메뉴 건너뛰기




Volumn 35, Issue 8, 2017, Pages 756-769

The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production

Author keywords

biorefinery; chemical industry; fermentation; industrial microbiology; metabolic engineering; metabolism

Indexed keywords

CELL ENGINEERING; CHEMICAL INDUSTRY; FERMENTATION; FOOD MICROBIOLOGY; INDUSTRIAL MICROBIOLOGY; LACTIC ACID; METABOLIC ENGINEERING; METABOLISM; MICROORGANISMS; REFINING;

EID: 85019570372     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2017.05.002     Document Type: Review
Times cited : (109)

References (89)
  • 2
    • 84975796045 scopus 로고    scopus 로고
    • Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales
    • Pleissner, D., et al. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresour. Technol. 218 (2016), 167–173.
    • (2016) Bioresour. Technol. , vol.218 , pp. 167-173
    • Pleissner, D.1
  • 3
    • 84942895870 scopus 로고    scopus 로고
    • Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera
    • Sun, Z., et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat. Commun., 6, 2015, 8322.
    • (2015) Nat. Commun. , vol.6 , pp. 8322
    • Sun, Z.1
  • 4
    • 84879600783 scopus 로고    scopus 로고
    • Evolution of lactic acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and pentose phosphate pathways
    • Salvetti, E., et al. Evolution of lactic acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and pentose phosphate pathways. Syst. Appl. Microbiol. 36 (2013), 291–305.
    • (2013) Syst. Appl. Microbiol. , vol.36 , pp. 291-305
    • Salvetti, E.1
  • 5
    • 33750341148 scopus 로고    scopus 로고
    • Comparative genomics of the lactic acid bacteria
    • Makarova, K., et al. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 15611–15616.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 15611-15616
    • Makarova, K.1
  • 6
    • 79351470014 scopus 로고    scopus 로고
    • Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae
    • Zúñiga, M., et al. Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae. BMC Evol. Biol., 11, 2011, 34.
    • (2011) BMC Evol. Biol. , vol.11 , pp. 34
    • Zúñiga, M.1
  • 7
    • 84959852082 scopus 로고    scopus 로고
    • Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage
    • Gänzle, M.G., Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2 (2015), 106–117.
    • (2015) Curr. Opin. Food Sci. , vol.2 , pp. 106-117
    • Gänzle, M.G.1
  • 8
    • 0034135549 scopus 로고    scopus 로고
    • Factors affecting the fermentative lactic acid production from renewable resources
    • Hofvendahl, K., Hahn-Hägerdal, B., Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26 (2000), 87–107.
    • (2000) Enzyme Microb. Technol. , vol.26 , pp. 87-107
    • Hofvendahl, K.1    Hahn-Hägerdal, B.2
  • 9
    • 84954540737 scopus 로고    scopus 로고
    • Homofermentative production of optically pure l-lactic acid from sucrose and mixed sugars by batch fermentation of Enterococcus faecalis RKY1
    • Reddy, L.V., et al. Homofermentative production of optically pure l-lactic acid from sucrose and mixed sugars by batch fermentation of Enterococcus faecalis RKY1. Biotechnol. Bioprocess Eng. 20 (2015), 1099–1105.
    • (2015) Biotechnol. Bioprocess Eng. , vol.20 , pp. 1099-1105
    • Reddy, L.V.1
  • 10
    • 82955162743 scopus 로고    scopus 로고
    • Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits
    • Abdel-Rahman, M.A., et al. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J. Biotechnol. 156 (2011), 286–301.
    • (2011) J. Biotechnol. , vol.156 , pp. 286-301
    • Abdel-Rahman, M.A.1
  • 11
    • 84904276326 scopus 로고    scopus 로고
    • Screening of lactic acid bacteria for their potential as microbial cell factories for bioconversion of lignocellulosic feedstocks
    • Boguta, A.M., et al. Screening of lactic acid bacteria for their potential as microbial cell factories for bioconversion of lignocellulosic feedstocks. Microb. Cell Fact., 13, 2014, 97.
    • (2014) Microb. Cell Fact. , vol.13 , pp. 97
    • Boguta, A.M.1
  • 12
    • 84922013414 scopus 로고    scopus 로고
    • Towards lactic acid bacteria-based biorefineries
    • Mazzoli, R., et al. Towards lactic acid bacteria-based biorefineries. Biotechnol. Adv. 32 (2014), 1216–1236.
    • (2014) Biotechnol. Adv. , vol.32 , pp. 1216-1236
    • Mazzoli, R.1
  • 13
    • 84962789051 scopus 로고    scopus 로고
    • Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F
    • Tyler, C.A., et al. Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F. J. Appl. Microbiol. 120 (2016), 1336–1345.
    • (2016) J. Appl. Microbiol. , vol.120 , pp. 1336-1345
    • Tyler, C.A.1
  • 14
    • 84941995374 scopus 로고    scopus 로고
    • Efficient mannitol production by wild-type Lactobacillus reuteri CRL 1101 is attained at constant pH using a simplified culture medium
    • Ortiz, M.E., et al. Efficient mannitol production by wild-type Lactobacillus reuteri CRL 1101 is attained at constant pH using a simplified culture medium. Appl. Microbiol. Biotechnol. 99 (2015), 8717–8729.
    • (2015) Appl. Microbiol. Biotechnol. , vol.99 , pp. 8717-8729
    • Ortiz, M.E.1
  • 15
    • 84878012667 scopus 로고    scopus 로고
    • Biotechnological and in situ food production of polyols by lactic acid bacteria
    • Ortiz, M.E., et al. Biotechnological and in situ food production of polyols by lactic acid bacteria. Appl. Microbiol. Biotechnol. 97 (2013), 4713–4726.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 4713-4726
    • Ortiz, M.E.1
  • 16
    • 2442587515 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation
    • Kaup, B., et al. Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Appl. Microbiol. Biotechnol. 64 (2004), 333–339.
    • (2004) Appl. Microbiol. Biotechnol. , vol.64 , pp. 333-339
    • Kaup, B.1
  • 17
    • 84879729853 scopus 로고    scopus 로고
    • Two-stage fermentation process for enhanced mannitol production using Candida magnolia mutant R9
    • Savergave, L.S., et al. Two-stage fermentation process for enhanced mannitol production using Candida magnolia mutant R9. Bioprocess Biosyst. Eng. 36 (2013), 193–203.
    • (2013) Bioprocess Biosyst. Eng. , vol.36 , pp. 193-203
    • Savergave, L.S.1
  • 18
    • 84890281186 scopus 로고    scopus 로고
    • Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans
    • Pflügl, S., et al. Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Bioresour. Technol. 152 (2014), 499–504.
    • (2014) Bioresour. Technol. , vol.152 , pp. 499-504
    • Pflügl, S.1
  • 19
    • 84994036215 scopus 로고    scopus 로고
    • Effect of carbon pulsing on the redox household of Lactobacillus diolivorans in order to enhance 1,3-propanediol production
    • Lindlbauer, K.A., et al. Effect of carbon pulsing on the redox household of Lactobacillus diolivorans in order to enhance 1,3-propanediol production. Nat. Biotechnol. 34 (2017), 32–39.
    • (2017) Nat. Biotechnol. , vol.34 , pp. 32-39
    • Lindlbauer, K.A.1
  • 20
    • 84934957203 scopus 로고    scopus 로고
    • Improved 1,3-propanediol synthesis from glycerol by the robust Lactobacillus reuteri strain DSM 20016 S
    • Ricci, M.A., et al. Improved 1,3-propanediol synthesis from glycerol by the robust Lactobacillus reuteri strain DSM 20016 S. J. Microbiol. Biotechnol. 25 (2015), 893–902.
    • (2015) J. Microbiol. Biotechnol. , vol.25 , pp. 893-902
    • Ricci, M.A.1
  • 21
    • 84966461467 scopus 로고    scopus 로고
    • Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3
    • Vivek, N., et al. Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. Bioresour. Technol. 213 (2016), 222–230.
    • (2016) Bioresour. Technol. , vol.213 , pp. 222-230
    • Vivek, N.1
  • 22
    • 84941084819 scopus 로고    scopus 로고
    • Isolation and characterization of a Klebsiella pneumoniae strain from mangrove sediment for efficient biosynthesis of 1,3-propanediol
    • Zhou, S., et al. Isolation and characterization of a Klebsiella pneumoniae strain from mangrove sediment for efficient biosynthesis of 1,3-propanediol. Sci. Bull. 60 (2015), 511–521.
    • (2015) Sci. Bull. , vol.60 , pp. 511-521
    • Zhou, S.1
  • 23
    • 84920261484 scopus 로고    scopus 로고
    • Production of 2-butanol through meso-2,3-butanediol consumption in lactic acid bacteria
    • Ghiaci, P., et al. Production of 2-butanol through meso-2,3-butanediol consumption in lactic acid bacteria. FEMS Microbiol. Lett. 360 (2014), 70–75.
    • (2014) FEMS Microbiol. Lett. , vol.360 , pp. 70-75
    • Ghiaci, P.1
  • 24
    • 27644564703 scopus 로고    scopus 로고
    • Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri
    • Doleyres, Y., et al. Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 68 (2005), 467–474.
    • (2005) Appl. Microbiol. Biotechnol. , vol.68 , pp. 467-474
    • Doleyres, Y.1
  • 25
    • 84855783708 scopus 로고    scopus 로고
    • Production of high amounts of 3-hydroxypropionaldehyde from glycerol by Lactobacillus reuteri with strongly increased biocatalyst lifetime and productivity
    • Krauter, H., et al. Production of high amounts of 3-hydroxypropionaldehyde from glycerol by Lactobacillus reuteri with strongly increased biocatalyst lifetime and productivity. Nat. Biotechnol. 29 (2012), 211–217.
    • (2012) Nat. Biotechnol. , vol.29 , pp. 211-217
    • Krauter, H.1
  • 26
    • 13544277382 scopus 로고    scopus 로고
    • High-level acetaldehyde production in Lactococcus lactis by metabolic engineering
    • Bongers, R.S., et al. High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Appl. Environ. Microbiol. 71 (2005), 1109–1113.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 1109-1113
    • Bongers, R.S.1
  • 27
    • 84942829398 scopus 로고    scopus 로고
    • Diversity of Lactobacillus reuteri strains in converting glycerol into 3-hydroxypropionic acid
    • Burgé, G., et al. Diversity of Lactobacillus reuteri strains in converting glycerol into 3-hydroxypropionic acid. Appl. Biochem. Biotechnol. 177 (2015), 923–939.
    • (2015) Appl. Biochem. Biotechnol. , vol.177 , pp. 923-939
    • Burgé, G.1
  • 28
    • 84954170297 scopus 로고    scopus 로고
    • Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis
    • Dishisha, T., et al. Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Microb. Cell Fact., 14, 2015, 200.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 200
    • Dishisha, T.1
  • 29
    • 77953022341 scopus 로고    scopus 로고
    • A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation
    • Nicolaou, S.A., A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. Metab. Eng. 12 (2010), 307–331.
    • (2010) Metab. Eng. , vol.12 , pp. 307-331
    • Nicolaou, S.A.1
  • 30
    • 84881515766 scopus 로고    scopus 로고
    • Metabolic flux analysis during the exponential growth phase of Saccharomyces cerevisiae in wine fermentations
    • Quirós, M., et al. Metabolic flux analysis during the exponential growth phase of Saccharomyces cerevisiae in wine fermentations. PLoS One, 8, 2013, e71909.
    • (2013) PLoS One , vol.8 , pp. e71909
    • Quirós, M.1
  • 31
    • 84894231008 scopus 로고    scopus 로고
    • A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent
    • McCloskey, D., et al. A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent. Biotechnol. Bioeng. 111 (2014), 803–815.
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 803-815
    • McCloskey, D.1
  • 32
    • 84923310679 scopus 로고    scopus 로고
    • Production of lactic acid using a new homofermentative Enterococcus faecalis isolate
    • Subramanian, M.R., et al. Production of lactic acid using a new homofermentative Enterococcus faecalis isolate. Microbiol. Biotechnol. 8 (2015), 221–229.
    • (2015) Microbiol. Biotechnol. , vol.8 , pp. 221-229
    • Subramanian, M.R.1
  • 33
    • 84942133457 scopus 로고    scopus 로고
    • Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate
    • Chen, J., et al. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate. Sci. Rep., 5, 2015, 14199.
    • (2015) Sci. Rep. , vol.5 , pp. 14199
    • Chen, J.1
  • 34
    • 67649249947 scopus 로고    scopus 로고
    • Heme and menaquinone induced electron transport in lactic acid bacteria
    • Brooijmans, R.J.W., et al. Heme and menaquinone induced electron transport in lactic acid bacteria. Microb. Cell Fact., 8, 2009, 28.
    • (2009) Microb. Cell Fact. , vol.8 , pp. 28
    • Brooijmans, R.J.W.1
  • 35
    • 0036693034 scopus 로고    scopus 로고
    • Respiration capacity and consequences in Lactococcus lactis
    • Gaudu, P., et al. Respiration capacity and consequences in Lactococcus lactis. Antonie Van Leeuwenhoek 82 (2002), 263–269.
    • (2002) Antonie Van Leeuwenhoek , vol.82 , pp. 263-269
    • Gaudu, P.1
  • 36
    • 84922287111 scopus 로고    scopus 로고
    • Aeration and supplementation with heme and menaquinone affect survival to stresses and antioxidant capability of Lactobacillus casei strains
    • Ianniello, R.G., et al. Aeration and supplementation with heme and menaquinone affect survival to stresses and antioxidant capability of Lactobacillus casei strains. LWT Food Sci. Technol. 60 (2015), 817–824.
    • (2015) LWT Food Sci. Technol. , vol.60 , pp. 817-824
    • Ianniello, R.G.1
  • 37
    • 84939574585 scopus 로고    scopus 로고
    • Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri
    • Ianniello, R.G., et al. Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri. J. Appl. Microbiol. 113 (2015), 763–775.
    • (2015) J. Appl. Microbiol. , vol.113 , pp. 763-775
    • Ianniello, R.G.1
  • 38
    • 79954421871 scopus 로고    scopus 로고
    • Using heme as an energy boost for lactic acid bacteria
    • Lechardeur, D., et al. Using heme as an energy boost for lactic acid bacteria. Curr. Opin. Biotechnol. 22 (2011), 143–149.
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 143-149
    • Lechardeur, D.1
  • 39
    • 0035021812 scopus 로고    scopus 로고
    • The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. Lactis IL1403
    • Bolotin, A., et al. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. Lactis IL1403. Genome Res. 11 (2001), 731–753.
    • (2001) Genome Res. , vol.11 , pp. 731-753
    • Bolotin, A.1
  • 40
    • 34247854960 scopus 로고    scopus 로고
    • Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. Cremoris MG1363
    • Wegmann, U., et al. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. Cremoris MG1363. J. Bacteriol. 189 (2007), 3256–3270.
    • (2007) J. Bacteriol. , vol.189 , pp. 3256-3270
    • Wegmann, U.1
  • 41
    • 66249130962 scopus 로고    scopus 로고
    • Lactobacillus plantarum WCFS1 electron transport chains
    • Brooijmans, R.J.W., et al. Lactobacillus plantarum WCFS1 electron transport chains. Appl. Environ. Microbiol. 75 (2009), 3580–3585.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 3580-3585
    • Brooijmans, R.J.W.1
  • 42
    • 84961821178 scopus 로고    scopus 로고
    • Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol
    • Liu, J., et al. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol. Metab. Eng. 36 (2016), 57–67.
    • (2016) Metab. Eng. , vol.36 , pp. 57-67
    • Liu, J.1
  • 43
    • 85010755484 scopus 로고    scopus 로고
    • Systems biology of robustness and flexibility: Lactobacillus buchneri: a show case
    • Published online January 25, 2017.
    • Heinl, S., Grabherr, R., Systems biology of robustness and flexibility: Lactobacillus buchneri: a show case. J. Biotechnol., 2017, 10.1016/j.jbiotec.2017.01.007 Published online January 25, 2017.
    • (2017) J. Biotechnol.
    • Heinl, S.1    Grabherr, R.2
  • 44
    • 84898887058 scopus 로고    scopus 로고
    • Progress in engineering acid stress resistance of lactic acid bacteria
    • Wu, C., et al. Progress in engineering acid stress resistance of lactic acid bacteria. Appl. Microbiol. Biotechnol. 98 (2014), 1055–1063.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 1055-1063
    • Wu, C.1
  • 45
    • 84863462399 scopus 로고    scopus 로고
    • Lactobacillus casei combats acid stress by maintaining cell membrane functionality
    • Wu, C., et al. Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J. Ind. Microbiol. Biotechnol. 39 (2012), 1031–1039.
    • (2012) J. Ind. Microbiol. Biotechnol. , vol.39 , pp. 1031-1039
    • Wu, C.1
  • 46
    • 84991202457 scopus 로고    scopus 로고
    • Stress physiology of lactic acid bacteria
    • Papadimitriou, K., et al. Stress physiology of lactic acid bacteria. J. Microbiol. Mol. Biol. Rev. 80 (2016), 837–890.
    • (2016) J. Microbiol. Mol. Biol. Rev. , vol.80 , pp. 837-890
    • Papadimitriou, K.1
  • 47
    • 84941992124 scopus 로고    scopus 로고
    • Metabolic strategies of beer spoilage lactic acid bacteria in beer
    • Geissler, A.J., et al. Metabolic strategies of beer spoilage lactic acid bacteria in beer. Int. J. Food Microbiol. 216 (2016), 60–68.
    • (2016) Int. J. Food Microbiol. , vol.216 , pp. 60-68
    • Geissler, A.J.1
  • 48
    • 71749111885 scopus 로고    scopus 로고
    • How microbes tolerate ethanol and butanol
    • Liu, S., Qureshi, N., How microbes tolerate ethanol and butanol. New Biotechnol. 26 (2009), 117–121.
    • (2009) New Biotechnol. , vol.26 , pp. 117-121
    • Liu, S.1    Qureshi, N.2
  • 49
    • 84959876975 scopus 로고    scopus 로고
    • Frontiers in microbial 1-butanol and isobutanol production
    • Chen, C.T., Liao, J.C., Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol. Lett., 363, 2016, fnw020.
    • (2016) FEMS Microbiol. Lett. , vol.363 , pp. fnw020
    • Chen, C.T.1    Liao, J.C.2
  • 50
    • 0041912376 scopus 로고    scopus 로고
    • Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping
    • Ezeji, T.C., et al. Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J. Microbiol. Biotechnol. 19 (2003), 595–603.
    • (2003) World J. Microbiol. Biotechnol. , vol.19 , pp. 595-603
    • Ezeji, T.C.1
  • 51
    • 84975108991 scopus 로고    scopus 로고
    • Lactobacillus casei as a biocatalyst for biofuel production
    • Vinay-Lara, E., et al. Lactobacillus casei as a biocatalyst for biofuel production. J. Ind. Microbiol. Biotechnol. 43 (2016), 1205–1213.
    • (2016) J. Ind. Microbiol. Biotechnol. , vol.43 , pp. 1205-1213
    • Vinay-Lara, E.1
  • 52
    • 85017537569 scopus 로고    scopus 로고
    • Lactobacilli and pediococci as versatile cell factories – evaluation of strain properties and genetic tools
    • Published online April 7, 2017.
    • Bosma, E.F., et al. Lactobacilli and pediococci as versatile cell factories – evaluation of strain properties and genetic tools. Biotechnol. Adv., 2017, 10.1016/j.biotechadv.2017.04.002 Published online April 7, 2017.
    • (2017) Biotechnol. Adv.
    • Bosma, E.F.1
  • 53
    • 84960841124 scopus 로고    scopus 로고
    • Identifying inhibitory effects of lignocellulosic by-products on growth of lactic acid producing micro-organisms using a rapid small-scale screening method
    • van der Pol, E.C., et al. Identifying inhibitory effects of lignocellulosic by-products on growth of lactic acid producing micro-organisms using a rapid small-scale screening method. Bioresour. Technol. 209 (2016), 297–304.
    • (2016) Bioresour. Technol. , vol.209 , pp. 297-304
    • van der Pol, E.C.1
  • 54
    • 84904550698 scopus 로고    scopus 로고
    • Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth
    • Hunter, W.J., Manter, D.K., Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth. Bioresour. Technol. 169 (2014), 162–168.
    • (2014) Bioresour. Technol. , vol.169 , pp. 162-168
    • Hunter, W.J.1    Manter, D.K.2
  • 55
    • 84902197211 scopus 로고    scopus 로고
    • Metabolic engineering of lactic acid bacteria for the production of industrially important compounds
    • Papagianni, M., Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput. Struct. Biotechnol. J., 3, 2012, e201210003.
    • (2012) Comput. Struct. Biotechnol. J. , vol.3 , pp. e201210003
    • Papagianni, M.1
  • 56
    • 84882723516 scopus 로고    scopus 로고
    • From physiology to systems metabolic engineering for the production of agnoliale by lactic acid bacteria
    • Gaspar, P., et al. From physiology to systems metabolic engineering for the production of agnoliale by lactic acid bacteria. Biotechnol. Adv. 31 (2013), 764–788.
    • (2013) Biotechnol. Adv. , vol.31 , pp. 764-788
    • Gaspar, P.1
  • 57
    • 79952429363 scopus 로고    scopus 로고
    • Engineering lactic acid bacteria for increased industrial functionality
    • Bron, P.A., Kleerebezem, M., Engineering lactic acid bacteria for increased industrial functionality. Bioeng. Bugs 2 (2011), 80–87.
    • (2011) Bioeng. Bugs , vol.2 , pp. 80-87
    • Bron, P.A.1    Kleerebezem, M.2
  • 58
    • 79957965157 scopus 로고    scopus 로고
    • A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker
    • Nguyen, T.T., et al. A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker. J. Agric. Food. Chem. 59 (2011), 5617–5624.
    • (2011) J. Agric. Food. Chem. , vol.59 , pp. 5617-5624
    • Nguyen, T.T.1
  • 59
    • 84949216054 scopus 로고    scopus 로고
    • High efficiency electrotransformation of Lactobacillus casei
    • Welker, D.L., et al. High efficiency electrotransformation of Lactobacillus casei. FEMS Microbiol. Lett. 362 (2015), 1–6.
    • (2015) FEMS Microbiol. Lett. , vol.362 , pp. 1-6
    • Welker, D.L.1
  • 60
    • 84879500805 scopus 로고    scopus 로고
    • Genetic engineering of Lactobacillus diolivorans
    • Pflügl, S., et al. Genetic engineering of Lactobacillus diolivorans. FEMS Microbiol. Lett. 344 (2013), 152–158.
    • (2013) FEMS Microbiol. Lett. , vol.344 , pp. 152-158
    • Pflügl, S.1
  • 61
    • 84941183896 scopus 로고    scopus 로고
    • Cloning and overexpression of the als, pflA, and adhB genes in Streptococcus thermophilus and their effects on metabolite formation
    • Akyol, I., et al. Cloning and overexpression of the als, pflA, and adhB genes in Streptococcus thermophilus and their effects on metabolite formation. Mol. Biotechnol. 57 (2015), 923–930.
    • (2015) Mol. Biotechnol. , vol.57 , pp. 923-930
    • Akyol, I.1
  • 62
    • 84978075339 scopus 로고    scopus 로고
    • Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria
    • Özcelik, S., et al. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT Food Sci. Technol. 73 (2016), 536–542.
    • (2016) LWT Food Sci. Technol. , vol.73 , pp. 536-542
    • Özcelik, S.1
  • 63
    • 84958944593 scopus 로고    scopus 로고
    • Lactobacillus and Leuconostoc volatilomes in cheese conditions
    • Pogačić, S., et al. Lactobacillus and Leuconostoc volatilomes in cheese conditions. Appl. Microbiol. Biotechnol. 100 (2016), 2335–2346.
    • (2016) Appl. Microbiol. Biotechnol. , vol.100 , pp. 2335-2346
    • Pogačić, S.1
  • 64
    • 84992535835 scopus 로고    scopus 로고
    • LAB bacteriocin applications in the last decade
    • Lopez-Cuellar, M.R., et al. LAB bacteriocin applications in the last decade. Biotechnol. Biotechnol. Eq. 30 (2016), 1039–1050.
    • (2016) Biotechnol. Biotechnol. Eq. , vol.30 , pp. 1039-1050
    • Lopez-Cuellar, M.R.1
  • 65
    • 84960814574 scopus 로고    scopus 로고
    • Bacteriocins of lactic acid bacteria: extending the family
    • Alvarez-Siero, P., et al. Bacteriocins of lactic acid bacteria: extending the family. Appl. Microbiol. Biotechnol. 100 (2016), 2939–2951.
    • (2016) Appl. Microbiol. Biotechnol. , vol.100 , pp. 2939-2951
    • Alvarez-Siero, P.1
  • 66
    • 84925517694 scopus 로고    scopus 로고
    • Nisin incorporated with 2,3-dihydroxybencoic acid nanofibers inhibits biofilm formation by a methicillin-resistant strain of Staphylococcus aureus
    • Ahire, J.J., Dicks, L.M., Nisin incorporated with 2,3-dihydroxybencoic acid nanofibers inhibits biofilm formation by a methicillin-resistant strain of Staphylococcus aureus. Probiotics Antimicrob. Proteins 7 (2015), 52–59.
    • (2015) Probiotics Antimicrob. Proteins , vol.7 , pp. 52-59
    • Ahire, J.J.1    Dicks, L.M.2
  • 67
    • 85008613719 scopus 로고    scopus 로고
    • Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria
    • Kaskoniene, V., et al. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Appl. Microbiol. Biotechnol. 101 (2017), 1323–1335.
    • (2017) Appl. Microbiol. Biotechnol. , vol.101 , pp. 1323-1335
    • Kaskoniene, V.1
  • 68
    • 84904901819 scopus 로고    scopus 로고
    • Antibacterial activities of bacteriocins: application in foods and pharmaceuticals
    • Yang, S.C., et al. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front. Microbiol. 5 (2014), 6–21.
    • (2014) Front. Microbiol. , vol.5 , pp. 6-21
    • Yang, S.C.1
  • 69
    • 84920531816 scopus 로고    scopus 로고
    • Bacterial microcompartments and the modular construction of microbial metabolism
    • Kerfeld, C.A., Erbilgin, O., Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol. 23 (2015), 22–34.
    • (2015) Trends Microbiol. , vol.23 , pp. 22-34
    • Kerfeld, C.A.1    Erbilgin, O.2
  • 70
    • 46049098363 scopus 로고    scopus 로고
    • Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation
    • Sriramulu, D.D., et al. Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J. Bacteriol. 190 (2008), 4559–4567.
    • (2008) J. Bacteriol. , vol.190 , pp. 4559-4567
    • Sriramulu, D.D.1
  • 71
    • 84979944281 scopus 로고    scopus 로고
    • Tuning the catalytic activity of subcellular nanoreactors
    • Jakobson, C.M., et al. Tuning the catalytic activity of subcellular nanoreactors. J. Mol. Biol. 428 (2016), 2989–2996.
    • (2016) J. Mol. Biol. , vol.428 , pp. 2989-2996
    • Jakobson, C.M.1
  • 72
    • 77952968392 scopus 로고    scopus 로고
    • Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics
    • Guo, W., et al. Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. Appl. Biochem. Biotechnol. 161 (2010), 124–136.
    • (2010) Appl. Biochem. Biotechnol. , vol.161 , pp. 124-136
    • Guo, W.1
  • 73
    • 37849041676 scopus 로고    scopus 로고
    • Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation
    • Dumbrepatil, A., et al. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl. Environ. Microbiol. 74 (2008), 333–335.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 333-335
    • Dumbrepatil, A.1
  • 74
    • 0036090581 scopus 로고    scopus 로고
    • Production of D-mannitol by heterofermentative lactic acid bacteria
    • von Weymarn, N., et al. Production of D-mannitol by heterofermentative lactic acid bacteria. Process Biochem. 37 (2002), 1207–1213.
    • (2002) Process Biochem. , vol.37 , pp. 1207-1213
    • von Weymarn, N.1
  • 75
    • 0036023490 scopus 로고    scopus 로고
    • High-level production of D-mannitol with membrane cell-recycle bioreactor
    • von Weymarn, N., et al. High-level production of D-mannitol with membrane cell-recycle bioreactor. J. Ind. Microbiol. Biotechnol. 29 (2002), 44–49.
    • (2002) J. Ind. Microbiol. Biotechnol. , vol.29 , pp. 44-49
    • von Weymarn, N.1
  • 76
    • 0037910360 scopus 로고    scopus 로고
    • Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693
    • Saha, B.C., Nakamura, L.K., Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Biotechnol. Bioeng. 82 (2003), 864–871.
    • (2003) Biotechnol. Bioeng. , vol.82 , pp. 864-871
    • Saha, B.C.1    Nakamura, L.K.2
  • 77
    • 33745938999 scopus 로고    scopus 로고
    • Production of mannitol from inulin by simultaneous enzymatic saccharification and fermentation with Lactobacillus intermedius NRRL B-3693
    • Saha, B.C., Production of mannitol from inulin by simultaneous enzymatic saccharification and fermentation with Lactobacillus intermedius NRRL B-3693. Enzyme Microbial. Technol. 39 (2006), 991–995.
    • (2006) Enzyme Microbial. Technol. , vol.39 , pp. 991-995
    • Saha, B.C.1
  • 78
    • 84939990992 scopus 로고    scopus 로고
    • Efficient production of reuterin from glycerol by magnetically immobilized Lactobacillus reuteri
    • Liu, F., Yu, B., Efficient production of reuterin from glycerol by magnetically immobilized Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 99 (2016), 4659–4666.
    • (2016) Appl. Microbiol. Biotechnol. , vol.99 , pp. 4659-4666
    • Liu, F.1    Yu, B.2
  • 79
    • 84901827967 scopus 로고    scopus 로고
    • Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol
    • Dishisha, T., et al. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Microb. Cell Fact., 13, 2014, 76.
    • (2014) Microb. Cell Fact. , vol.13 , pp. 76
    • Dishisha, T.1
  • 80
    • 85016164502 scopus 로고    scopus 로고
    • Enhanced production of gamma-aminobutyric acid by optimizing culture conditions of Lactobacillus brevis HYE1 isolated from kimchi, a Korean fermented food
    • Lim, H.S., et al. Enhanced production of gamma-aminobutyric acid by optimizing culture conditions of Lactobacillus brevis HYE1 isolated from kimchi, a Korean fermented food. J. Microbiol. Biotechnol. 27 (2017), 450–459.
    • (2017) J. Microbiol. Biotechnol. , vol.27 , pp. 450-459
    • Lim, H.S.1
  • 81
    • 84937817045 scopus 로고    scopus 로고
    • Two-step production of gamma-aminobutyric acid from cassava powder using Corynebacterium glutamicum and Lactobacillus plantarum
    • Yang, T., et al. Two-step production of gamma-aminobutyric acid from cassava powder using Corynebacterium glutamicum and Lactobacillus plantarum. J. Ind. Microbiol. Biotechnol. 42 (2015), 1157–1165.
    • (2015) J. Ind. Microbiol. Biotechnol. , vol.42 , pp. 1157-1165
    • Yang, T.1
  • 82
    • 30044432969 scopus 로고    scopus 로고
    • Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production
    • Liu, S., et al. Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production. J. Ind. Microbiol. Biotechnol. 33 (2006), 1–7.
    • (2006) J. Ind. Microbiol. Biotechnol. , vol.33 , pp. 1-7
    • Liu, S.1
  • 83
    • 84959340185 scopus 로고    scopus 로고
    • A novel cell factory for efficient production of ethanol from dairy waste
    • Liu, J., et al. A novel cell factory for efficient production of ethanol from dairy waste. Biotechnol. Biofuels, 9, 2016, 33.
    • (2016) Biotechnol. Biofuels , vol.9 , pp. 33
    • Liu, J.1
  • 84
    • 77953076065 scopus 로고    scopus 로고
    • Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis
    • Berezina, O.V., et al. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl. Microbiol. Biotechnol. 87 (2010), 635–646.
    • (2010) Appl. Microbiol. Biotechnol. , vol.87 , pp. 635-646
    • Berezina, O.V.1
  • 85
    • 84897109295 scopus 로고    scopus 로고
    • Bioconversion of glycerol to 1,3-propanediol in thin stillage-based media by engineered Lactobacillus panis PM1
    • Kang, T.S., et al. Bioconversion of glycerol to 1,3-propanediol in thin stillage-based media by engineered Lactobacillus panis PM1. J. Ind. Microbiol. Biotechnol. 41 (2014), 629–635.
    • (2014) J. Ind. Microbiol. Biotechnol. , vol.41 , pp. 629-635
    • Kang, T.S.1
  • 86
    • 84995872883 scopus 로고    scopus 로고
    • Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis
    • Kandasamy, V., et al. Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Sci. Rep., 6, 2016, 36769.
    • (2016) Sci. Rep. , vol.6 , pp. 36769
    • Kandasamy, V.1
  • 87
    • 84924706138 scopus 로고    scopus 로고
    • L-lactate production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system
    • Doi, Y., L-lactate production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system. Appl. Environ. Microbiol. 81 (2015), 2082–2089.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 2082-2089
    • Doi, Y.1
  • 88
    • 84943155424 scopus 로고    scopus 로고
    • Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain
    • Kuo, Y.C., et al. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Bioresour Technol. 198 (2015), 651–657.
    • (2015) Bioresour Technol. , vol.198 , pp. 651-657
    • Kuo, Y.C.1
  • 89
    • 84879015492 scopus 로고    scopus 로고
    • Metabolic engineering of Lactobacillus plantarum for succinic acid production through activation of the reductive branch of the tricarboxylic acid cycle
    • Tsuji, A., et al. Metabolic engineering of Lactobacillus plantarum for succinic acid production through activation of the reductive branch of the tricarboxylic acid cycle. Enzyme Microb. Technol. 53 (2013), 97–103.
    • (2013) Enzyme Microb. Technol. , vol.53 , pp. 97-103
    • Tsuji, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.