메뉴 건너뛰기




Volumn 364, Issue 16, 2017, Pages

Carbon recycling by cyanobacteria: Improving CO2 fixation through chemical production

Author keywords

CO2 fixation; Cyanobacteria; Metabolic engineering

Indexed keywords

1,3 PROPANEDIOL; 2 METHYL 1 BUTANOL; 2 PROPANOL; 2,3 BUTANEDIOL; ALCOHOL; BUTANOL; CARBON; CARBONATE DEHYDRATASE; CARBOXYSOME; ENZYME; HYDRACRYLIC ACID; ISOBUTANOL; ISOBUTYRALDEHYDE; LACTIC ACID; RIBULOSEBISPHOSPHATE CARBOXYLASE; UNCLASSIFIED DRUG; BIOFUEL; BUTANEDIOL; CARBON DIOXIDE;

EID: 85031906568     PISSN: 03781097     EISSN: 15746968     Source Type: Journal    
DOI: 10.1093/femsle/fnx165     Document Type: Short Survey
Times cited : (52)

References (46)
  • 1
    • 44649180586 scopus 로고    scopus 로고
    • Catalysis and regulation in Rubisco
    • Andersson I. Catalysis and regulation in Rubisco. J Exp Bot 2008;59:1555-68
    • (2008) J Exp Bot , vol.59 , pp. 1555-1568
    • Andersson, I.1
  • 2
    • 84902946445 scopus 로고    scopus 로고
    • Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803
    • Angermayr SA, van der Woude AD, Correddu D et al. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol Biofuels 2014;7:99
    • (2014) Biotechnol Biofuels , vol.7 , pp. 99
    • Angermayr, S.A.1    van der Woude, A.D.2    Correddu, D.3
  • 3
    • 71849086611 scopus 로고    scopus 로고
    • Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
    • Atsumi S, Higashide W, Liao JC. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotech 2009;27: 1177-80
    • (2009) Nat Biotech , vol.27 , pp. 1177-1180
    • Atsumi, S.1    Higashide, W.2    Liao, J.C.3
  • 4
    • 53049083876 scopus 로고    scopus 로고
    • Metabolic engineering for advanced biofuels production from Escherichia coli
    • Atsumi S, Liao JC. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 2008;19:414-9
    • (2008) Curr Opin Biotechnol , vol.19 , pp. 414-419
    • Atsumi, S.1    Liao, J.C.2
  • 5
    • 84884227283 scopus 로고    scopus 로고
    • Synthetic biology of cyanobacteria: unique challenges and opportunities
    • Berla B, Saha R, Immethun C et al. Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 2013;4: 246
    • (2013) Front Microbiol , vol.4 , pp. 246
    • Berla, B.1    Saha, R.2    Immethun, C.3
  • 6
    • 85006401140 scopus 로고    scopus 로고
    • Unique attributes of cyanobacterial metabolism revealed by improved genomescale metabolic modeling and essential gene analysis
    • Broddrick JT, Rubin BE, Welkie DG et al. Unique attributes of cyanobacterial metabolism revealed by improved genomescale metabolic modeling and essential gene analysis. P Natl Acad Sci USA 2016;113:E8344-53
    • (2016) P Natl Acad Sci USA , vol.113 , pp. E8344-E8353
    • Broddrick, J.T.1    Rubin, B.E.2    Welkie, D.G.3
  • 7
    • 84904190583 scopus 로고    scopus 로고
    • Development of an activitydirected selection system enabled significant improvement of the carboxylation efficiency of Rubisco
    • Cai Z, Liu G, Zhang J et al. Development of an activitydirected selection system enabled significant improvement of the carboxylation efficiency of Rubisco. Protein Cell 2014;5: 552-62
    • (2014) Protein Cell , vol.5 , pp. 552-562
    • Cai, Z.1    Liu, G.2    Zhang, J.3
  • 8
    • 84889604825 scopus 로고    scopus 로고
    • Biogenesis of a bacterial organelle: the carboxysome assembly pathway
    • Cameron JC, Wilson SC, Bernstein SL. Biogenesis of a bacterial organelle: the carboxysome assembly pathway. Cell 2013;155:1131-40
    • (2013) Cell , vol.155 , pp. 1131-1140
    • Cameron, J.C.1    Wilson, S.C.2    Bernstein, S.L.3
  • 9
    • 84938613586 scopus 로고    scopus 로고
    • Optimizing Rubisco and its regulation for greater resource use efficiency
    • Carmo-Silva E, Scales JC, Madgwick PJ et al. Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ 2015;38:1817-32
    • (2015) Plant Cell Environ , vol.38 , pp. 1817-1832
    • Carmo-Silva, E.1    Scales, J.C.2    Madgwick, P.J.3
  • 10
    • 84973325121 scopus 로고    scopus 로고
    • Cyanobacterial chemical production
    • Case AE, Atsumi S. Cyanobacterial chemical production. J Biotechnol 2016;231:106-14
    • (2016) J Biotechnol , vol.231 , pp. 106-114
    • Case, A.E.1    Atsumi, S.2
  • 11
    • 84864236979 scopus 로고    scopus 로고
    • Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria
    • Chen P-H, Liu H-L, Chen Y-J et al. Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria. Energy Environ Sci 2012;5:8318-27
    • (2012) Energy Environ Sci , vol.5 , pp. 8318-8327
    • Chen, P.-H.1    Liu, H.-L.2    Chen, Y.-J.3
  • 12
    • 84861172182 scopus 로고    scopus 로고
    • Rerouting carbon flux to enhance photosynthetic productivity
    • Ducat DC, Avelar-Rivas JA, Way JC et al. Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microb 2012;78:2660-8
    • (2012) Appl Environ Microb , vol.78 , pp. 2660-2668
    • Ducat, D.C.1    Avelar-Rivas, J.A.2    Way, J.C.3
  • 13
    • 84870863904 scopus 로고    scopus 로고
    • Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria
    • Gao Z, Zhao H, Li Z et al. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 2012;5:9857-65
    • (2012) Energy Environ Sci , vol.5 , pp. 9857-9865
    • Gao, Z.1    Zhao, H.2    Li, Z.3
  • 14
    • 84893709176 scopus 로고    scopus 로고
    • Engineering cyanobacteria as photosynthetic feedstock factories
    • Hays SG, Ducat DC. Engineering cyanobacteria as photosynthetic feedstock factories. Photosynth Res 2015;123:285-95
    • (2015) Photosynth Res , vol.123 , pp. 285-295
    • Hays, S.G.1    Ducat, D.C.2
  • 15
    • 84954288565 scopus 로고    scopus 로고
    • Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway
    • Hirokawa Y, Maki Y, Tatsuke T et al. Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway. Metab Eng 2016;34:97-103
    • (2016) Metab Eng , vol.34 , pp. 97-103
    • Hirokawa, Y.1    Maki, Y.2    Tatsuke, T.3
  • 16
    • 85015155257 scopus 로고    scopus 로고
    • Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria
    • Kanno M, Carroll AL, Atsumi S. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nat Commun 2017;8:14724
    • (2017) Nat Commun , vol.8 , pp. 14724
    • Kanno, M.1    Carroll, A.L.2    Atsumi, S.3
  • 17
    • 84879517799 scopus 로고    scopus 로고
    • Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis s. PCC 6803
    • Knoop H, Grundel M, Zilliges Y et al. Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput Biol 2013;9:e1003081
    • (2013) PLoS Comput Biol , vol.9
    • Knoop, H.1    Grundel, M.2    Zilliges, Y.3
  • 19
    • 78650985721 scopus 로고    scopus 로고
    • The importance of energy balance in improving photosynthetic productivity
    • Kramer DM, Evans JR. The importance of energy balance in improving photosynthetic productivity. Plant Physiol 2011;155:70-78
    • (2011) Plant Physiol , vol.155 , pp. 70-78
    • Kramer, D.M.1    Evans, J.R.2
  • 20
    • 84885166683 scopus 로고    scopus 로고
    • Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light
    • Kusakabe T, Tatsuke T, Tsuruno K et al. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 2013;20: 101-8
    • (2013) Metab Eng , vol.20 , pp. 101-108
    • Kusakabe, T.1    Tatsuke, T.2    Tsuruno, K.3
  • 21
    • 79958747820 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide
    • Lan EI, Liao JC. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 2011;13:353-63
    • (2011) Metab Eng , vol.13 , pp. 353-363
    • Lan, E.I.1    Liao, J.C.2
  • 22
    • 84882392453 scopus 로고    scopus 로고
    • Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria
    • Lan EI, Ro SY, Liao JC. Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ Sci 2013;6:2672-81
    • (2013) Energy Environ Sci , vol.6 , pp. 2672-2681
    • Lan, E.I.1    Ro, S.Y.2    Liao, J.C.3
  • 23
    • 85013680018 scopus 로고    scopus 로고
    • Synechocystis PCC 6803 overexpressing Ru-BisCO grow faster with increased photosynthesis
    • Liang F, Lindblad P. Synechocystis PCC 6803 overexpressing Ru-BisCO grow faster with increased photosynthesis. Metab Eng Commun 2017;4:29-36
    • (2017) Metab Eng Commun , vol.4 , pp. 29-36
    • Liang, F.1    Lindblad, P.2
  • 24
    • 84856947618 scopus 로고    scopus 로고
    • Over-expression of the betacarboxysomal CcmM protein in Synechococcus PCC7942 reveals a tight co-regulation of carboxysomal carbonic anhydrase (CcaA) and M58 content
    • Long BM, Rae BD, Badger MR et al. Over-expression of the betacarboxysomal CcmM protein in Synechococcus PCC7942 reveals a tight co-regulation of carboxysomal carbonic anhydrase (CcaA) and M58 content. Photosynth Res 2011;109: 33-45
    • (2011) Photosynth Res , vol.109 , pp. 33-45
    • Long, B.M.1    Rae, B.D.2    Badger, M.R.3
  • 25
    • 0030861452 scopus 로고    scopus 로고
    • Independent and tight regulation of transcriptional units in Escherichia Coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements
    • Lutz R, Bujard H. Independent and tight regulation of transcriptional units in Escherichia Coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 1997;25:1203-10
    • (1997) Nucleic Acids Res , vol.25 , pp. 1203-1210
    • Lutz, R.1    Bujard, H.2
  • 26
    • 84961173840 scopus 로고    scopus 로고
    • 2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption
    • McEwen JT, Kanno M, Atsumi S. 2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption. Metab Eng 2016;36:28-36
    • (2016) Metab Eng , vol.36 , pp. 28-36
    • McEwen, J.T.1    Kanno, M.2    Atsumi, S.3
  • 27
    • 84986004231 scopus 로고    scopus 로고
    • pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism
    • Mangan NM, Flamholz A, Hood RD et al. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism. P Natl Acad Sci USA 2016;113: E5354-62
    • (2016) P Natl Acad Sci USA , vol.113 , pp. E5354-E5362
    • Mangan, N.M.1    Flamholz, A.2    Hood, R.D.3
  • 28
    • 85011290115 scopus 로고    scopus 로고
    • Identifying the metabolic differences of a fast-growth phenotype in Synechococcus UTEX 2973
    • Mueller TJ, Ungerer JL, Pakrasi HB et al. Identifying the metabolic differences of a fast-growth phenotype in Synechococcus UTEX 2973. Sci Rep 2017;7:41569
    • (2017) Sci Rep , vol.7 , pp. 41569
    • Mueller, T.J.1    Ungerer, J.L.2    Pakrasi, H.B.3
  • 30
    • 84942454433 scopus 로고    scopus 로고
    • Genome engineering of the 2,3-butanediol biosynthetic pathway for tight regulation in cyanobacteria
    • Nozzi NE, Atsumi S. Genome engineering of the 2,3-butanediol biosynthetic pathway for tight regulation in cyanobacteria. ACS Synth Biol 2015;4:1197-204
    • (2015) ACS Synth Biol , vol.4 , pp. 1197-1204
    • Nozzi, N.E.1    Atsumi, S.2
  • 31
    • 84901846248 scopus 로고    scopus 로고
    • Metabolic design for cyanobacterial chemical synthesis
    • Oliver JW, Atsumi S. Metabolic design for cyanobacterial chemical synthesis. Photosynth Res 2014;120:249-61
    • (2014) Photosynth Res , vol.120 , pp. 249-261
    • Oliver, J.W.1    Atsumi, S.2
  • 32
    • 84964247550 scopus 로고    scopus 로고
    • A carbon sink pathway increases carbon productivity in cyanobacteria
    • Oliver JW, Atsumi S. A carbon sink pathway increases carbon productivity in cyanobacteria. Metab Eng 2015;29: 106-12
    • (2015) Metab Eng , vol.29 , pp. 106-112
    • Oliver, J.W.1    Atsumi, S.2
  • 33
    • 84893492693 scopus 로고    scopus 로고
    • Combinatorial optimization of cyanobacterial 2,3-butanediol production
    • Oliver JW, Machado IM, Yoneda H et al. Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng 2014;22:76-82
    • (2014) Metab Eng , vol.22 , pp. 76-82
    • Oliver, J.W.1    Machado, I.M.2    Yoneda, H.3
  • 34
    • 84872862096 scopus 로고    scopus 로고
    • Cyanobacterial conversion of carbon dioxide to 2,3-butanediol
    • Oliver JWK, Machado IMP, Yoneda H et al. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. P Natl Acad Sci USA 2013;110:1249-54
    • (2013) P Natl Acad Sci USA , vol.110 , pp. 1249-1254
    • Oliver, J.W.K.1    Machado, I.M.P.2    Yoneda, H.3
  • 35
    • 84985994022 scopus 로고    scopus 로고
    • Cyanobacterial metabolic engineering for biofuel and chemical production
    • Oliver NJ, Rabinovitch-Deere CA, Carroll AL et al. Cyanobacterial metabolic engineering for biofuel and chemical production. Curr Opin Chem Biol 2016;35:43-50
    • (2016) Curr Opin Chem Biol , vol.35 , pp. 43-50
    • Oliver, N.J.1    Rabinovitch-Deere, C.A.2    Carroll, A.L.3
  • 36
    • 0001595227 scopus 로고
    • Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a High CO2-requiring phenotype: Evidence for a central role for carboxysomes in the CO2 concentrating mechanism
    • Price GD, Badger MR. Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a High CO2-requiring phenotype: Evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol 1989;91:505-13
    • (1989) Plant Physiol , vol.91 , pp. 505-513
    • Price, G.D.1    Badger, M.R.2
  • 38
    • 3142740862 scopus 로고    scopus 로고
    • The oceanic sink for anthropogenic CO2
    • Sabine CL, Feely RA, Gruber N et al. The oceanic sink for anthropogenic CO2. Science 2004;305:367-71
    • (2004) Science , vol.305 , pp. 367-371
    • Sabine, C.L.1    Feely, R.A.2    Gruber, N.3
  • 39
    • 77749264485 scopus 로고    scopus 로고
    • Spatially ordered dynamics of the bacterial carbon fixation machinery
    • Savage DF, Afonso B, Chen AH et al. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 2010;327:1258-61
    • (2010) Science , vol.327 , pp. 1258-1261
    • Savage, D.F.1    Afonso, B.2    Chen, A.H.3
  • 40
    • 84867643979 scopus 로고    scopus 로고
    • Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase
    • Shen CR, Liao JC. Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy Environ Sci 2012;5:9574-83
    • (2012) Energy Environ Sci , vol.5 , pp. 9574-9583
    • Shen, C.R.1    Liao, J.C.2
  • 41
    • 84898079137 scopus 로고    scopus 로고
    • Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium
    • Shih PM, Zarzycki J, Niyogi KK et al. Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium. J Biol Chem 2014;289:9493-500
    • (2014) J Biol Chem , vol.289 , pp. 9493-9500
    • Shih, P.M.1    Zarzycki, J.2    Niyogi, K.K.3
  • 42
    • 0032080510 scopus 로고    scopus 로고
    • Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC6803
    • So AK, Espie GS. Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Plant Mol Biol 1998;37:205-15
    • (1998) Plant Mol Biol , vol.37 , pp. 205-215
    • So, A.K.1    Espie, G.S.2
  • 43
    • 84952897629 scopus 로고    scopus 로고
    • Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis s. PCC 6803
    • Wang Y, Sun T, Gao X et al. Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab Eng 2016;34:60-70
    • (2016) Metab Eng , vol.34 , pp. 60-70
    • Wang, Y.1    Sun, T.2    Gao, X.3
  • 44
    • 78650988475 scopus 로고    scopus 로고
    • Advancing our understanding and capacity to engineer nature's CO2-sequestering enzyme, Rubisco
    • Whitney SM, Houtz RL, Alonso H. Advancing our understanding and capacity to engineer nature's CO2-sequestering enzyme, Rubisco. Plant Physiol 2011;155:27-35
    • (2011) Plant Physiol , vol.155 , pp. 27-35
    • Whitney, S.M.1    Houtz, R.L.2    Alonso, H.3
  • 45
    • 84940197691 scopus 로고    scopus 로고
    • Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2
    • Yu J, Liberton M, Cliften PF et al. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Sci Rep 2015;5:8132
    • (2015) Sci Rep , vol.5 , pp. 8132
    • Yu, J.1    Liberton, M.2    Cliften, P.F.3
  • 46
    • 84984831746 scopus 로고    scopus 로고
    • Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria
    • Zhou J, Zhang F, Meng H et al. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria. Metab Eng 2016;38:217-27
    • (2016) Metab Eng , vol.38 , pp. 217-227
    • Zhou, J.1    Zhang, F.2    Meng, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.