-
1
-
-
84864848299
-
Valorization of biomass: deriving more value from waste
-
Tuck C.O., Perez E., Horvath I.T., Sheldon R.A., Poliakoff M. Valorization of biomass: deriving more value from waste. Science 2012, 337:695-699.
-
(2012)
Science
, vol.337
, pp. 695-699
-
-
Tuck, C.O.1
Perez, E.2
Horvath, I.T.3
Sheldon, R.A.4
Poliakoff, M.5
-
2
-
-
84865142847
-
Microbial engineering for the production of advanced biofuels
-
Peralta-Yahya P.P., Zhang F., del Cardayre S.B., Keasling J.D. Microbial engineering for the production of advanced biofuels. Nature 2012, 488:320-328.
-
(2012)
Nature
, vol.488
, pp. 320-328
-
-
Peralta-Yahya, P.P.1
Zhang, F.2
del Cardayre, S.B.3
Keasling, J.D.4
-
3
-
-
78449244865
-
Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping
-
Inokuma K., Liao J.C., Okamoto M., Hanai T. Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. Journal of Bioscience and Bioengineering 2010, 110:696-701.
-
(2010)
Journal of Bioscience and Bioengineering
, vol.110
, pp. 696-701
-
-
Inokuma, K.1
Liao, J.C.2
Okamoto, M.3
Hanai, T.4
-
4
-
-
79952910616
-
Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
-
Bond-Watts B.B., Bellerose R.J., Chang M.C. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 2011, 7:222-227.
-
(2011)
Nat Chem Biol
, vol.7
, pp. 222-227
-
-
Bond-Watts, B.B.1
Bellerose, R.J.2
Chang, M.C.3
-
5
-
-
79955611425
-
Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
-
Shen C.R., Lan E.I., Dekishima Y., Baez A., Cho K.M., Liao J.C. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 2011, 77:2905-2915.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 2905-2915
-
-
Shen, C.R.1
Lan, E.I.2
Dekishima, Y.3
Baez, A.4
Cho, K.M.5
Liao, J.C.6
-
6
-
-
79960859539
-
Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli
-
Dekishima Y., Lan E.I., Shen C.R., Cho K.M., Liao J.C. Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J Am Chem Soc 2011, 133:11399-11401.
-
(2011)
J Am Chem Soc
, vol.133
, pp. 11399-11401
-
-
Dekishima, Y.1
Lan, E.I.2
Shen, C.R.3
Cho, K.M.4
Liao, J.C.5
-
7
-
-
84865592819
-
A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols
-
Machado H.B., Dekishima Y., Luo H., Lan E.I., Liao J.C. A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. Metab Eng 2012, 14:504-511.
-
(2012)
Metab Eng
, vol.14
, pp. 504-511
-
-
Machado, H.B.1
Dekishima, Y.2
Luo, H.3
Lan, E.I.4
Liao, J.C.5
-
8
-
-
80051941601
-
Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals
-
Dellomonaco C., Clomburg J.M., Miller E.N., Gonzalez R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476:355-359.
-
(2011)
Nature
, vol.476
, pp. 355-359
-
-
Dellomonaco, C.1
Clomburg, J.M.2
Miller, E.N.3
Gonzalez, R.4
-
9
-
-
38049001166
-
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
-
Atsumi S., Hanai T., Liao J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451:86-89.
-
(2008)
Nature
, vol.451
, pp. 86-89
-
-
Atsumi, S.1
Hanai, T.2
Liao, J.C.3
-
10
-
-
79953889249
-
Conversion of proteins into biofuels by engineering nitrogen flux
-
Huo Y.X., Cho K.M., Rivera J.G., Monte E., Shen C.R., Yan Y., Liao J.C. Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 2011, 29:346-351.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 346-351
-
-
Huo, Y.X.1
Cho, K.M.2
Rivera, J.G.3
Monte, E.4
Shen, C.R.5
Yan, Y.6
Liao, J.C.7
-
11
-
-
79958177780
-
High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal
-
Baez A., Cho K.M., Liao J.C. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol 2011, 90:1681-1690.
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, pp. 1681-1690
-
-
Baez, A.1
Cho, K.M.2
Liao, J.C.3
-
12
-
-
79955164750
-
Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
-
Bastian S., Liu X., Meyerowitz J.T., Snow C.D., Chen M.M., Arnold F.H. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 2011, 13:345-352.
-
(2011)
Metab Eng
, vol.13
, pp. 345-352
-
-
Bastian, S.1
Liu, X.2
Meyerowitz, J.T.3
Snow, C.D.4
Chen, M.M.5
Arnold, F.H.6
-
13
-
-
84860211608
-
A synthetic recursive '+1' pathway for carbon chain elongation
-
Marcheschi R.J., Li H., Zhang K., Noey E.L., Kim S., Chaubey A., Houk K.N., Liao J.C. A synthetic recursive '+1' pathway for carbon chain elongation. ACS Chem Biol 2012, 7:689-697.
-
(2012)
ACS Chem Biol
, vol.7
, pp. 689-697
-
-
Marcheschi, R.J.1
Li, H.2
Zhang, K.3
Noey, E.L.4
Kim, S.5
Chaubey, A.6
Houk, K.N.7
Liao, J.C.8
-
14
-
-
57449098845
-
Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli
-
Atsumi S., Liao J.C. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 2008, 74:7802-7808.
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 7802-7808
-
-
Atsumi, S.1
Liao, J.C.2
-
15
-
-
79960712071
-
Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression
-
Li S., Wen J., Jia X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 2011, 91:577-589.
-
(2011)
Appl Microbiol Biotechnol
, vol.91
, pp. 577-589
-
-
Li, S.1
Wen, J.2
Jia, X.3
-
16
-
-
77950626597
-
3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation
-
Connor M.R., Cann A.F., Liao J.C. 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 2010, 86:1155-1164.
-
(2010)
Appl Microbiol Biotechnol
, vol.86
, pp. 1155-1164
-
-
Connor, M.R.1
Cann, A.F.2
Liao, J.C.3
-
17
-
-
84861182389
-
Efficient conversion of pure and mixed terpene feedstocks to high density fuels
-
Meylemans H.A., Quintana R.L., Harvey B.G. Efficient conversion of pure and mixed terpene feedstocks to high density fuels. Fuel 2012, 97:560-568.
-
(2012)
Fuel
, vol.97
, pp. 560-568
-
-
Meylemans, H.A.1
Quintana, R.L.2
Harvey, B.G.3
-
18
-
-
84879142653
-
High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli
-
Tsuruta H., Paddon C.J., Eng D., Lenihan J.R., Horning T., Anthony L.C., Regentin R., Keasling J.D., Renninger N.S., Newman J.D. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 2009, 4:e4489.
-
(2009)
PLoS One
, vol.4
-
-
Tsuruta, H.1
Paddon, C.J.2
Eng, D.3
Lenihan, J.R.4
Horning, T.5
Anthony, L.C.6
Regentin, R.7
Keasling, J.D.8
Renninger, N.S.9
Newman, J.D.10
-
19
-
-
80053412686
-
Identification and microbial production of a terpene-based advanced biofuel
-
Peralta-Yahya P.P., Ouellet M., Chan R., Mukhopadhyay A., Keasling J.D., Lee T.S. Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2011, 2:483.
-
(2011)
Nat Commun
, vol.2
, pp. 483
-
-
Peralta-Yahya, P.P.1
Ouellet, M.2
Chan, R.3
Mukhopadhyay, A.4
Keasling, J.D.5
Lee, T.S.6
-
20
-
-
80555150665
-
Metabolic engineering of Escherichia coli for alpha-farnesene production
-
Wang C., Yoon S.H., Jang H.J., Chung Y.R., Kim J.Y., Choi E.S., Kim S.W. Metabolic engineering of Escherichia coli for alpha-farnesene production. Metab Eng 2011, 13:648-655.
-
(2011)
Metab Eng
, vol.13
, pp. 648-655
-
-
Wang, C.1
Yoon, S.H.2
Jang, H.J.3
Chung, Y.R.4
Kim, J.Y.5
Choi, E.S.6
Kim, S.W.7
-
21
-
-
84055200869
-
Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli
-
Bokinsky G., Peralta-Yahya P.P., George A., Holmes B.M., Steen E.J., Dietrich J., Soon Lee T., Tullman-Ercek D., Voigt C.A., Simmons B.A., et al. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 2011, 108:19949-19954.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 19949-19954
-
-
Bokinsky, G.1
Peralta-Yahya, P.P.2
George, A.3
Holmes, B.M.4
Steen, E.J.5
Dietrich, J.6
Soon Lee, T.7
Tullman-Ercek, D.8
Voigt, C.A.9
Simmons, B.A.10
-
22
-
-
79955806186
-
Engineering microbial biofuel tolerance and export using efflux pumps
-
Dunlop M.J., Dossani Z.Y., Szmidt H.L., Chu H.C., Lee T.S., Keasling J.D., Hadi M.Z., Mukhopadhyay A. Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 2011, 7:487.
-
(2011)
Mol Syst Biol
, vol.7
, pp. 487
-
-
Dunlop, M.J.1
Dossani, Z.Y.2
Szmidt, H.L.3
Chu, H.C.4
Lee, T.S.5
Keasling, J.D.6
Hadi, M.Z.7
Mukhopadhyay, A.8
-
23
-
-
79958232375
-
Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway
-
Zhao Y., Yang J., Qin B., Li Y., Sun Y., Su S., Xian M. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol 2011, 90:1915-1922.
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, pp. 1915-1922
-
-
Zhao, Y.1
Yang, J.2
Qin, B.3
Li, Y.4
Sun, Y.5
Su, S.6
Xian, M.7
-
24
-
-
84860487970
-
Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli
-
Yang J., Xian M., Su S., Zhao G., Nie Q., Jiang X., Zheng Y., Liu W. Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli. PLoS One 2012, 7:e33509.
-
(2012)
PLoS One
, vol.7
-
-
Yang, J.1
Xian, M.2
Su, S.3
Zhao, G.4
Nie, Q.5
Jiang, X.6
Zheng, Y.7
Liu, W.8
-
25
-
-
84869122829
-
Engineering Escherichia coli to synthesize free fatty acids
-
Lennen R.M., Pfleger B.F. Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 2012, 30:659-667.
-
(2012)
Trends Biotechnol
, vol.30
, pp. 659-667
-
-
Lennen, R.M.1
Pfleger, B.F.2
-
26
-
-
78650570829
-
Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals
-
Handke P., Lynch S.A., Gill R.T. Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metab Eng 2011, 13:28-37.
-
(2011)
Metab Eng
, vol.13
, pp. 28-37
-
-
Handke, P.1
Lynch, S.A.2
Gill, R.T.3
-
27
-
-
77953022686
-
Quantitative analysis and engineering of fatty acid biosynthesis in E. coli
-
Liu T., Vora H., Khosla C. Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng 2010, 12:378-386.
-
(2010)
Metab Eng
, vol.12
, pp. 378-386
-
-
Liu, T.1
Vora, H.2
Khosla, C.3
-
28
-
-
84862169834
-
Production of extracellular fatty acid using engineered Escherichia coli
-
Liu H., Yu C., Feng D., Cheng T., Meng X., Liu W., Zou H., Xian M. Production of extracellular fatty acid using engineered Escherichia coli. Microb Cell Fact 2012, 11:41.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 41
-
-
Liu, H.1
Yu, C.2
Feng, D.3
Cheng, T.4
Meng, X.5
Liu, W.6
Zou, H.7
Xian, M.8
-
29
-
-
80052021573
-
Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA
-
Xu P., Ranganathan S., Fowler Z.L., Maranas C.D., Koffas M.A. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 2011, 13:578-587.
-
(2011)
Metab Eng
, vol.13
, pp. 578-587
-
-
Xu, P.1
Ranganathan, S.2
Fowler, Z.L.3
Maranas, C.D.4
Koffas, M.A.5
-
30
-
-
84859633048
-
Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids
-
Zhang F., Carothers J.M., Keasling J.D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 2012, 30:354-359.
-
(2012)
Nat Biotechnol
, vol.30
, pp. 354-359
-
-
Zhang, F.1
Carothers, J.M.2
Keasling, J.D.3
-
31
-
-
81755185882
-
In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli
-
Yu X., Liu T., Zhu F., Khosla C. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. Proc Natl Acad Sci U S A 2011, 108:18643-18648.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 18643-18648
-
-
Yu, X.1
Liu, T.2
Zhu, F.3
Khosla, C.4
-
32
-
-
75749125061
-
Microbial production of fatty-acid-derived fuels and chemicals from plant biomass
-
Steen E.J., Kang Y., Bokinsky G., Hu Z., Schirmer A., McClure A., del Cardayre S.B., Keasling J.D. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 2010, 463:559-562.
-
(2010)
Nature
, vol.463
, pp. 559-562
-
-
Steen, E.J.1
Kang, Y.2
Bokinsky, G.3
Hu, Z.4
Schirmer, A.5
McClure, A.6
del Cardayre, S.B.7
Keasling, J.D.8
-
33
-
-
84861142495
-
Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli
-
Zheng Y.N., Li L.L., Liu Q., Yang J.M., Wang X.W., Liu W., Xu X., Liu H., Zhao G., Xian M. Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli. Microb Cell Fact 2012, 11:65.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 65
-
-
Zheng, Y.N.1
Li, L.L.2
Liu, Q.3
Yang, J.M.4
Wang, X.W.5
Liu, W.6
Xu, X.7
Liu, H.8
Zhao, G.9
Xian, M.10
-
34
-
-
84872661350
-
Modulating membrane composition alters free fatty acid tolerance in Escherichia coli
-
Lennen R.M., Pfleger B.F. Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One 2013, 8:e54031.
-
(2013)
PLoS One
, vol.8
-
-
Lennen, R.M.1
Pfleger, B.F.2
-
35
-
-
84855656321
-
Engineering of bacterial methyl ketone synthesis for biofuels
-
Goh E.B., Baidoo E.E., Keasling J.D., Beller H.R. Engineering of bacterial methyl ketone synthesis for biofuels. Appl Environ Microbiol 2012, 78:70-80.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 70-80
-
-
Goh, E.B.1
Baidoo, E.E.2
Keasling, J.D.3
Beller, H.R.4
-
36
-
-
84868193534
-
Synthesis of methyl ketones by metabolically engineered Escherichia coli
-
Park J., Rodriguez-Moya M., Li M., Pichersky E., San K.Y., Gonzalez R. Synthesis of methyl ketones by metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol 2012, 39:1703-1712.
-
(2012)
J Ind Microbiol Biotechnol
, vol.39
, pp. 1703-1712
-
-
Park, J.1
Rodriguez-Moya, M.2
Li, M.3
Pichersky, E.4
San, K.Y.5
Gonzalez, R.6
-
37
-
-
84869472029
-
A synthetic biology approach to engineer a functional reversal of the β oxidation cycle
-
Clomburg J.M., Vick J.E., Blankschien M.D., Rodríguez-Moyaó M., Gonzalez R. A synthetic biology approach to engineer a functional reversal of the β oxidation cycle. ACS Synth Biol 2013, 1:541-554.
-
(2013)
ACS Synth Biol
, vol.1
, pp. 541-554
-
-
Clomburg, J.M.1
Vick, J.E.2
Blankschien, M.D.3
Rodríguez-Moyaó, M.4
Gonzalez, R.5
-
38
-
-
77953044867
-
A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes
-
Lennen R.M., Braden D.J., West R.A., Dumesic J.A., Pfleger B.F. A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 2010, 106:193-202.
-
(2010)
Biotechnol Bioeng
, vol.106
, pp. 193-202
-
-
Lennen, R.M.1
Braden, D.J.2
West, R.A.3
Dumesic, J.A.4
Pfleger, B.F.5
-
39
-
-
77955118014
-
Microbial biosynthesis of alkanes
-
Schirmer A., Rude M.A., Li X., Popova E., del Cardayre S.B. Microbial biosynthesis of alkanes. Science 2010, 329:559-562.
-
(2010)
Science
, vol.329
, pp. 559-562
-
-
Schirmer, A.1
Rude, M.A.2
Li, X.3
Popova, E.4
del Cardayre, S.B.5
-
40
-
-
84867482224
-
Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases
-
Li N., Chang W.C., Warui D.M., Booker S.J., Krebs C., Bollinger J.M. Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry 2012, 51:7908-7916.
-
(2012)
Biochemistry
, vol.51
, pp. 7908-7916
-
-
Li, N.1
Chang, W.C.2
Warui, D.M.3
Booker, S.J.4
Krebs, C.5
Bollinger, J.M.6
-
41
-
-
79960638391
-
Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes
-
Das D., Eser B.E., Han J., Sciore A., Marsh E.N. Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes. Angew Chem 2011, 50:7148-7152.
-
(2011)
Angew Chem
, vol.50
, pp. 7148-7152
-
-
Das, D.1
Eser, B.E.2
Han, J.3
Sciore, A.4
Marsh, E.N.5
-
42
-
-
84874259836
-
Corrigendum: Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes
-
Das D., Eser B.E., Han J., Sciore A., Marsh E.N. Corrigendum: Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes. Angew Chem 2012, 51:7881.
-
(2012)
Angew Chem
, vol.51
, pp. 7881
-
-
Das, D.1
Eser, B.E.2
Han, J.3
Sciore, A.4
Marsh, E.N.5
-
43
-
-
82955240582
-
Oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor
-
Eser B.E., Das D., Han J., Jones P.R., Marsh E.N. Oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry 2011, 50:10743-10750.
-
(2011)
Biochemistry
, vol.50
, pp. 10743-10750
-
-
Eser, B.E.1
Das, D.2
Han, J.3
Jones, P.R.4
Marsh, E.N.5
-
44
-
-
84863969021
-
Correction to oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor
-
Eser B.E., Das D., Han J., Jones P.R., Marsh E.N. Correction to oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry 2012, 51:5703.
-
(2012)
Biochemistry
, vol.51
, pp. 5703
-
-
Eser, B.E.1
Das, D.2
Han, J.3
Jones, P.R.4
Marsh, E.N.5
-
45
-
-
79953214587
-
Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species
-
Rude M.A., Baron T.S., Brubaker S., Alibhai M., del Cardayre S.B., Schirmer A. Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 2011, 77:1718-1727.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 1718-1727
-
-
Rude, M.A.1
Baron, T.S.2
Brubaker, S.3
Alibhai, M.4
del Cardayre, S.B.5
Schirmer, A.6
-
46
-
-
84862753427
-
A new carbon catabolite repression mutation of Escherichia coli, mlc*, and its use for producing isobutanol
-
Nakashima N., Tamura T. A new carbon catabolite repression mutation of Escherichia coli, mlc*, and its use for producing isobutanol. J Biosci Bioeng 2012, 114:38-44.
-
(2012)
J Biosci Bioeng
, vol.114
, pp. 38-44
-
-
Nakashima, N.1
Tamura, T.2
-
47
-
-
84861108477
-
Supplementation of intracellular XylR leads to coutilization of hemicellulose sugars
-
Groff D., Benke P.I., Batth T.S., Bokinsky G., Petzold C.J., Adams P.D., Keasling J.D. Supplementation of intracellular XylR leads to coutilization of hemicellulose sugars. Appl Environ Microbiol 2012, 78:2221-2229.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 2221-2229
-
-
Groff, D.1
Benke, P.I.2
Batth, T.S.3
Bokinsky, G.4
Petzold, C.J.5
Adams, P.D.6
Keasling, J.D.7
-
48
-
-
84856081234
-
Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies
-
Mazzoli R., Lamberti C., Pessione E. Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol 2012, 30:111-119.
-
(2012)
Trends Biotechnol
, vol.30
, pp. 111-119
-
-
Mazzoli, R.1
Lamberti, C.2
Pessione, E.3
-
49
-
-
84862754984
-
Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system
-
Soma Y., Inokuma K., Tanaka T., Ogino C., Kondo A., Okamoto M., Hanai T. Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system. J Biosci Bioeng 2012, 114:80-85.
-
(2012)
J Biosci Bioeng
, vol.114
, pp. 80-85
-
-
Soma, Y.1
Inokuma, K.2
Tanaka, T.3
Ogino, C.4
Kondo, A.5
Okamoto, M.6
Hanai, T.7
-
50
-
-
79958703776
-
One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis
-
Zhang X.Z., Sathitsuksanoh N., Zhu Z., Percival Zhang Y.H. One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. Metab Eng 2011, 13:364-372.
-
(2011)
Metab Eng
, vol.13
, pp. 364-372
-
-
Zhang, X.Z.1
Sathitsuksanoh, N.2
Zhu, Z.3
Percival Zhang, Y.H.4
-
51
-
-
79961094174
-
Assembly of minicellulosomes on the surface of Bacillus subtilis
-
Anderson T.D., Robson S.A., Jiang X.W., Malmirchegini G.R., Fierobe H.P., Lazazzera B.A., Clubb R.T. Assembly of minicellulosomes on the surface of Bacillus subtilis. Appl Environ Microbiol 2011, 77:4849-4858.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 4849-4858
-
-
Anderson, T.D.1
Robson, S.A.2
Jiang, X.W.3
Malmirchegini, G.R.4
Fierobe, H.P.5
Lazazzera, B.A.6
Clubb, R.T.7
-
52
-
-
84867289760
-
Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste
-
Almeida J.R., Favaro L.C., Quirino B.F. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 2012, 5:48.
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 48
-
-
Almeida, J.R.1
Favaro, L.C.2
Quirino, B.F.3
-
53
-
-
84871673203
-
Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals
-
Clomburg J.M., Gonzalez R. Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 2013, 31:20-28.
-
(2013)
Trends Biotechnol
, vol.31
, pp. 20-28
-
-
Clomburg, J.M.1
Gonzalez, R.2
-
54
-
-
80052625837
-
Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production
-
Lutke-Eversloh T., Bahl H. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 2011, 22:634-647.
-
(2011)
Curr Opin Biotechnol
, vol.22
, pp. 634-647
-
-
Lutke-Eversloh, T.1
Bahl, H.2
-
55
-
-
80052931006
-
ClosTron-mediated engineering of Clostridium
-
Kuehne S.A., Heap J.T., Cooksley C.M., Cartman S.T., Minton N.P. ClosTron-mediated engineering of Clostridium. Methods Mol Biol 2011, 765:389-407.
-
(2011)
Methods Mol Biol
, vol.765
, pp. 389-407
-
-
Kuehne, S.A.1
Heap, J.T.2
Cooksley, C.M.3
Cartman, S.T.4
Minton, N.P.5
-
56
-
-
84863120284
-
Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation
-
Lee J., Jang Y.S., Choi S.J., Im J.A., Song H., Cho J.H., Seung do Y., Papoutsakis E.T., Bennett G.N., Lee S.Y. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl Environ Microbiol 2012, 78:1416-1423.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 1416-1423
-
-
Lee, J.1
Jang, Y.S.2
Choi, S.J.3
Im, J.A.4
Song, H.5
Cho, J.H.6
Seung do, Y.7
Papoutsakis, E.T.8
Bennett, G.N.9
Lee, S.Y.10
-
57
-
-
84871173865
-
Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains
-
Collas F., Kuit W., Clement B., Marchal R., Lopez-Contreras A.M., Monot F. Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains. AMB Express 2012, 2:45.
-
(2012)
AMB Express
, vol.2
, pp. 45
-
-
Collas, F.1
Kuit, W.2
Clement, B.3
Marchal, R.4
Lopez-Contreras, A.M.5
Monot, F.6
-
58
-
-
84862772588
-
Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation
-
Dai Z., Dong H., Zhu Y., Zhang Y., Li Y., Ma Y. Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation. Biotechnol Biofuels 2012, 5:44.
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 44
-
-
Dai, Z.1
Dong, H.2
Zhu, Y.3
Zhang, Y.4
Li, Y.5
Ma, Y.6
-
59
-
-
70449575862
-
Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production
-
Lee J.Y., Jang Y.S., Lee J., Papoutsakis E.T., Lee S.Y. Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Biotechnol J 2009, 4:1432-1440.
-
(2009)
Biotechnol J
, vol.4
, pp. 1432-1440
-
-
Lee, J.Y.1
Jang, Y.S.2
Lee, J.3
Papoutsakis, E.T.4
Lee, S.Y.5
-
60
-
-
79958709458
-
Metabolic engineering of Clostridium tyrobutyricum for n-butanol production
-
Yu M., Zhang Y., Tang I.C., Yang S.T. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 2011, 13:373-382.
-
(2011)
Metab Eng
, vol.13
, pp. 373-382
-
-
Yu, M.1
Zhang, Y.2
Tang, I.C.3
Yang, S.T.4
-
61
-
-
80052743764
-
Scaffoldin modules serving as 'cargo' domains to promote the secretion of heterologous cellulosomal cellulases by Clostridium acetobutylicum
-
Chanal A., Mingardon F., Bauzan M., Tardif C., Fierobe H.P. Scaffoldin modules serving as 'cargo' domains to promote the secretion of heterologous cellulosomal cellulases by Clostridium acetobutylicum. Appl Environ Microbiol 2011, 77:6277-6280.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 6277-6280
-
-
Chanal, A.1
Mingardon, F.2
Bauzan, M.3
Tardif, C.4
Fierobe, H.P.5
-
62
-
-
84865613048
-
Metabolic engineering of d-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid
-
Xiao H., Li Z., Jiang Y., Yang Y., Jiang W., Gu Y., Yang S. Metabolic engineering of d-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid. Metab Eng 2012.
-
(2012)
Metab Eng
-
-
Xiao, H.1
Li, Z.2
Jiang, Y.3
Yang, Y.4
Jiang, W.5
Gu, Y.6
Yang, S.7
-
63
-
-
83055184898
-
Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose
-
Xiao H., Gu Y., Ning Y., Yang Y., Mitchell W.J., Jiang W., Yang S. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Appl Environ Microbiol 2011, 77:7886-7895.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 7886-7895
-
-
Xiao, H.1
Gu, Y.2
Ning, Y.3
Yang, Y.4
Mitchell, W.J.5
Jiang, W.6
Yang, S.7
-
64
-
-
85027946740
-
Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations
-
Agrawal M., Wang Y., Chen R.R. Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations. Biotechnol Lett 2012, 34:1825-1832.
-
(2012)
Biotechnol Lett
, vol.34
, pp. 1825-1832
-
-
Agrawal, M.1
Wang, Y.2
Chen, R.R.3
-
65
-
-
84867299768
-
Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis
-
Yanase H., Miyawaki H., Sakurai M., Kawakami A., Matsumoto M., Haga K., Kojima M., Okamoto K. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Appl Microbiol Biotechnol 2012, 94:1667-1678.
-
(2012)
Appl Microbiol Biotechnol
, vol.94
, pp. 1667-1678
-
-
Yanase, H.1
Miyawaki, H.2
Sakurai, M.3
Kawakami, A.4
Matsumoto, M.5
Haga, K.6
Kojima, M.7
Okamoto, K.8
-
66
-
-
78650824841
-
Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae
-
Vasan P.T., Piriya P.S., Prabhu D.I., Vennison S.J. Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae. Bioresour Technol 2011, 102:2585-2589.
-
(2011)
Bioresour Technol
, vol.102
, pp. 2585-2589
-
-
Vasan, P.T.1
Piriya, P.S.2
Prabhu, D.I.3
Vennison, S.J.4
-
67
-
-
84864801619
-
Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory
-
Becker J., Wittmann C. Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 2012, 23:631-640.
-
(2012)
Curr Opin Biotechnol
, vol.23
, pp. 631-640
-
-
Becker, J.1
Wittmann, C.2
-
68
-
-
77955665708
-
Engineering Corynebacterium glutamicum for isobutanol production
-
Smith K.M., Cho K.M., Liao J.C. Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 2010, 87:1045-1055.
-
(2010)
Appl Microbiol Biotechnol
, vol.87
, pp. 1045-1055
-
-
Smith, K.M.1
Cho, K.M.2
Liao, J.C.3
-
69
-
-
79958185451
-
Corynebacterium glutamicum tailored for efficient isobutanol production
-
Blombach B., Riester T., Wieschalka S., Ziert C., Youn J.W., Wendisch V.F., Eikmanns B.J. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 2011, 77:3300-3310.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 3300-3310
-
-
Blombach, B.1
Riester, T.2
Wieschalka, S.3
Ziert, C.4
Youn, J.W.5
Wendisch, V.F.6
Eikmanns, B.J.7
-
70
-
-
79953057789
-
Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum
-
Hyeon J.E., Jeon W.J., Whang S.Y., Han S.O. Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme Microb Technol 2011, 48:371-377.
-
(2011)
Enzyme Microb Technol
, vol.48
, pp. 371-377
-
-
Hyeon, J.E.1
Jeon, W.J.2
Whang, S.Y.3
Han, S.O.4
-
71
-
-
79955611428
-
Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose
-
Higashide W., Li Y., Yang Y., Liao J.C. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 2011, 77:2727-2733.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 2727-2733
-
-
Higashide, W.1
Li, Y.2
Yang, Y.3
Liao, J.C.4
-
72
-
-
84861982164
-
Recent progress in consolidated bioprocessing
-
Olson D.G., McBride J.E., Shaw A.J., Lynd L.R. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 2012, 23:396-405.
-
(2012)
Curr Opin Biotechnol
, vol.23
, pp. 396-405
-
-
Olson, D.G.1
McBride, J.E.2
Shaw, A.J.3
Lynd, L.R.4
-
73
-
-
84865597185
-
Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production
-
Joe Shaw A., Covalla S.F., Miller B.B., Firliet B.T., Hogsett D.A., Herring C.D. Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metab Eng 2012, 14:528-532.
-
(2012)
Metab Eng
, vol.14
, pp. 528-532
-
-
Joe Shaw, A.1
Covalla, S.F.2
Miller, B.B.3
Firliet, B.T.4
Hogsett, D.A.5
Herring, C.D.6
-
74
-
-
84861168757
-
Genetic and functional genomic approaches for the study of plant cell wall degradation in Cellvibrio japonicus
-
Gardner J.G., Keating D.H. Genetic and functional genomic approaches for the study of plant cell wall degradation in Cellvibrio japonicus. Methods Enzymol 2012, 510:331-347.
-
(2012)
Methods Enzymol
, vol.510
, pp. 331-347
-
-
Gardner, J.G.1
Keating, D.H.2
-
75
-
-
72049109957
-
Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367
-
Tolonen A.C., Chilaka A.C., Church G.M. Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Mol Microbiol 2009, 74:1300-1313.
-
(2009)
Mol Microbiol
, vol.74
, pp. 1300-1313
-
-
Tolonen, A.C.1
Chilaka, A.C.2
Church, G.M.3
-
76
-
-
78049278436
-
Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant
-
Tripathi S.A., Olson D.G., Argyros D.A., Miller B.B., Barrett T.F., Murphy D.M., McCool J.D., Warner A.K., Rajgarhia V.B., Lynd L.R., et al. Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 2010, 76:6591-6599.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 6591-6599
-
-
Tripathi, S.A.1
Olson, D.G.2
Argyros, D.A.3
Miller, B.B.4
Barrett, T.F.5
Murphy, D.M.6
McCool, J.D.7
Warner, A.K.8
Rajgarhia, V.B.9
Lynd, L.R.10
-
77
-
-
83255174918
-
High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes
-
Argyros D.A., Tripathi S.A., Barrett T.F., Rogers S.R., Feinberg L.F., Olson D.G., Foden J.M., Miller B.B., Lynd L.R., Hogsett D.A., et al. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 2011, 77:8288-8294.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 8288-8294
-
-
Argyros, D.A.1
Tripathi, S.A.2
Barrett, T.F.3
Rogers, S.R.4
Feinberg, L.F.5
Olson, D.G.6
Foden, J.M.7
Miller, B.B.8
Lynd, L.R.9
Hogsett, D.A.10
-
78
-
-
84855266078
-
Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations
-
Li Y., Tschaplinski T.J., Engle N.L., Hamilton C.Y., Rodriguez M., Liao J.C., Schadt C.W., Guss A.M., Yang Y., Graham D.E. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol Biofuels 2012, 5:2.
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 2
-
-
Li, Y.1
Tschaplinski, T.J.2
Engle, N.L.3
Hamilton, C.Y.4
Rodriguez, M.5
Liao, J.C.6
Schadt, C.W.7
Guss, A.M.8
Yang, Y.9
Graham, D.E.10
-
79
-
-
70450221933
-
Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production
-
Cripps R.E., Eley K., Leak D.J., Rudd B., Taylor M., Todd M., Boakes S., Martin S., Atkinson T. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 2009, 11:398-408.
-
(2009)
Metab Eng
, vol.11
, pp. 398-408
-
-
Cripps, R.E.1
Eley, K.2
Leak, D.J.3
Rudd, B.4
Taylor, M.5
Todd, M.6
Boakes, S.7
Martin, S.8
Atkinson, T.9
-
80
-
-
84867640076
-
Cyanobacterial biofuel production
-
Machado I.M., Atsumi S. Cyanobacterial biofuel production. J Biotechnol 2012, 162:50-56.
-
(2012)
J Biotechnol
, vol.162
, pp. 50-56
-
-
Machado, I.M.1
Atsumi, S.2
-
81
-
-
71849086611
-
Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
-
Atsumi S., Higashide W., Liao J.C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 2009, 27:1177-1180.
-
(2009)
Nat Biotechnol
, vol.27
, pp. 1177-1180
-
-
Atsumi, S.1
Higashide, W.2
Liao, J.C.3
-
82
-
-
79958747820
-
Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide
-
Lan E.I., Liao J.C. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 2011, 13:353-363.
-
(2011)
Metab Eng
, vol.13
, pp. 353-363
-
-
Lan, E.I.1
Liao, J.C.2
-
83
-
-
84859950774
-
ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
-
Lan E.I., Liao J.C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 2012, 109:6018-6023.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 6018-6023
-
-
Lan, E.I.1
Liao, J.C.2
-
84
-
-
84870863904
-
Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria
-
Gao Z., Zhao H., Li Z., Tana X., Lu X. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 2012, 5:9857-9865.
-
(2012)
Energy Environ Sci
, vol.5
, pp. 9857-9865
-
-
Gao, Z.1
Zhao, H.2
Li, Z.3
Tana, X.4
Lu, X.5
-
85
-
-
70449336249
-
Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism
-
Lindberg P., Park S., Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 2010, 12:70-79.
-
(2010)
Metab Eng
, vol.12
, pp. 70-79
-
-
Lindberg, P.1
Park, S.2
Melis, A.3
-
86
-
-
79960098416
-
Modular synthase-encoding gene involved in alpha-olefin biosynthesis in Synechococcus sp. strain PCC 7002
-
Mendez-Perez D., Begemann M.B., Pfleger B.F. Modular synthase-encoding gene involved in alpha-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 2011, 77:4264-4267.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 4264-4267
-
-
Mendez-Perez, D.1
Begemann, M.B.2
Pfleger, B.F.3
-
87
-
-
79955565417
-
Fatty acid production in genetically modified cyanobacteria
-
Liu X., Sheng J., Curtiss R. Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 2011, 108:6899-6904.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 6899-6904
-
-
Liu, X.1
Sheng, J.2
Curtiss, R.3
-
89
-
-
84866037643
-
Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha
-
Lu J., Brigham C.J., Gai C.S., Sinskey A.J. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol 2012, 96:283-297.
-
(2012)
Appl Microbiol Biotechnol
, vol.96
, pp. 283-297
-
-
Lu, J.1
Brigham, C.J.2
Gai, C.S.3
Sinskey, A.J.4
-
90
-
-
84859111827
-
2 to higher alcohols
-
2 to higher alcohols. Science 2012, 335:1596.
-
(2012)
Science
, vol.335
, pp. 1596
-
-
Li, H.1
Opgenorth, P.H.2
Wernick, D.G.3
Rogers, S.4
Wu, T.Y.5
Higashide, W.6
Malati, P.7
Huo, Y.X.8
Cho, K.M.9
Liao, J.C.10
|