메뉴 건너뛰기




Volumn 17, Issue 3, 2013, Pages 462-471

Next generation biofuel engineering in prokaryotes

Author keywords

[No Author keywords available]

Indexed keywords

ACETONE; ALCOHOL; BUTANOL; CARBON DIOXIDE; CELLULASE; COENZYME A; FATTY ACID DERIVATIVE; ISOPRENOID; LIGNOCELLULOSE; OXOACID; RECOMBINANT ENZYME;

EID: 84878854426     PISSN: 13675931     EISSN: 18790402     Source Type: Journal    
DOI: 10.1016/j.cbpa.2013.03.037     Document Type: Review
Times cited : (130)

References (90)
  • 3
    • 78449244865 scopus 로고    scopus 로고
    • Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping
    • Inokuma K., Liao J.C., Okamoto M., Hanai T. Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. Journal of Bioscience and Bioengineering 2010, 110:696-701.
    • (2010) Journal of Bioscience and Bioengineering , vol.110 , pp. 696-701
    • Inokuma, K.1    Liao, J.C.2    Okamoto, M.3    Hanai, T.4
  • 4
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • Bond-Watts B.B., Bellerose R.J., Chang M.C. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 2011, 7:222-227.
    • (2011) Nat Chem Biol , vol.7 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.3
  • 5
  • 6
    • 79960859539 scopus 로고    scopus 로고
    • Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli
    • Dekishima Y., Lan E.I., Shen C.R., Cho K.M., Liao J.C. Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J Am Chem Soc 2011, 133:11399-11401.
    • (2011) J Am Chem Soc , vol.133 , pp. 11399-11401
    • Dekishima, Y.1    Lan, E.I.2    Shen, C.R.3    Cho, K.M.4    Liao, J.C.5
  • 7
    • 84865592819 scopus 로고    scopus 로고
    • A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols
    • Machado H.B., Dekishima Y., Luo H., Lan E.I., Liao J.C. A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. Metab Eng 2012, 14:504-511.
    • (2012) Metab Eng , vol.14 , pp. 504-511
    • Machado, H.B.1    Dekishima, Y.2    Luo, H.3    Lan, E.I.4    Liao, J.C.5
  • 8
    • 80051941601 scopus 로고    scopus 로고
    • Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals
    • Dellomonaco C., Clomburg J.M., Miller E.N., Gonzalez R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476:355-359.
    • (2011) Nature , vol.476 , pp. 355-359
    • Dellomonaco, C.1    Clomburg, J.M.2    Miller, E.N.3    Gonzalez, R.4
  • 9
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Atsumi S., Hanai T., Liao J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451:86-89.
    • (2008) Nature , vol.451 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 11
    • 79958177780 scopus 로고    scopus 로고
    • High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal
    • Baez A., Cho K.M., Liao J.C. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol 2011, 90:1681-1690.
    • (2011) Appl Microbiol Biotechnol , vol.90 , pp. 1681-1690
    • Baez, A.1    Cho, K.M.2    Liao, J.C.3
  • 12
    • 79955164750 scopus 로고    scopus 로고
    • Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
    • Bastian S., Liu X., Meyerowitz J.T., Snow C.D., Chen M.M., Arnold F.H. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 2011, 13:345-352.
    • (2011) Metab Eng , vol.13 , pp. 345-352
    • Bastian, S.1    Liu, X.2    Meyerowitz, J.T.3    Snow, C.D.4    Chen, M.M.5    Arnold, F.H.6
  • 14
    • 57449098845 scopus 로고    scopus 로고
    • Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli
    • Atsumi S., Liao J.C. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 2008, 74:7802-7808.
    • (2008) Appl Environ Microbiol , vol.74 , pp. 7802-7808
    • Atsumi, S.1    Liao, J.C.2
  • 15
    • 79960712071 scopus 로고    scopus 로고
    • Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression
    • Li S., Wen J., Jia X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 2011, 91:577-589.
    • (2011) Appl Microbiol Biotechnol , vol.91 , pp. 577-589
    • Li, S.1    Wen, J.2    Jia, X.3
  • 16
    • 77950626597 scopus 로고    scopus 로고
    • 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation
    • Connor M.R., Cann A.F., Liao J.C. 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 2010, 86:1155-1164.
    • (2010) Appl Microbiol Biotechnol , vol.86 , pp. 1155-1164
    • Connor, M.R.1    Cann, A.F.2    Liao, J.C.3
  • 17
    • 84861182389 scopus 로고    scopus 로고
    • Efficient conversion of pure and mixed terpene feedstocks to high density fuels
    • Meylemans H.A., Quintana R.L., Harvey B.G. Efficient conversion of pure and mixed terpene feedstocks to high density fuels. Fuel 2012, 97:560-568.
    • (2012) Fuel , vol.97 , pp. 560-568
    • Meylemans, H.A.1    Quintana, R.L.2    Harvey, B.G.3
  • 23
    • 79958232375 scopus 로고    scopus 로고
    • Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway
    • Zhao Y., Yang J., Qin B., Li Y., Sun Y., Su S., Xian M. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol 2011, 90:1915-1922.
    • (2011) Appl Microbiol Biotechnol , vol.90 , pp. 1915-1922
    • Zhao, Y.1    Yang, J.2    Qin, B.3    Li, Y.4    Sun, Y.5    Su, S.6    Xian, M.7
  • 24
    • 84860487970 scopus 로고    scopus 로고
    • Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli
    • Yang J., Xian M., Su S., Zhao G., Nie Q., Jiang X., Zheng Y., Liu W. Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli. PLoS One 2012, 7:e33509.
    • (2012) PLoS One , vol.7
    • Yang, J.1    Xian, M.2    Su, S.3    Zhao, G.4    Nie, Q.5    Jiang, X.6    Zheng, Y.7    Liu, W.8
  • 25
    • 84869122829 scopus 로고    scopus 로고
    • Engineering Escherichia coli to synthesize free fatty acids
    • Lennen R.M., Pfleger B.F. Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 2012, 30:659-667.
    • (2012) Trends Biotechnol , vol.30 , pp. 659-667
    • Lennen, R.M.1    Pfleger, B.F.2
  • 26
    • 78650570829 scopus 로고    scopus 로고
    • Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals
    • Handke P., Lynch S.A., Gill R.T. Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metab Eng 2011, 13:28-37.
    • (2011) Metab Eng , vol.13 , pp. 28-37
    • Handke, P.1    Lynch, S.A.2    Gill, R.T.3
  • 27
    • 77953022686 scopus 로고    scopus 로고
    • Quantitative analysis and engineering of fatty acid biosynthesis in E. coli
    • Liu T., Vora H., Khosla C. Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng 2010, 12:378-386.
    • (2010) Metab Eng , vol.12 , pp. 378-386
    • Liu, T.1    Vora, H.2    Khosla, C.3
  • 29
    • 80052021573 scopus 로고    scopus 로고
    • Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA
    • Xu P., Ranganathan S., Fowler Z.L., Maranas C.D., Koffas M.A. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 2011, 13:578-587.
    • (2011) Metab Eng , vol.13 , pp. 578-587
    • Xu, P.1    Ranganathan, S.2    Fowler, Z.L.3    Maranas, C.D.4    Koffas, M.A.5
  • 30
    • 84859633048 scopus 로고    scopus 로고
    • Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids
    • Zhang F., Carothers J.M., Keasling J.D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 2012, 30:354-359.
    • (2012) Nat Biotechnol , vol.30 , pp. 354-359
    • Zhang, F.1    Carothers, J.M.2    Keasling, J.D.3
  • 31
    • 81755185882 scopus 로고    scopus 로고
    • In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli
    • Yu X., Liu T., Zhu F., Khosla C. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. Proc Natl Acad Sci U S A 2011, 108:18643-18648.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 18643-18648
    • Yu, X.1    Liu, T.2    Zhu, F.3    Khosla, C.4
  • 33
    • 84861142495 scopus 로고    scopus 로고
    • Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli
    • Zheng Y.N., Li L.L., Liu Q., Yang J.M., Wang X.W., Liu W., Xu X., Liu H., Zhao G., Xian M. Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli. Microb Cell Fact 2012, 11:65.
    • (2012) Microb Cell Fact , vol.11 , pp. 65
    • Zheng, Y.N.1    Li, L.L.2    Liu, Q.3    Yang, J.M.4    Wang, X.W.5    Liu, W.6    Xu, X.7    Liu, H.8    Zhao, G.9    Xian, M.10
  • 34
    • 84872661350 scopus 로고    scopus 로고
    • Modulating membrane composition alters free fatty acid tolerance in Escherichia coli
    • Lennen R.M., Pfleger B.F. Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One 2013, 8:e54031.
    • (2013) PLoS One , vol.8
    • Lennen, R.M.1    Pfleger, B.F.2
  • 38
    • 77953044867 scopus 로고    scopus 로고
    • A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes
    • Lennen R.M., Braden D.J., West R.A., Dumesic J.A., Pfleger B.F. A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 2010, 106:193-202.
    • (2010) Biotechnol Bioeng , vol.106 , pp. 193-202
    • Lennen, R.M.1    Braden, D.J.2    West, R.A.3    Dumesic, J.A.4    Pfleger, B.F.5
  • 40
    • 84867482224 scopus 로고    scopus 로고
    • Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases
    • Li N., Chang W.C., Warui D.M., Booker S.J., Krebs C., Bollinger J.M. Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry 2012, 51:7908-7916.
    • (2012) Biochemistry , vol.51 , pp. 7908-7916
    • Li, N.1    Chang, W.C.2    Warui, D.M.3    Booker, S.J.4    Krebs, C.5    Bollinger, J.M.6
  • 41
    • 79960638391 scopus 로고    scopus 로고
    • Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes
    • Das D., Eser B.E., Han J., Sciore A., Marsh E.N. Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes. Angew Chem 2011, 50:7148-7152.
    • (2011) Angew Chem , vol.50 , pp. 7148-7152
    • Das, D.1    Eser, B.E.2    Han, J.3    Sciore, A.4    Marsh, E.N.5
  • 42
    • 84874259836 scopus 로고    scopus 로고
    • Corrigendum: Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes
    • Das D., Eser B.E., Han J., Sciore A., Marsh E.N. Corrigendum: Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes. Angew Chem 2012, 51:7881.
    • (2012) Angew Chem , vol.51 , pp. 7881
    • Das, D.1    Eser, B.E.2    Han, J.3    Sciore, A.4    Marsh, E.N.5
  • 43
    • 82955240582 scopus 로고    scopus 로고
    • Oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor
    • Eser B.E., Das D., Han J., Jones P.R., Marsh E.N. Oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry 2011, 50:10743-10750.
    • (2011) Biochemistry , vol.50 , pp. 10743-10750
    • Eser, B.E.1    Das, D.2    Han, J.3    Jones, P.R.4    Marsh, E.N.5
  • 44
    • 84863969021 scopus 로고    scopus 로고
    • Correction to oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor
    • Eser B.E., Das D., Han J., Jones P.R., Marsh E.N. Correction to oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry 2012, 51:5703.
    • (2012) Biochemistry , vol.51 , pp. 5703
    • Eser, B.E.1    Das, D.2    Han, J.3    Jones, P.R.4    Marsh, E.N.5
  • 45
    • 79953214587 scopus 로고    scopus 로고
    • Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species
    • Rude M.A., Baron T.S., Brubaker S., Alibhai M., del Cardayre S.B., Schirmer A. Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 2011, 77:1718-1727.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 1718-1727
    • Rude, M.A.1    Baron, T.S.2    Brubaker, S.3    Alibhai, M.4    del Cardayre, S.B.5    Schirmer, A.6
  • 46
    • 84862753427 scopus 로고    scopus 로고
    • A new carbon catabolite repression mutation of Escherichia coli, mlc*, and its use for producing isobutanol
    • Nakashima N., Tamura T. A new carbon catabolite repression mutation of Escherichia coli, mlc*, and its use for producing isobutanol. J Biosci Bioeng 2012, 114:38-44.
    • (2012) J Biosci Bioeng , vol.114 , pp. 38-44
    • Nakashima, N.1    Tamura, T.2
  • 48
    • 84856081234 scopus 로고    scopus 로고
    • Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies
    • Mazzoli R., Lamberti C., Pessione E. Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol 2012, 30:111-119.
    • (2012) Trends Biotechnol , vol.30 , pp. 111-119
    • Mazzoli, R.1    Lamberti, C.2    Pessione, E.3
  • 49
    • 84862754984 scopus 로고    scopus 로고
    • Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system
    • Soma Y., Inokuma K., Tanaka T., Ogino C., Kondo A., Okamoto M., Hanai T. Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system. J Biosci Bioeng 2012, 114:80-85.
    • (2012) J Biosci Bioeng , vol.114 , pp. 80-85
    • Soma, Y.1    Inokuma, K.2    Tanaka, T.3    Ogino, C.4    Kondo, A.5    Okamoto, M.6    Hanai, T.7
  • 50
    • 79958703776 scopus 로고    scopus 로고
    • One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis
    • Zhang X.Z., Sathitsuksanoh N., Zhu Z., Percival Zhang Y.H. One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. Metab Eng 2011, 13:364-372.
    • (2011) Metab Eng , vol.13 , pp. 364-372
    • Zhang, X.Z.1    Sathitsuksanoh, N.2    Zhu, Z.3    Percival Zhang, Y.H.4
  • 52
    • 84867289760 scopus 로고    scopus 로고
    • Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste
    • Almeida J.R., Favaro L.C., Quirino B.F. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 2012, 5:48.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 48
    • Almeida, J.R.1    Favaro, L.C.2    Quirino, B.F.3
  • 53
    • 84871673203 scopus 로고    scopus 로고
    • Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals
    • Clomburg J.M., Gonzalez R. Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 2013, 31:20-28.
    • (2013) Trends Biotechnol , vol.31 , pp. 20-28
    • Clomburg, J.M.1    Gonzalez, R.2
  • 54
    • 80052625837 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production
    • Lutke-Eversloh T., Bahl H. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 2011, 22:634-647.
    • (2011) Curr Opin Biotechnol , vol.22 , pp. 634-647
    • Lutke-Eversloh, T.1    Bahl, H.2
  • 57
    • 84871173865 scopus 로고    scopus 로고
    • Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains
    • Collas F., Kuit W., Clement B., Marchal R., Lopez-Contreras A.M., Monot F. Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains. AMB Express 2012, 2:45.
    • (2012) AMB Express , vol.2 , pp. 45
    • Collas, F.1    Kuit, W.2    Clement, B.3    Marchal, R.4    Lopez-Contreras, A.M.5    Monot, F.6
  • 58
    • 84862772588 scopus 로고    scopus 로고
    • Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation
    • Dai Z., Dong H., Zhu Y., Zhang Y., Li Y., Ma Y. Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation. Biotechnol Biofuels 2012, 5:44.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 44
    • Dai, Z.1    Dong, H.2    Zhu, Y.3    Zhang, Y.4    Li, Y.5    Ma, Y.6
  • 59
    • 70449575862 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production
    • Lee J.Y., Jang Y.S., Lee J., Papoutsakis E.T., Lee S.Y. Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Biotechnol J 2009, 4:1432-1440.
    • (2009) Biotechnol J , vol.4 , pp. 1432-1440
    • Lee, J.Y.1    Jang, Y.S.2    Lee, J.3    Papoutsakis, E.T.4    Lee, S.Y.5
  • 60
    • 79958709458 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium tyrobutyricum for n-butanol production
    • Yu M., Zhang Y., Tang I.C., Yang S.T. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 2011, 13:373-382.
    • (2011) Metab Eng , vol.13 , pp. 373-382
    • Yu, M.1    Zhang, Y.2    Tang, I.C.3    Yang, S.T.4
  • 61
    • 80052743764 scopus 로고    scopus 로고
    • Scaffoldin modules serving as 'cargo' domains to promote the secretion of heterologous cellulosomal cellulases by Clostridium acetobutylicum
    • Chanal A., Mingardon F., Bauzan M., Tardif C., Fierobe H.P. Scaffoldin modules serving as 'cargo' domains to promote the secretion of heterologous cellulosomal cellulases by Clostridium acetobutylicum. Appl Environ Microbiol 2011, 77:6277-6280.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 6277-6280
    • Chanal, A.1    Mingardon, F.2    Bauzan, M.3    Tardif, C.4    Fierobe, H.P.5
  • 62
    • 84865613048 scopus 로고    scopus 로고
    • Metabolic engineering of d-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid
    • Xiao H., Li Z., Jiang Y., Yang Y., Jiang W., Gu Y., Yang S. Metabolic engineering of d-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid. Metab Eng 2012.
    • (2012) Metab Eng
    • Xiao, H.1    Li, Z.2    Jiang, Y.3    Yang, Y.4    Jiang, W.5    Gu, Y.6    Yang, S.7
  • 63
    • 83055184898 scopus 로고    scopus 로고
    • Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose
    • Xiao H., Gu Y., Ning Y., Yang Y., Mitchell W.J., Jiang W., Yang S. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Appl Environ Microbiol 2011, 77:7886-7895.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 7886-7895
    • Xiao, H.1    Gu, Y.2    Ning, Y.3    Yang, Y.4    Mitchell, W.J.5    Jiang, W.6    Yang, S.7
  • 64
    • 85027946740 scopus 로고    scopus 로고
    • Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations
    • Agrawal M., Wang Y., Chen R.R. Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations. Biotechnol Lett 2012, 34:1825-1832.
    • (2012) Biotechnol Lett , vol.34 , pp. 1825-1832
    • Agrawal, M.1    Wang, Y.2    Chen, R.R.3
  • 66
    • 78650824841 scopus 로고    scopus 로고
    • Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae
    • Vasan P.T., Piriya P.S., Prabhu D.I., Vennison S.J. Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae. Bioresour Technol 2011, 102:2585-2589.
    • (2011) Bioresour Technol , vol.102 , pp. 2585-2589
    • Vasan, P.T.1    Piriya, P.S.2    Prabhu, D.I.3    Vennison, S.J.4
  • 67
    • 84864801619 scopus 로고    scopus 로고
    • Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory
    • Becker J., Wittmann C. Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 2012, 23:631-640.
    • (2012) Curr Opin Biotechnol , vol.23 , pp. 631-640
    • Becker, J.1    Wittmann, C.2
  • 68
    • 77955665708 scopus 로고    scopus 로고
    • Engineering Corynebacterium glutamicum for isobutanol production
    • Smith K.M., Cho K.M., Liao J.C. Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 2010, 87:1045-1055.
    • (2010) Appl Microbiol Biotechnol , vol.87 , pp. 1045-1055
    • Smith, K.M.1    Cho, K.M.2    Liao, J.C.3
  • 70
    • 79953057789 scopus 로고    scopus 로고
    • Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum
    • Hyeon J.E., Jeon W.J., Whang S.Y., Han S.O. Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme Microb Technol 2011, 48:371-377.
    • (2011) Enzyme Microb Technol , vol.48 , pp. 371-377
    • Hyeon, J.E.1    Jeon, W.J.2    Whang, S.Y.3    Han, S.O.4
  • 71
    • 79955611428 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose
    • Higashide W., Li Y., Yang Y., Liao J.C. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 2011, 77:2727-2733.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 2727-2733
    • Higashide, W.1    Li, Y.2    Yang, Y.3    Liao, J.C.4
  • 73
    • 84865597185 scopus 로고    scopus 로고
    • Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production
    • Joe Shaw A., Covalla S.F., Miller B.B., Firliet B.T., Hogsett D.A., Herring C.D. Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metab Eng 2012, 14:528-532.
    • (2012) Metab Eng , vol.14 , pp. 528-532
    • Joe Shaw, A.1    Covalla, S.F.2    Miller, B.B.3    Firliet, B.T.4    Hogsett, D.A.5    Herring, C.D.6
  • 74
    • 84861168757 scopus 로고    scopus 로고
    • Genetic and functional genomic approaches for the study of plant cell wall degradation in Cellvibrio japonicus
    • Gardner J.G., Keating D.H. Genetic and functional genomic approaches for the study of plant cell wall degradation in Cellvibrio japonicus. Methods Enzymol 2012, 510:331-347.
    • (2012) Methods Enzymol , vol.510 , pp. 331-347
    • Gardner, J.G.1    Keating, D.H.2
  • 75
    • 72049109957 scopus 로고    scopus 로고
    • Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367
    • Tolonen A.C., Chilaka A.C., Church G.M. Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Mol Microbiol 2009, 74:1300-1313.
    • (2009) Mol Microbiol , vol.74 , pp. 1300-1313
    • Tolonen, A.C.1    Chilaka, A.C.2    Church, G.M.3
  • 78
    • 84855266078 scopus 로고    scopus 로고
    • Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations
    • Li Y., Tschaplinski T.J., Engle N.L., Hamilton C.Y., Rodriguez M., Liao J.C., Schadt C.W., Guss A.M., Yang Y., Graham D.E. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol Biofuels 2012, 5:2.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 2
    • Li, Y.1    Tschaplinski, T.J.2    Engle, N.L.3    Hamilton, C.Y.4    Rodriguez, M.5    Liao, J.C.6    Schadt, C.W.7    Guss, A.M.8    Yang, Y.9    Graham, D.E.10
  • 80
    • 84867640076 scopus 로고    scopus 로고
    • Cyanobacterial biofuel production
    • Machado I.M., Atsumi S. Cyanobacterial biofuel production. J Biotechnol 2012, 162:50-56.
    • (2012) J Biotechnol , vol.162 , pp. 50-56
    • Machado, I.M.1    Atsumi, S.2
  • 81
    • 71849086611 scopus 로고    scopus 로고
    • Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
    • Atsumi S., Higashide W., Liao J.C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 2009, 27:1177-1180.
    • (2009) Nat Biotechnol , vol.27 , pp. 1177-1180
    • Atsumi, S.1    Higashide, W.2    Liao, J.C.3
  • 82
    • 79958747820 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide
    • Lan E.I., Liao J.C. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 2011, 13:353-363.
    • (2011) Metab Eng , vol.13 , pp. 353-363
    • Lan, E.I.1    Liao, J.C.2
  • 83
    • 84859950774 scopus 로고    scopus 로고
    • ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
    • Lan E.I., Liao J.C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 2012, 109:6018-6023.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 6018-6023
    • Lan, E.I.1    Liao, J.C.2
  • 84
    • 84870863904 scopus 로고    scopus 로고
    • Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria
    • Gao Z., Zhao H., Li Z., Tana X., Lu X. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 2012, 5:9857-9865.
    • (2012) Energy Environ Sci , vol.5 , pp. 9857-9865
    • Gao, Z.1    Zhao, H.2    Li, Z.3    Tana, X.4    Lu, X.5
  • 85
    • 70449336249 scopus 로고    scopus 로고
    • Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism
    • Lindberg P., Park S., Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 2010, 12:70-79.
    • (2010) Metab Eng , vol.12 , pp. 70-79
    • Lindberg, P.1    Park, S.2    Melis, A.3
  • 86
    • 79960098416 scopus 로고    scopus 로고
    • Modular synthase-encoding gene involved in alpha-olefin biosynthesis in Synechococcus sp. strain PCC 7002
    • Mendez-Perez D., Begemann M.B., Pfleger B.F. Modular synthase-encoding gene involved in alpha-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 2011, 77:4264-4267.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 4264-4267
    • Mendez-Perez, D.1    Begemann, M.B.2    Pfleger, B.F.3
  • 87
    • 79955565417 scopus 로고    scopus 로고
    • Fatty acid production in genetically modified cyanobacteria
    • Liu X., Sheng J., Curtiss R. Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 2011, 108:6899-6904.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 6899-6904
    • Liu, X.1    Sheng, J.2    Curtiss, R.3
  • 88
    • 79955564736 scopus 로고    scopus 로고
    • 2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass
    • 2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass. Proc Natl Acad Sci U S A 2011, 108:6905-6908.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 6905-6908
    • Liu, X.1    Fallon, S.2    Sheng, J.3    Curtiss, R.4
  • 89
    • 84866037643 scopus 로고    scopus 로고
    • Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha
    • Lu J., Brigham C.J., Gai C.S., Sinskey A.J. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol 2012, 96:283-297.
    • (2012) Appl Microbiol Biotechnol , vol.96 , pp. 283-297
    • Lu, J.1    Brigham, C.J.2    Gai, C.S.3    Sinskey, A.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.