-
2
-
-
84975796045
-
Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales
-
Pleissner, D., et al. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresour. Technol. 218 (2016), 167–173.
-
(2016)
Bioresour. Technol.
, vol.218
, pp. 167-173
-
-
Pleissner, D.1
-
3
-
-
84942895870
-
Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera
-
Sun, Z., et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat. Commun., 6, 2015, 8322.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8322
-
-
Sun, Z.1
-
4
-
-
84879600783
-
Evolution of lactic acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and pentose phosphate pathways
-
Salvetti, E., et al. Evolution of lactic acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and pentose phosphate pathways. Syst. Appl. Microbiol. 36 (2013), 291–305.
-
(2013)
Syst. Appl. Microbiol.
, vol.36
, pp. 291-305
-
-
Salvetti, E.1
-
5
-
-
33750341148
-
Comparative genomics of the lactic acid bacteria
-
Makarova, K., et al. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 15611–15616.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 15611-15616
-
-
Makarova, K.1
-
6
-
-
79351470014
-
Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae
-
Zúñiga, M., et al. Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae. BMC Evol. Biol., 11, 2011, 34.
-
(2011)
BMC Evol. Biol.
, vol.11
, pp. 34
-
-
Zúñiga, M.1
-
7
-
-
84959852082
-
Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage
-
Gänzle, M.G., Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2 (2015), 106–117.
-
(2015)
Curr. Opin. Food Sci.
, vol.2
, pp. 106-117
-
-
Gänzle, M.G.1
-
8
-
-
0034135549
-
Factors affecting the fermentative lactic acid production from renewable resources
-
Hofvendahl, K., Hahn-Hägerdal, B., Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26 (2000), 87–107.
-
(2000)
Enzyme Microb. Technol.
, vol.26
, pp. 87-107
-
-
Hofvendahl, K.1
Hahn-Hägerdal, B.2
-
9
-
-
84954540737
-
Homofermentative production of optically pure l-lactic acid from sucrose and mixed sugars by batch fermentation of Enterococcus faecalis RKY1
-
Reddy, L.V., et al. Homofermentative production of optically pure l-lactic acid from sucrose and mixed sugars by batch fermentation of Enterococcus faecalis RKY1. Biotechnol. Bioprocess Eng. 20 (2015), 1099–1105.
-
(2015)
Biotechnol. Bioprocess Eng.
, vol.20
, pp. 1099-1105
-
-
Reddy, L.V.1
-
10
-
-
82955162743
-
Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits
-
Abdel-Rahman, M.A., et al. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J. Biotechnol. 156 (2011), 286–301.
-
(2011)
J. Biotechnol.
, vol.156
, pp. 286-301
-
-
Abdel-Rahman, M.A.1
-
11
-
-
84904276326
-
Screening of lactic acid bacteria for their potential as microbial cell factories for bioconversion of lignocellulosic feedstocks
-
Boguta, A.M., et al. Screening of lactic acid bacteria for their potential as microbial cell factories for bioconversion of lignocellulosic feedstocks. Microb. Cell Fact., 13, 2014, 97.
-
(2014)
Microb. Cell Fact.
, vol.13
, pp. 97
-
-
Boguta, A.M.1
-
12
-
-
84922013414
-
Towards lactic acid bacteria-based biorefineries
-
Mazzoli, R., et al. Towards lactic acid bacteria-based biorefineries. Biotechnol. Adv. 32 (2014), 1216–1236.
-
(2014)
Biotechnol. Adv.
, vol.32
, pp. 1216-1236
-
-
Mazzoli, R.1
-
13
-
-
84962789051
-
Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F
-
Tyler, C.A., et al. Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F. J. Appl. Microbiol. 120 (2016), 1336–1345.
-
(2016)
J. Appl. Microbiol.
, vol.120
, pp. 1336-1345
-
-
Tyler, C.A.1
-
14
-
-
84941995374
-
Efficient mannitol production by wild-type Lactobacillus reuteri CRL 1101 is attained at constant pH using a simplified culture medium
-
Ortiz, M.E., et al. Efficient mannitol production by wild-type Lactobacillus reuteri CRL 1101 is attained at constant pH using a simplified culture medium. Appl. Microbiol. Biotechnol. 99 (2015), 8717–8729.
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, pp. 8717-8729
-
-
Ortiz, M.E.1
-
15
-
-
84878012667
-
Biotechnological and in situ food production of polyols by lactic acid bacteria
-
Ortiz, M.E., et al. Biotechnological and in situ food production of polyols by lactic acid bacteria. Appl. Microbiol. Biotechnol. 97 (2013), 4713–4726.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 4713-4726
-
-
Ortiz, M.E.1
-
16
-
-
2442587515
-
Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation
-
Kaup, B., et al. Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Appl. Microbiol. Biotechnol. 64 (2004), 333–339.
-
(2004)
Appl. Microbiol. Biotechnol.
, vol.64
, pp. 333-339
-
-
Kaup, B.1
-
17
-
-
84879729853
-
Two-stage fermentation process for enhanced mannitol production using Candida magnolia mutant R9
-
Savergave, L.S., et al. Two-stage fermentation process for enhanced mannitol production using Candida magnolia mutant R9. Bioprocess Biosyst. Eng. 36 (2013), 193–203.
-
(2013)
Bioprocess Biosyst. Eng.
, vol.36
, pp. 193-203
-
-
Savergave, L.S.1
-
18
-
-
84890281186
-
Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans
-
Pflügl, S., et al. Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Bioresour. Technol. 152 (2014), 499–504.
-
(2014)
Bioresour. Technol.
, vol.152
, pp. 499-504
-
-
Pflügl, S.1
-
19
-
-
84994036215
-
Effect of carbon pulsing on the redox household of Lactobacillus diolivorans in order to enhance 1,3-propanediol production
-
Lindlbauer, K.A., et al. Effect of carbon pulsing on the redox household of Lactobacillus diolivorans in order to enhance 1,3-propanediol production. Nat. Biotechnol. 34 (2017), 32–39.
-
(2017)
Nat. Biotechnol.
, vol.34
, pp. 32-39
-
-
Lindlbauer, K.A.1
-
20
-
-
84934957203
-
Improved 1,3-propanediol synthesis from glycerol by the robust Lactobacillus reuteri strain DSM 20016 S
-
Ricci, M.A., et al. Improved 1,3-propanediol synthesis from glycerol by the robust Lactobacillus reuteri strain DSM 20016 S. J. Microbiol. Biotechnol. 25 (2015), 893–902.
-
(2015)
J. Microbiol. Biotechnol.
, vol.25
, pp. 893-902
-
-
Ricci, M.A.1
-
21
-
-
84966461467
-
Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3
-
Vivek, N., et al. Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. Bioresour. Technol. 213 (2016), 222–230.
-
(2016)
Bioresour. Technol.
, vol.213
, pp. 222-230
-
-
Vivek, N.1
-
22
-
-
84941084819
-
Isolation and characterization of a Klebsiella pneumoniae strain from mangrove sediment for efficient biosynthesis of 1,3-propanediol
-
Zhou, S., et al. Isolation and characterization of a Klebsiella pneumoniae strain from mangrove sediment for efficient biosynthesis of 1,3-propanediol. Sci. Bull. 60 (2015), 511–521.
-
(2015)
Sci. Bull.
, vol.60
, pp. 511-521
-
-
Zhou, S.1
-
23
-
-
84920261484
-
Production of 2-butanol through meso-2,3-butanediol consumption in lactic acid bacteria
-
Ghiaci, P., et al. Production of 2-butanol through meso-2,3-butanediol consumption in lactic acid bacteria. FEMS Microbiol. Lett. 360 (2014), 70–75.
-
(2014)
FEMS Microbiol. Lett.
, vol.360
, pp. 70-75
-
-
Ghiaci, P.1
-
24
-
-
27644564703
-
Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri
-
Doleyres, Y., et al. Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 68 (2005), 467–474.
-
(2005)
Appl. Microbiol. Biotechnol.
, vol.68
, pp. 467-474
-
-
Doleyres, Y.1
-
25
-
-
84855783708
-
Production of high amounts of 3-hydroxypropionaldehyde from glycerol by Lactobacillus reuteri with strongly increased biocatalyst lifetime and productivity
-
Krauter, H., et al. Production of high amounts of 3-hydroxypropionaldehyde from glycerol by Lactobacillus reuteri with strongly increased biocatalyst lifetime and productivity. Nat. Biotechnol. 29 (2012), 211–217.
-
(2012)
Nat. Biotechnol.
, vol.29
, pp. 211-217
-
-
Krauter, H.1
-
26
-
-
13544277382
-
High-level acetaldehyde production in Lactococcus lactis by metabolic engineering
-
Bongers, R.S., et al. High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Appl. Environ. Microbiol. 71 (2005), 1109–1113.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 1109-1113
-
-
Bongers, R.S.1
-
27
-
-
84942829398
-
Diversity of Lactobacillus reuteri strains in converting glycerol into 3-hydroxypropionic acid
-
Burgé, G., et al. Diversity of Lactobacillus reuteri strains in converting glycerol into 3-hydroxypropionic acid. Appl. Biochem. Biotechnol. 177 (2015), 923–939.
-
(2015)
Appl. Biochem. Biotechnol.
, vol.177
, pp. 923-939
-
-
Burgé, G.1
-
28
-
-
84954170297
-
Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis
-
Dishisha, T., et al. Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Microb. Cell Fact., 14, 2015, 200.
-
(2015)
Microb. Cell Fact.
, vol.14
, pp. 200
-
-
Dishisha, T.1
-
29
-
-
77953022341
-
A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation
-
Nicolaou, S.A., A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. Metab. Eng. 12 (2010), 307–331.
-
(2010)
Metab. Eng.
, vol.12
, pp. 307-331
-
-
Nicolaou, S.A.1
-
30
-
-
84881515766
-
Metabolic flux analysis during the exponential growth phase of Saccharomyces cerevisiae in wine fermentations
-
Quirós, M., et al. Metabolic flux analysis during the exponential growth phase of Saccharomyces cerevisiae in wine fermentations. PLoS One, 8, 2013, e71909.
-
(2013)
PLoS One
, vol.8
, pp. e71909
-
-
Quirós, M.1
-
31
-
-
84894231008
-
A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent
-
McCloskey, D., et al. A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent. Biotechnol. Bioeng. 111 (2014), 803–815.
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 803-815
-
-
McCloskey, D.1
-
32
-
-
84923310679
-
Production of lactic acid using a new homofermentative Enterococcus faecalis isolate
-
Subramanian, M.R., et al. Production of lactic acid using a new homofermentative Enterococcus faecalis isolate. Microbiol. Biotechnol. 8 (2015), 221–229.
-
(2015)
Microbiol. Biotechnol.
, vol.8
, pp. 221-229
-
-
Subramanian, M.R.1
-
33
-
-
84942133457
-
Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate
-
Chen, J., et al. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate. Sci. Rep., 5, 2015, 14199.
-
(2015)
Sci. Rep.
, vol.5
, pp. 14199
-
-
Chen, J.1
-
34
-
-
67649249947
-
Heme and menaquinone induced electron transport in lactic acid bacteria
-
Brooijmans, R.J.W., et al. Heme and menaquinone induced electron transport in lactic acid bacteria. Microb. Cell Fact., 8, 2009, 28.
-
(2009)
Microb. Cell Fact.
, vol.8
, pp. 28
-
-
Brooijmans, R.J.W.1
-
35
-
-
0036693034
-
Respiration capacity and consequences in Lactococcus lactis
-
Gaudu, P., et al. Respiration capacity and consequences in Lactococcus lactis. Antonie Van Leeuwenhoek 82 (2002), 263–269.
-
(2002)
Antonie Van Leeuwenhoek
, vol.82
, pp. 263-269
-
-
Gaudu, P.1
-
36
-
-
84922287111
-
Aeration and supplementation with heme and menaquinone affect survival to stresses and antioxidant capability of Lactobacillus casei strains
-
Ianniello, R.G., et al. Aeration and supplementation with heme and menaquinone affect survival to stresses and antioxidant capability of Lactobacillus casei strains. LWT Food Sci. Technol. 60 (2015), 817–824.
-
(2015)
LWT Food Sci. Technol.
, vol.60
, pp. 817-824
-
-
Ianniello, R.G.1
-
37
-
-
84939574585
-
Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri
-
Ianniello, R.G., et al. Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri. J. Appl. Microbiol. 113 (2015), 763–775.
-
(2015)
J. Appl. Microbiol.
, vol.113
, pp. 763-775
-
-
Ianniello, R.G.1
-
38
-
-
79954421871
-
Using heme as an energy boost for lactic acid bacteria
-
Lechardeur, D., et al. Using heme as an energy boost for lactic acid bacteria. Curr. Opin. Biotechnol. 22 (2011), 143–149.
-
(2011)
Curr. Opin. Biotechnol.
, vol.22
, pp. 143-149
-
-
Lechardeur, D.1
-
39
-
-
0035021812
-
The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. Lactis IL1403
-
Bolotin, A., et al. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. Lactis IL1403. Genome Res. 11 (2001), 731–753.
-
(2001)
Genome Res.
, vol.11
, pp. 731-753
-
-
Bolotin, A.1
-
40
-
-
34247854960
-
Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. Cremoris MG1363
-
Wegmann, U., et al. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. Cremoris MG1363. J. Bacteriol. 189 (2007), 3256–3270.
-
(2007)
J. Bacteriol.
, vol.189
, pp. 3256-3270
-
-
Wegmann, U.1
-
41
-
-
66249130962
-
Lactobacillus plantarum WCFS1 electron transport chains
-
Brooijmans, R.J.W., et al. Lactobacillus plantarum WCFS1 electron transport chains. Appl. Environ. Microbiol. 75 (2009), 3580–3585.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 3580-3585
-
-
Brooijmans, R.J.W.1
-
42
-
-
84961821178
-
Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol
-
Liu, J., et al. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol. Metab. Eng. 36 (2016), 57–67.
-
(2016)
Metab. Eng.
, vol.36
, pp. 57-67
-
-
Liu, J.1
-
43
-
-
85010755484
-
Systems biology of robustness and flexibility: Lactobacillus buchneri: a show case
-
Published online January 25, 2017.
-
Heinl, S., Grabherr, R., Systems biology of robustness and flexibility: Lactobacillus buchneri: a show case. J. Biotechnol., 2017, 10.1016/j.jbiotec.2017.01.007 Published online January 25, 2017.
-
(2017)
J. Biotechnol.
-
-
Heinl, S.1
Grabherr, R.2
-
44
-
-
84898887058
-
Progress in engineering acid stress resistance of lactic acid bacteria
-
Wu, C., et al. Progress in engineering acid stress resistance of lactic acid bacteria. Appl. Microbiol. Biotechnol. 98 (2014), 1055–1063.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 1055-1063
-
-
Wu, C.1
-
45
-
-
84863462399
-
Lactobacillus casei combats acid stress by maintaining cell membrane functionality
-
Wu, C., et al. Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J. Ind. Microbiol. Biotechnol. 39 (2012), 1031–1039.
-
(2012)
J. Ind. Microbiol. Biotechnol.
, vol.39
, pp. 1031-1039
-
-
Wu, C.1
-
46
-
-
84991202457
-
Stress physiology of lactic acid bacteria
-
Papadimitriou, K., et al. Stress physiology of lactic acid bacteria. J. Microbiol. Mol. Biol. Rev. 80 (2016), 837–890.
-
(2016)
J. Microbiol. Mol. Biol. Rev.
, vol.80
, pp. 837-890
-
-
Papadimitriou, K.1
-
47
-
-
84941992124
-
Metabolic strategies of beer spoilage lactic acid bacteria in beer
-
Geissler, A.J., et al. Metabolic strategies of beer spoilage lactic acid bacteria in beer. Int. J. Food Microbiol. 216 (2016), 60–68.
-
(2016)
Int. J. Food Microbiol.
, vol.216
, pp. 60-68
-
-
Geissler, A.J.1
-
48
-
-
71749111885
-
How microbes tolerate ethanol and butanol
-
Liu, S., Qureshi, N., How microbes tolerate ethanol and butanol. New Biotechnol. 26 (2009), 117–121.
-
(2009)
New Biotechnol.
, vol.26
, pp. 117-121
-
-
Liu, S.1
Qureshi, N.2
-
49
-
-
84959876975
-
Frontiers in microbial 1-butanol and isobutanol production
-
Chen, C.T., Liao, J.C., Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol. Lett., 363, 2016, fnw020.
-
(2016)
FEMS Microbiol. Lett.
, vol.363
, pp. fnw020
-
-
Chen, C.T.1
Liao, J.C.2
-
50
-
-
0041912376
-
Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping
-
Ezeji, T.C., et al. Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J. Microbiol. Biotechnol. 19 (2003), 595–603.
-
(2003)
World J. Microbiol. Biotechnol.
, vol.19
, pp. 595-603
-
-
Ezeji, T.C.1
-
51
-
-
84975108991
-
Lactobacillus casei as a biocatalyst for biofuel production
-
Vinay-Lara, E., et al. Lactobacillus casei as a biocatalyst for biofuel production. J. Ind. Microbiol. Biotechnol. 43 (2016), 1205–1213.
-
(2016)
J. Ind. Microbiol. Biotechnol.
, vol.43
, pp. 1205-1213
-
-
Vinay-Lara, E.1
-
52
-
-
85017537569
-
Lactobacilli and pediococci as versatile cell factories – evaluation of strain properties and genetic tools
-
Published online April 7, 2017.
-
Bosma, E.F., et al. Lactobacilli and pediococci as versatile cell factories – evaluation of strain properties and genetic tools. Biotechnol. Adv., 2017, 10.1016/j.biotechadv.2017.04.002 Published online April 7, 2017.
-
(2017)
Biotechnol. Adv.
-
-
Bosma, E.F.1
-
53
-
-
84960841124
-
Identifying inhibitory effects of lignocellulosic by-products on growth of lactic acid producing micro-organisms using a rapid small-scale screening method
-
van der Pol, E.C., et al. Identifying inhibitory effects of lignocellulosic by-products on growth of lactic acid producing micro-organisms using a rapid small-scale screening method. Bioresour. Technol. 209 (2016), 297–304.
-
(2016)
Bioresour. Technol.
, vol.209
, pp. 297-304
-
-
van der Pol, E.C.1
-
54
-
-
84904550698
-
Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth
-
Hunter, W.J., Manter, D.K., Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth. Bioresour. Technol. 169 (2014), 162–168.
-
(2014)
Bioresour. Technol.
, vol.169
, pp. 162-168
-
-
Hunter, W.J.1
Manter, D.K.2
-
55
-
-
84902197211
-
Metabolic engineering of lactic acid bacteria for the production of industrially important compounds
-
Papagianni, M., Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput. Struct. Biotechnol. J., 3, 2012, e201210003.
-
(2012)
Comput. Struct. Biotechnol. J.
, vol.3
, pp. e201210003
-
-
Papagianni, M.1
-
56
-
-
84882723516
-
From physiology to systems metabolic engineering for the production of agnoliale by lactic acid bacteria
-
Gaspar, P., et al. From physiology to systems metabolic engineering for the production of agnoliale by lactic acid bacteria. Biotechnol. Adv. 31 (2013), 764–788.
-
(2013)
Biotechnol. Adv.
, vol.31
, pp. 764-788
-
-
Gaspar, P.1
-
57
-
-
79952429363
-
Engineering lactic acid bacteria for increased industrial functionality
-
Bron, P.A., Kleerebezem, M., Engineering lactic acid bacteria for increased industrial functionality. Bioeng. Bugs 2 (2011), 80–87.
-
(2011)
Bioeng. Bugs
, vol.2
, pp. 80-87
-
-
Bron, P.A.1
Kleerebezem, M.2
-
58
-
-
79957965157
-
A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker
-
Nguyen, T.T., et al. A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker. J. Agric. Food. Chem. 59 (2011), 5617–5624.
-
(2011)
J. Agric. Food. Chem.
, vol.59
, pp. 5617-5624
-
-
Nguyen, T.T.1
-
59
-
-
84949216054
-
High efficiency electrotransformation of Lactobacillus casei
-
Welker, D.L., et al. High efficiency electrotransformation of Lactobacillus casei. FEMS Microbiol. Lett. 362 (2015), 1–6.
-
(2015)
FEMS Microbiol. Lett.
, vol.362
, pp. 1-6
-
-
Welker, D.L.1
-
60
-
-
84879500805
-
Genetic engineering of Lactobacillus diolivorans
-
Pflügl, S., et al. Genetic engineering of Lactobacillus diolivorans. FEMS Microbiol. Lett. 344 (2013), 152–158.
-
(2013)
FEMS Microbiol. Lett.
, vol.344
, pp. 152-158
-
-
Pflügl, S.1
-
61
-
-
84941183896
-
Cloning and overexpression of the als, pflA, and adhB genes in Streptococcus thermophilus and their effects on metabolite formation
-
Akyol, I., et al. Cloning and overexpression of the als, pflA, and adhB genes in Streptococcus thermophilus and their effects on metabolite formation. Mol. Biotechnol. 57 (2015), 923–930.
-
(2015)
Mol. Biotechnol.
, vol.57
, pp. 923-930
-
-
Akyol, I.1
-
62
-
-
84978075339
-
Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria
-
Özcelik, S., et al. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT Food Sci. Technol. 73 (2016), 536–542.
-
(2016)
LWT Food Sci. Technol.
, vol.73
, pp. 536-542
-
-
Özcelik, S.1
-
63
-
-
84958944593
-
Lactobacillus and Leuconostoc volatilomes in cheese conditions
-
Pogačić, S., et al. Lactobacillus and Leuconostoc volatilomes in cheese conditions. Appl. Microbiol. Biotechnol. 100 (2016), 2335–2346.
-
(2016)
Appl. Microbiol. Biotechnol.
, vol.100
, pp. 2335-2346
-
-
Pogačić, S.1
-
64
-
-
84992535835
-
LAB bacteriocin applications in the last decade
-
Lopez-Cuellar, M.R., et al. LAB bacteriocin applications in the last decade. Biotechnol. Biotechnol. Eq. 30 (2016), 1039–1050.
-
(2016)
Biotechnol. Biotechnol. Eq.
, vol.30
, pp. 1039-1050
-
-
Lopez-Cuellar, M.R.1
-
65
-
-
84960814574
-
Bacteriocins of lactic acid bacteria: extending the family
-
Alvarez-Siero, P., et al. Bacteriocins of lactic acid bacteria: extending the family. Appl. Microbiol. Biotechnol. 100 (2016), 2939–2951.
-
(2016)
Appl. Microbiol. Biotechnol.
, vol.100
, pp. 2939-2951
-
-
Alvarez-Siero, P.1
-
66
-
-
84925517694
-
Nisin incorporated with 2,3-dihydroxybencoic acid nanofibers inhibits biofilm formation by a methicillin-resistant strain of Staphylococcus aureus
-
Ahire, J.J., Dicks, L.M., Nisin incorporated with 2,3-dihydroxybencoic acid nanofibers inhibits biofilm formation by a methicillin-resistant strain of Staphylococcus aureus. Probiotics Antimicrob. Proteins 7 (2015), 52–59.
-
(2015)
Probiotics Antimicrob. Proteins
, vol.7
, pp. 52-59
-
-
Ahire, J.J.1
Dicks, L.M.2
-
67
-
-
85008613719
-
Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria
-
Kaskoniene, V., et al. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Appl. Microbiol. Biotechnol. 101 (2017), 1323–1335.
-
(2017)
Appl. Microbiol. Biotechnol.
, vol.101
, pp. 1323-1335
-
-
Kaskoniene, V.1
-
68
-
-
84904901819
-
Antibacterial activities of bacteriocins: application in foods and pharmaceuticals
-
Yang, S.C., et al. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front. Microbiol. 5 (2014), 6–21.
-
(2014)
Front. Microbiol.
, vol.5
, pp. 6-21
-
-
Yang, S.C.1
-
69
-
-
84920531816
-
Bacterial microcompartments and the modular construction of microbial metabolism
-
Kerfeld, C.A., Erbilgin, O., Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol. 23 (2015), 22–34.
-
(2015)
Trends Microbiol.
, vol.23
, pp. 22-34
-
-
Kerfeld, C.A.1
Erbilgin, O.2
-
70
-
-
46049098363
-
Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation
-
Sriramulu, D.D., et al. Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J. Bacteriol. 190 (2008), 4559–4567.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 4559-4567
-
-
Sriramulu, D.D.1
-
71
-
-
84979944281
-
Tuning the catalytic activity of subcellular nanoreactors
-
Jakobson, C.M., et al. Tuning the catalytic activity of subcellular nanoreactors. J. Mol. Biol. 428 (2016), 2989–2996.
-
(2016)
J. Mol. Biol.
, vol.428
, pp. 2989-2996
-
-
Jakobson, C.M.1
-
72
-
-
77952968392
-
Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics
-
Guo, W., et al. Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. Appl. Biochem. Biotechnol. 161 (2010), 124–136.
-
(2010)
Appl. Biochem. Biotechnol.
, vol.161
, pp. 124-136
-
-
Guo, W.1
-
73
-
-
37849041676
-
Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation
-
Dumbrepatil, A., et al. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl. Environ. Microbiol. 74 (2008), 333–335.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 333-335
-
-
Dumbrepatil, A.1
-
74
-
-
0036090581
-
Production of D-mannitol by heterofermentative lactic acid bacteria
-
von Weymarn, N., et al. Production of D-mannitol by heterofermentative lactic acid bacteria. Process Biochem. 37 (2002), 1207–1213.
-
(2002)
Process Biochem.
, vol.37
, pp. 1207-1213
-
-
von Weymarn, N.1
-
75
-
-
0036023490
-
High-level production of D-mannitol with membrane cell-recycle bioreactor
-
von Weymarn, N., et al. High-level production of D-mannitol with membrane cell-recycle bioreactor. J. Ind. Microbiol. Biotechnol. 29 (2002), 44–49.
-
(2002)
J. Ind. Microbiol. Biotechnol.
, vol.29
, pp. 44-49
-
-
von Weymarn, N.1
-
76
-
-
0037910360
-
Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693
-
Saha, B.C., Nakamura, L.K., Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Biotechnol. Bioeng. 82 (2003), 864–871.
-
(2003)
Biotechnol. Bioeng.
, vol.82
, pp. 864-871
-
-
Saha, B.C.1
Nakamura, L.K.2
-
77
-
-
33745938999
-
Production of mannitol from inulin by simultaneous enzymatic saccharification and fermentation with Lactobacillus intermedius NRRL B-3693
-
Saha, B.C., Production of mannitol from inulin by simultaneous enzymatic saccharification and fermentation with Lactobacillus intermedius NRRL B-3693. Enzyme Microbial. Technol. 39 (2006), 991–995.
-
(2006)
Enzyme Microbial. Technol.
, vol.39
, pp. 991-995
-
-
Saha, B.C.1
-
78
-
-
84939990992
-
Efficient production of reuterin from glycerol by magnetically immobilized Lactobacillus reuteri
-
Liu, F., Yu, B., Efficient production of reuterin from glycerol by magnetically immobilized Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 99 (2016), 4659–4666.
-
(2016)
Appl. Microbiol. Biotechnol.
, vol.99
, pp. 4659-4666
-
-
Liu, F.1
Yu, B.2
-
79
-
-
84901827967
-
Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol
-
Dishisha, T., et al. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Microb. Cell Fact., 13, 2014, 76.
-
(2014)
Microb. Cell Fact.
, vol.13
, pp. 76
-
-
Dishisha, T.1
-
80
-
-
85016164502
-
Enhanced production of gamma-aminobutyric acid by optimizing culture conditions of Lactobacillus brevis HYE1 isolated from kimchi, a Korean fermented food
-
Lim, H.S., et al. Enhanced production of gamma-aminobutyric acid by optimizing culture conditions of Lactobacillus brevis HYE1 isolated from kimchi, a Korean fermented food. J. Microbiol. Biotechnol. 27 (2017), 450–459.
-
(2017)
J. Microbiol. Biotechnol.
, vol.27
, pp. 450-459
-
-
Lim, H.S.1
-
81
-
-
84937817045
-
Two-step production of gamma-aminobutyric acid from cassava powder using Corynebacterium glutamicum and Lactobacillus plantarum
-
Yang, T., et al. Two-step production of gamma-aminobutyric acid from cassava powder using Corynebacterium glutamicum and Lactobacillus plantarum. J. Ind. Microbiol. Biotechnol. 42 (2015), 1157–1165.
-
(2015)
J. Ind. Microbiol. Biotechnol.
, vol.42
, pp. 1157-1165
-
-
Yang, T.1
-
82
-
-
30044432969
-
Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production
-
Liu, S., et al. Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production. J. Ind. Microbiol. Biotechnol. 33 (2006), 1–7.
-
(2006)
J. Ind. Microbiol. Biotechnol.
, vol.33
, pp. 1-7
-
-
Liu, S.1
-
83
-
-
84959340185
-
A novel cell factory for efficient production of ethanol from dairy waste
-
Liu, J., et al. A novel cell factory for efficient production of ethanol from dairy waste. Biotechnol. Biofuels, 9, 2016, 33.
-
(2016)
Biotechnol. Biofuels
, vol.9
, pp. 33
-
-
Liu, J.1
-
84
-
-
77953076065
-
Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis
-
Berezina, O.V., et al. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl. Microbiol. Biotechnol. 87 (2010), 635–646.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.87
, pp. 635-646
-
-
Berezina, O.V.1
-
85
-
-
84897109295
-
Bioconversion of glycerol to 1,3-propanediol in thin stillage-based media by engineered Lactobacillus panis PM1
-
Kang, T.S., et al. Bioconversion of glycerol to 1,3-propanediol in thin stillage-based media by engineered Lactobacillus panis PM1. J. Ind. Microbiol. Biotechnol. 41 (2014), 629–635.
-
(2014)
J. Ind. Microbiol. Biotechnol.
, vol.41
, pp. 629-635
-
-
Kang, T.S.1
-
86
-
-
84995872883
-
Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis
-
Kandasamy, V., et al. Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Sci. Rep., 6, 2016, 36769.
-
(2016)
Sci. Rep.
, vol.6
, pp. 36769
-
-
Kandasamy, V.1
-
87
-
-
84924706138
-
L-lactate production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system
-
Doi, Y., L-lactate production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system. Appl. Environ. Microbiol. 81 (2015), 2082–2089.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 2082-2089
-
-
Doi, Y.1
-
88
-
-
84943155424
-
Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain
-
Kuo, Y.C., et al. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Bioresour Technol. 198 (2015), 651–657.
-
(2015)
Bioresour Technol.
, vol.198
, pp. 651-657
-
-
Kuo, Y.C.1
-
89
-
-
84879015492
-
Metabolic engineering of Lactobacillus plantarum for succinic acid production through activation of the reductive branch of the tricarboxylic acid cycle
-
Tsuji, A., et al. Metabolic engineering of Lactobacillus plantarum for succinic acid production through activation of the reductive branch of the tricarboxylic acid cycle. Enzyme Microb. Technol. 53 (2013), 97–103.
-
(2013)
Enzyme Microb. Technol.
, vol.53
, pp. 97-103
-
-
Tsuji, A.1
|