future directions. Biotechnol Adv. 2016;34:1180-209.
-
(2016)
Biotechnol Adv
, vol.34
, pp. 1180-1209
-
-
Choi, K.R.1
Lee, S.Y.2
-
11
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013;31:233-9.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
12
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015;81:2506-14.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
Chen, B.2
Duan, C.3
Sun, B.4
Yang, J.5
Yang, S.6
-
13
-
-
84936967101
-
Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli
-
Pyne ME, Moo-Young M, Chung DA, Chou CP. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol. 2015;81:5103-14.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 5103-5114
-
-
Pyne, M.E.1
Moo-Young, M.2
Chung, D.A.3
Chou, C.P.4
-
14
-
-
84937538704
-
Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing
-
Li Y, Lin Z, Huang C, Zhang Y, Wang Z, Tang YJ, Chen T, Zhao X. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng. 2015;31:13-21.
-
(2015)
Metab Eng
, vol.31
, pp. 13-21
-
-
Li, Y.1
Lin, Z.2
Huang, C.3
Zhang, Y.4
Wang, Z.5
Tang, Y.J.6
Chen, T.7
Zhao, X.8
-
15
-
-
84947999145
-
Targeted large-scale deletion of bacterial genomes using CRISPR-nickases
-
Standage-Beier K, Zhang Q, Wang X. Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. ACS Synth Biol. 2015;4:1217-25.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1217-1225
-
-
Standage-Beier, K.1
Zhang, Q.2
Wang, X.3
-
16
-
-
84944320385
-
The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli
-
Reisch CR, Prather KL. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli. Sci Rep. 2015;5:15096.
-
(2015)
Sci Rep
, vol.5
, pp. 15096
-
-
Reisch, C.R.1
Prather, K.L.2
-
17
-
-
84978492675
-
Rapid and efficient one-step metabolic pathway integration in E. coli
-
Bassalo MC, Garst AD, Halweg-Edwards AL, Grau WC, Domaille DW, Mutalik VK, Arkin AP, Gill RT. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synth Biol. 2016;5:561-8.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 561-568
-
-
Bassalo, M.C.1
Garst, A.D.2
Halweg-Edwards, A.L.3
Grau, W.C.4
Domaille, D.W.5
Mutalik, V.K.6
Arkin, A.P.7
Gill, R.T.8
-
18
-
-
84929593887
-
Codon compression algorithms for saturation mutagenesis
-
Pines G, Pines A, Garst AD, Zeitoun RI, Lynch SA, Gill RT. Codon compression algorithms for saturation mutagenesis. ACS Synth Biol. 2015;4:604-14.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 604-614
-
-
Pines, G.1
Pines, A.2
Garst, A.D.3
Zeitoun, R.I.4
Lynch, S.A.5
Gill, R.T.6
-
19
-
-
84980351609
-
Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9
-
Chung ME, Yeh IH, Sung LY, Wu MY, Chao YP, Ng IS, Hu YC. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnol Bioeng. 2017;114:172-83.
-
(2017)
Biotechnol Bioeng
, vol.114
, pp. 172-183
-
-
Chung, M.E.1
Yeh, I.H.2
Sung, L.Y.3
Wu, M.Y.4
Chao, Y.P.5
Ng, I.S.6
Hu, Y.C.7
-
20
-
-
84937886246
-
CRISPR-based screening of genomic island excision events in bacteria
-
Selle K, Klaenhammer TR, Barrangou R. CRISPR-based screening of genomic island excision events in bacteria. Proc Natl Acad Sci USA. 2015;112:8076-81.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 8076-8081
-
-
Selle, K.1
Klaenhammer, T.R.2
Barrangou, R.3
-
21
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh JH, van Pijkeren JP. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 2014;42:e131.
-
(2014)
Nucleic Acids Res
, vol.42
-
-
Oh, J.H.1
Pijkeren, J.P.2
-
22
-
-
84934947770
-
High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
-
Cobb RE, Wang Y, Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol. 2015;4:723-8.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 723-728
-
-
Cobb, R.E.1
Wang, Y.2
Zhao, H.3
-
23
-
-
84926466507
-
One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces
-
Huang H, Zheng G, Jiang W, Hu H, Lu Y. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin. 2015;47:231-43.
-
(2015)
Acta Biochim Biophys Sin
, vol.47
, pp. 231-243
-
-
Huang, H.1
Zheng, G.2
Jiang, W.3
Hu, H.4
Lu, Y.5
-
24
-
-
84940106526
-
CRISPR-Cas9 based engineering of Actinomycetal genomes
-
Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. CRISPR-Cas9 based engineering of Actinomycetal genomes. ACS Synth Biol. 2015;4:1020-9.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1020-1029
-
-
Tong, Y.1
Charusanti, P.2
Zhang, L.3
Weber, T.4
Lee, S.Y.5
-
25
-
-
84930787559
-
Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase
-
Xu T, Li Y, Shi Z, Hemme CL, Li Y, Zhu Y, Van Nostrand JD, He Z, Zhou J. Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl Environ Microbiol. 2015;81:4423-31.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 4423-4431
-
-
Xu, T.1
Li, Y.2
Shi, Z.3
Hemme, C.L.4
Li, Y.5
Zhu, Y.6
Nostrand, J.D.7
He, Z.8
Zhou, J.9
-
26
-
-
84978699037
-
Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable "clean" mutant selection in Clostridium beijerinckii as an example
-
Wang Y, Zhang ZT, Seo SO, Lynn P, Lu T, Jin YS, Blaschek HP. Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable "clean" mutant selection in Clostridium beijerinckii as an example. ACS Synth Biol. 2016;5:721-32.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 721-732
-
-
Wang, Y.1
Zhang, Z.T.2
Seo, S.O.3
Lynn, P.4
Lu, T.5
Jin, Y.S.6
Blaschek, H.P.7
-
27
-
-
84971265340
-
Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium
-
Pyne ME, Bruder MR, Moo-Young M, Chung DA, Chou CP. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Sci Rep. 2016;6:25666.
-
(2016)
Sci Rep
, vol.6
, pp. 25666
-
-
Pyne, M.E.1
Bruder, M.R.2
Moo-Young, M.3
Chung, D.A.4
Chou, C.P.5
-
28
-
-
84977527317
-
CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii
-
Li Q, Chen J, Minton NP, Zhang Y, Wen Z, Liu J, Yang H, Zeng Z, Ren X, Yang J, Gu Y, Jiang W, Jiang Y, Yang S. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol J. 2016;11:961-72.
-
(2016)
Biotechnol J
, vol.11
, pp. 961-972
-
-
Li, Q.1
Chen, J.2
Minton, N.P.3
Zhang, Y.4
Wen, Z.5
Liu, J.6
Yang, H.7
Zeng, Z.8
Ren, X.9
Yang, J.10
Gu, Y.11
Jiang, W.12
Jiang, Y.13
Yang, S.14
-
29
-
-
84992316948
-
Genome editing of Clostridium autoethanogenum using CRISPR/Cas9
-
Nagaraju S, Davies NK, Walker DJ, Kopke M, Simpson SD. Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol Biofuels. 2016;9:219.
-
(2016)
Biotechnol Biofuels
, vol.9
, pp. 219
-
-
Nagaraju, S.1
Davies, N.K.2
Walker, D.J.3
Kopke, M.4
Simpson, S.D.5
-
30
-
-
84982107482
-
Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis
-
Westbrook AW, Moo-Young M, Chou CP. Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis. Appl Environ Microbiol. 2016;82:4876-95.
-
(2016)
Appl Environ Microbiol
, vol.82
, pp. 4876-4895
-
-
Westbrook, A.W.1
Moo-Young, M.2
Chou, C.P.3
-
31
-
-
84975061735
-
Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system
-
Zhang K, Duan X, Wu J. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci Rep. 2016;6:27943.
-
(2016)
Sci Rep
, vol.6
, pp. 27943
-
-
Zhang, K.1
Duan, X.2
Wu, J.3
-
32
-
-
84987875388
-
Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system
-
Altenbuchner J. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl Environ Microbiol. 2016;82:5421-7.
-
(2016)
Appl Environ Microbiol
, vol.82
, pp. 5421-5427
-
-
Altenbuchner, J.1
-
33
-
-
85009999725
-
Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering
-
Liu Q, Gao R, Li J, Lin L, Zhao J, Sun W, Tian C. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol Biofuels. 2017;10:1.
-
(2017)
Biotechnol Biofuels
, vol.10
, pp. 1
-
-
Liu, Q.1
Gao, R.2
Li, J.3
Lin, L.4
Zhao, J.5
Sun, W.6
Tian, C.7
-
34
-
-
84978153360
-
CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973
-
Wendt KE, Ungerer J, Cobb RE, Zhao H, Pakrasi HB. CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Fact. 2016;15:115.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 115
-
-
Wendt, K.E.1
Ungerer, J.2
Cobb, R.E.3
Zhao, H.4
Pakrasi, H.B.5
-
35
-
-
85021307199
-
CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum
-
Cho JS, Choi KR, Prabowo CPS, Shin JH, Yang D, Jang J, Lee SY. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng. 2017;42:157-67.
-
(2017)
Metab Eng
, vol.42
, pp. 157-167
-
-
Cho, J.S.1
Choi, K.R.2
Prabowo, C.P.S.3
Shin, J.H.4
Yang, D.5
Jang, J.6
Lee, S.Y.7
-
36
-
-
85020726978
-
CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum
-
Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, Sun B, Chen B, Xu X, Li Y, Wang R, Yang S. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun. 2017;8:15179.
-
(2017)
Nat Commun
, vol.8
, pp. 15179
-
-
Jiang, Y.1
Qian, F.2
Yang, J.3
Liu, Y.4
Dong, F.5
Xu, C.6
Sun, B.7
Chen, B.8
Xu, X.9
Li, Y.10
Wang, R.11
Yang, S.12
-
37
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163:759-71.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
Essletzbichler, P.6
Volz, S.E.7
Joung, J.8
Oost, J.9
Regev, A.10
Koonin, E.V.11
Zhang, F.12
-
38
-
-
0027267592
-
Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum
-
Peyret JL, Bayan N, Joliff G, Gulik-Krzywicki T, Mathieu L, Schechter E, Leblon G. Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol Microbiol. 1993;9:97-109.
-
(1993)
Mol Microbiol
, vol.9
, pp. 97-109
-
-
Peyret, J.L.1
Bayan, N.2
Joliff, G.3
Gulik-Krzywicki, T.4
Mathieu, L.5
Schechter, E.6
Leblon, G.7
-
39
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173-83.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
Weissman, J.S.5
Arkin, A.P.6
Lim, W.A.7
-
40
-
-
79959733486
-
DNA repair in Corynebacterium model
-
Resende BC, Rebelato AB, D'Afonseca V, Santos AR, Stutzman T, Azevedo VA, Santos LL, Miyoshi A, Lopes DO. DNA repair in Corynebacterium model. Gene. 2011;482:1-7.
-
(2011)
Gene
, vol.482
, pp. 1-7
-
-
Resende, B.C.1
Rebelato, A.B.2
D'Afonseca, V.3
Santos, A.R.4
Stutzman, T.5
Azevedo, V.A.6
Santos, L.L.7
Miyoshi, A.8
Lopes, D.O.9
-
41
-
-
0035810938
-
High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides
-
Ellis HM, Yu D, DiTizio T, Court DL. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci USA. 2001;98:6742-6.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 6742-6746
-
-
Ellis, H.M.1
Yu, D.2
DiTizio, T.3
Court, D.L.4
-
42
-
-
84880200801
-
Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation
-
Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L. Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res. 2013;41:6360-9.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 6360-6369
-
-
Binder, S.1
Siedler, S.2
Marienhagen, J.3
Bott, M.4
Eggeling, L.5
-
43
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31:827-32.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 827-832
-
-
Hsu, P.D.1
Scott, D.A.2
Weinstein, J.A.3
Ran, F.A.4
Konermann, S.5
Agarwala, V.6
Li, Y.7
Fine, E.J.8
Wu, X.9
Shalem, O.10
Cradick, T.J.11
Marraffini, L.A.12
Bao, G.13
Zhang, F.14
-
44
-
-
84907319439
-
Oligonucleotide recombination in corynebacteria without the expression of exogenous recombinases
-
Krylov AA, Kolontaevsky EE, Mashko SV. Oligonucleotide recombination in corynebacteria without the expression of exogenous recombinases. J Microbiol Methods. 2014;105:109-15.
-
(2014)
J Microbiol Methods
, vol.105
, pp. 109-115
-
-
Krylov, A.A.1
Kolontaevsky, E.E.2
Mashko, S.V.3
-
45
-
-
78650209221
-
The small ribosomal protein S12P gene rpsL as an efficient positive selection marker in allelic exchange mutation systems for Corynebacterium glutamicum
-
Kim IK, Jeong WK, Lim SH, Hwang IK, Kim YH. The small ribosomal protein S12P gene rpsL as an efficient positive selection marker in allelic exchange mutation systems for Corynebacterium glutamicum. J Microbiol Methods. 2011;84:128-30.
-
(2011)
J Microbiol Methods
, vol.84
, pp. 128-130
-
-
Kim, I.K.1
Jeong, W.K.2
Lim, S.H.3
Hwang, I.K.4
Kim, Y.H.5
-
46
-
-
33750478693
-
Temperature-sensitive cloning vector for Corynebacterium glutamicum
-
Nakamura J, Kanno S, Kimura E, Matsui K, Nakamatsu T, Wachi M. Temperature-sensitive cloning vector for Corynebacterium glutamicum. Plasmid. 2006;56:179-86.
-
(2006)
Plasmid
, vol.56
, pp. 179-186
-
-
Nakamura, J.1
Kanno, S.2
Kimura, E.3
Matsui, K.4
Nakamatsu, T.5
Wachi, M.6
-
47
-
-
0031054312
-
Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number
-
Nesvera J, Patek M, Hochmannova J, Abrhamova Z, Becvarova V, Jelinkova M, Vohradsky J. Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol. 1997;179:1525-32.
-
(1997)
J Bacteriol
, vol.179
, pp. 1525-1532
-
-
Nesvera, J.1
Patek, M.2
Hochmannova, J.3
Abrhamova, Z.4
Becvarova, V.5
Jelinkova, M.6
Vohradsky, J.7
-
48
-
-
0242353120
-
The genome stability in Corynebacterium species due to lack of the recombinational repair system
-
Nakamura Y, Nishio Y, Ikeo K, Gojobori T. The genome stability in Corynebacterium species due to lack of the recombinational repair system. Gene. 2003;317:149-55.
-
(2003)
Gene
, vol.317
, pp. 149-155
-
-
Nakamura, Y.1
Nishio, Y.2
Ikeo, K.3
Gojobori, T.4
-
49
-
-
84979464834
-
Identifying and visualizing functional PAM diversity across CRISPR-Cas systems
-
Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA, Briner AE, Barrangou R, Beisel CL. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol Cell. 2016;62:137-47.
-
(2016)
Mol Cell
, vol.62
, pp. 137-147
-
-
Leenay, R.T.1
Maksimchuk, K.R.2
Slotkowski, R.A.3
Agrawal, R.N.4
Gomaa, A.A.5
Briner, A.E.6
Barrangou, R.7
Beisel, C.L.8
-
50
-
-
77956537712
-
A synonymous single nucleotide polymorphism in ΔF508 CFTR alters the secondary structure of the mRNA and the expression of the mutant protein
-
Bartoszewski RA, Jablonsky M, Bartoszewska S, Stevenson L, Dai Q, Kappes J, Collawn JF, Bebok Z. A synonymous single nucleotide polymorphism in ΔF508 CFTR alters the secondary structure of the mRNA and the expression of the mutant protein. J Biol Chem. 2010;285:28741-8.
-
(2010)
J Biol Chem
, vol.285
, pp. 28741-28748
-
-
Bartoszewski, R.A.1
Jablonsky, M.2
Bartoszewska, S.3
Stevenson, L.4
Dai, Q.5
Kappes, J.6
Collawn, J.F.7
Bebok, Z.8
-
51
-
-
84970046200
-
Consequences of Cas9 cleavage in the chromosome of Escherichia coli
-
Cui L, Bikard D. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. 2016;44:4243-51.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 4243-4251
-
-
Cui, L.1
Bikard, D.2
-
52
-
-
84925515970
-
Development of a markerless gene replacement system in Corynebacterium glutamicum using upp as a counter-selection marker
-
Ma W, Wang X, Mao Y, Wang Z, Chen T, Zhao X. Development of a markerless gene replacement system in Corynebacterium glutamicum using upp as a counter-selection marker. Biotechnol Lett. 2015;37:609-17.
-
(2015)
Biotechnol Lett
, vol.37
, pp. 609-617
-
-
Ma, W.1
Wang, X.2
Mao, Y.3
Wang, Z.4
Chen, T.5
Zhao, X.6
-
53
-
-
84945474998
-
Improving the electro-transformation efficiency of Corynebacterium glutamicum by weakening its cell wall and increasing the cytoplasmic membrane fluidity
-
Ruan Y, Zhu L, Li Q. Improving the electro-transformation efficiency of Corynebacterium glutamicum by weakening its cell wall and increasing the cytoplasmic membrane fluidity. Biotechnol Lett. 2015;37:2445-52.
-
(2015)
Biotechnol Lett
, vol.37
, pp. 2445-2452
-
-
Ruan, Y.1
Zhu, L.2
Li, Q.3
-
54
-
-
85000936582
-
Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9
-
Zhao D, Yuan S, Xiong B, Sun H, Ye L, Li J, Zhang X, Bi C. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microb Cell Fact. 2016;15:205.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 205
-
-
Zhao, D.1
Yuan, S.2
Xiong, B.3
Sun, H.4
Ye, L.5
Li, J.6
Zhang, X.7
Bi, C.8
-
55
-
-
0041429497
-
Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum
-
Kirchner O, Tauch A. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol. 2003;104:287-99.
-
(2003)
J Biotechnol
, vol.104
, pp. 287-299
-
-
Kirchner, O.1
Tauch, A.2
-
56
-
-
0032774281
-
Construction and application of new Corynebacterium glutamicum vectors
-
Jakoby M, Ngouoto-Nkili C-E, Burkovski A. Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech. 1999;13:437-41.
-
(1999)
Biotechnol Tech
, vol.13
, pp. 437-441
-
-
Jakoby, M.1
Ngouoto-Nkili, C.-E.2
Burkovski, A.3
|