-
1
-
-
84873800970
-
Genome-scale engineering for systems and synthetic biology
-
Esvelt, K.M., Wang, H.H., Genome-scale engineering for systems and synthetic biology. Mol. Syst. Biol. 9 (2013), 1–17.
-
(2013)
Mol. Syst. Biol.
, vol.9
, pp. 1-17
-
-
Esvelt, K.M.1
Wang, H.H.2
-
2
-
-
84935472715
-
Advances in yeast genome engineering
-
David, F., Siewers, V., Advances in yeast genome engineering. FEMS Yeast Res. 15 (2015), 1–14.
-
(2015)
FEMS Yeast Res.
, vol.15
, pp. 1-14
-
-
David, F.1
Siewers, V.2
-
3
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou, R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 (2007), 1709–1712.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
-
4
-
-
84935513637
-
Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas
-
Horwitz, A.A., et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 1 (2015), 1–9.
-
(2015)
Cell Syst.
, vol.1
, pp. 1-9
-
-
Horwitz, A.A.1
-
5
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang, W., et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31 (2013), 233–239.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 233-239
-
-
Jiang, W.1
-
6
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang, Y., et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 81 (2015), 2506–2514.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
-
7
-
-
84935426318
-
CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae
-
Ronda, C., et al. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb. Cell Fact. 14 (2015), 1–11.
-
(2015)
Microb. Cell Fact.
, vol.14
, pp. 1-11
-
-
Ronda, C.1
-
8
-
-
84930638003
-
CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
-
Mans, R., et al. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 15 (2015), 1–15.
-
(2015)
FEMS Yeast Res.
, vol.15
, pp. 1-15
-
-
Mans, R.1
-
9
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi, L.S., et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152 (2013), 1173–1183.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
-
10
-
-
85056551157
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
Gilbert, L.A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154 (2013), 1–10.
-
(2013)
Cell
, vol.154
, pp. 1-10
-
-
Gilbert, L.A.1
-
11
-
-
84887830251
-
Control of gene expression by CRISPR-Cas systems
-
Bikard, D., Marraffini, L.a, Control of gene expression by CRISPR-Cas systems. F1000Prime Rep. 5 (2013), 1–8.
-
(2013)
F1000Prime Rep.
, vol.5
, pp. 1-8
-
-
Bikard, D.1
Marraffini, L.A.2
-
12
-
-
84934936070
-
Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks
-
Nielsen, A.A.K., Voigt, C.A., Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Syst. Biol. 10 (2014), 1–11.
-
(2014)
Mol. Syst. Biol.
, vol.10
, pp. 1-11
-
-
Nielsen, A.A.K.1
Voigt, C.A.2
-
13
-
-
84954421331
-
Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9
-
Didovyk, A., et al. Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9. ACS Synth. Biol. 5 (2016), 81–88.
-
(2016)
ACS Synth. Biol.
, vol.5
, pp. 81-88
-
-
Didovyk, A.1
-
14
-
-
85056495508
-
Robust digital logic circuits in eukaryotic cells with CRISPR/dCas9 NOR gates
-
Published online March 2, 2016
-
Gander, M.W., et al. Robust digital logic circuits in eukaryotic cells with CRISPR/dCas9 NOR gates. bioRxiv., 2016, 10.1101/041871 Published online March 2, 2016.
-
(2016)
bioRxiv.
-
-
Gander, M.W.1
-
15
-
-
85056536482
-
CRISPR-Cas viral defence systems
-
Burstein, D., et al. CRISPR-Cas viral defence systems. Nat. Commun. 7 (2016), 1–8.
-
(2016)
Nat. Commun.
, vol.7
, pp. 1-8
-
-
Burstein, D.1
-
16
-
-
84902533278
-
Unravelling the structural and mechanistic basis of CRISPR-Cas systems
-
van der Oost, J., et al. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12 (2015), 479–492.
-
(2015)
Nat. Rev. Microbiol.
, vol.12
, pp. 479-492
-
-
van der Oost, J.1
-
17
-
-
84899105533
-
CRISPR-Cas systems: beyond adaptive immunity
-
Westra, E.R., et al. CRISPR-Cas systems: beyond adaptive immunity. Nat. Rev. Microbiol. 12 (2014), 317–326.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 317-326
-
-
Westra, E.R.1
-
18
-
-
84902010986
-
Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity
-
Nuñez, J.K., et al. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21 (2014), 528–534.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 528-534
-
-
Nuñez, J.K.1
-
19
-
-
38949214103
-
-
Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. 190.
-
Horvath, P. et al. (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. 190, 1401–1412.
-
(2008)
, pp. 1401-1412
-
-
Horvath, P.1
-
20
-
-
64049118040
-
Short motif sequences determine the targets of the prokaryotic CRISPR defence system
-
Mojica, F.J.M., et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155 (2008), 733–740.
-
(2008)
Microbiology
, vol.155
, pp. 733-740
-
-
Mojica, F.J.M.1
-
21
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva, E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471 (2011), 602–607.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
-
22
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (2012), 816–822.
-
(2012)
Science
, vol.337
, pp. 816-822
-
-
Jinek, M.1
-
23
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
Makarova, K.S., et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13 (2015), 722–736.
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
-
24
-
-
85010207605
-
Diversity and evolution of class 2 CRISPR–Cas systems
-
Shmakov, S., et al. Diversity and evolution of class 2 CRISPR–Cas systems. Nat. Rev. Microbiol. 15 (2017), 169–182.
-
(2017)
Nat. Rev. Microbiol.
, vol.15
, pp. 169-182
-
-
Shmakov, S.1
-
25
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system
-
Zetsche, B., et al. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell 163 (2015), 759–771.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
-
26
-
-
84974606818
-
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
-
Abudayyeh, O.O., et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353 (2016), 1–17.
-
(2016)
Science
, vol.353
, pp. 1-17
-
-
Abudayyeh, O.O.1
-
27
-
-
85012284419
-
New CRISPR-Cas systems from uncultivated microbes
-
Burstein, D., et al. New CRISPR-Cas systems from uncultivated microbes. Nature 542 (2016), 237–241.
-
(2016)
Nature
, vol.542
, pp. 237-241
-
-
Burstein, D.1
-
28
-
-
84947736727
-
Discovery and functional characterization of article discovery and functional characterization of diverse Class 2 CRISPR-Cas systems
-
Shmakov, S., et al. Discovery and functional characterization of article discovery and functional characterization of diverse Class 2 CRISPR-Cas systems. Mol. Cell 60 (2015), 385–397.
-
(2015)
Mol. Cell
, vol.60
, pp. 385-397
-
-
Shmakov, S.1
-
29
-
-
85008425651
-
Cas13b is a Type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28
-
618–630.e7
-
Smargon, A., et al. Cas13b is a Type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell, 65, 2016 618–630.e7.
-
(2016)
Mol. Cell
, vol.65
-
-
Smargon, A.1
-
30
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau, J.E., et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468 (2010), 67–71.
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
-
31
-
-
80755145195
-
The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
-
Sapranauskas, R., et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39 (2011), 9275–9282.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 9275-9282
-
-
Sapranauskas, R.1
-
32
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas, G., et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 2579–2586.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 2579-2586
-
-
Gasiunas, G.1
-
33
-
-
84881475586
-
Heritable genome editing in C. elegans via a CRISPR-Cas9 system
-
Friedland, A.E., et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10 (2014), 741–743.
-
(2014)
Nat Methods
, vol.10
, pp. 741-743
-
-
Friedland, A.E.1
-
34
-
-
84892437994
-
Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
-
Bassett, A.R., et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4 (2013), 220–228.
-
(2013)
Cell Rep.
, vol.4
, pp. 220-228
-
-
Bassett, A.R.1
-
35
-
-
84883785822
-
Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
Li, J.-F., et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31 (2013), 688–691.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 688-691
-
-
Li, J.-F.1
-
36
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
Jinek, M., et al. RNA-programmed genome editing in human cells. Elife 2013 (2013), 1–9.
-
(2013)
Elife
, vol.2013
, pp. 1-9
-
-
Jinek, M.1
-
37
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali, P., et al. RNA-guided human genome engineering via Cas9. Science 339 (2013), 823–826.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
-
38
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339 (2013), 819–823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
39
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
-
Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153 (2013), 910–918.
-
(2013)
Cell
, vol.153
, pp. 910-918
-
-
Wang, H.1
-
40
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo, J.E., et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41 (2013), 4336–4343.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
-
41
-
-
84940524988
-
A CRISPR-Cas9 system for genetic engineering of filamentous fungi
-
Nødvig, C.S., et al. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10 (2015), 1–18.
-
(2015)
PLoS One
, vol.10
, pp. 1-18
-
-
Nødvig, C.S.1
-
42
-
-
84892665620
-
Phylogenetic diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from genome-wide reference-free SNP characters
-
Timme, R.E., et al. Phylogenetic diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from genome-wide reference-free SNP characters. Genome Biol. Evol. 5 (2013), 2109–2123.
-
(2013)
Genome Biol. Evol.
, vol.5
, pp. 2109-2123
-
-
Timme, R.E.1
-
43
-
-
84929104165
-
CRISPR diversity in E. coli isolates from Australian animals, humans and environmental waters
-
Sheludchenko, M.S., et al. CRISPR diversity in E. coli isolates from Australian animals, humans and environmental waters. PLoS One 10 (2015), 1–12.
-
(2015)
PLoS One
, vol.10
, pp. 1-12
-
-
Sheludchenko, M.S.1
-
44
-
-
0030911908
-
Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology
-
Kamerbeek, J., et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 35 (1997), 907–914.
-
(1997)
J. Clin. Microbiol.
, vol.35
, pp. 907-914
-
-
Kamerbeek, J.1
-
45
-
-
84892453591
-
-
CRISPRs: molecular signatures used for pathogen subtyping. 80.
-
Shariat, N. and Dudley, E.G. (2014) CRISPRs: molecular signatures used for pathogen subtyping. 80, 430–439.
-
(2014)
, pp. 430-439
-
-
Shariat, N.1
Dudley, E.G.2
-
46
-
-
84892992798
-
Lactobacillus buchneri genotyping on the basis of clustered regularly interspaced short palindromic repeat (CRISPR) locus diversity
-
Briner, A.E., Barrangou, R., Lactobacillus buchneri genotyping on the basis of clustered regularly interspaced short palindromic repeat (CRISPR) locus diversity. Appl. Environ. Microbiol. 80 (2014), 994–1001.
-
(2014)
Appl. Environ. Microbiol.
, vol.80
, pp. 994-1001
-
-
Briner, A.E.1
Barrangou, R.2
-
47
-
-
84887855994
-
Genomic impact of CRISPR immunization against bacteriophages
-
Barrangou, R., et al. Genomic impact of CRISPR immunization against bacteriophages. Biochem. Soc. Trans. 41 (2013), 1383–1391.
-
(2013)
Biochem. Soc. Trans.
, vol.41
, pp. 1383-1391
-
-
Barrangou, R.1
-
48
-
-
84925876620
-
Harnessing CRISPR-Cas systems for bacterial genome editing
-
Selle, K., Barrangou, R., Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol. 23 (2015), 225–232.
-
(2015)
Trends Microbiol.
, vol.23
, pp. 225-232
-
-
Selle, K.1
Barrangou, R.2
-
49
-
-
84983142945
-
Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases
-
Bikard, D., et al. Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases. Nat. Biotechnol. 32 (2015), 1146–1150.
-
(2015)
Nat. Biotechnol.
, vol.32
, pp. 1146-1150
-
-
Bikard, D.1
-
50
-
-
84903362877
-
Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas Systems
-
Gomaa, A.A., et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas Systems. MBio 5 (2014), 1–9.
-
(2014)
MBio
, vol.5
, pp. 1-9
-
-
Gomaa, A.A.1
-
51
-
-
84983208863
-
Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
-
Citorik, R.J., et al. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32 (2014), 1141–1145.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1141-1145
-
-
Citorik, R.J.1
-
52
-
-
85056513245
-
-
Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria., 2015
-
Yosef, I. et al. (2015) Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. 2015.
-
(2015)
-
-
Yosef, I.1
-
53
-
-
84876845227
-
Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands
-
Vercoe, R.B., et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 9 (2013), 1–13.
-
(2013)
PLoS Genet.
, vol.9
, pp. 1-13
-
-
Vercoe, R.B.1
-
54
-
-
84930197469
-
Targeted DNA degradation using a CRISPR device stably carried in the host genome
-
Caliando, B.J., Voigt, C.a, Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nat. Commun., 6, 2015, 6989.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6989
-
-
Caliando, B.J.1
Voigt, C.A.2
-
55
-
-
84865144676
-
-
CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. 12.
-
Bikard, D. et al. (2012) CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. 12, 177–186.
-
(2012)
, pp. 177-186
-
-
Bikard, D.1
-
56
-
-
84873571066
-
In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus
-
Sinkunas, T., et al. In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J. 32 (2013), 385–394.
-
(2013)
EMBO J.
, vol.32
, pp. 385-394
-
-
Sinkunas, T.1
-
57
-
-
84923021733
-
Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
-
Jakočinas, T., et al. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 28 (2015), 213–222.
-
(2015)
Metab. Eng.
, vol.28
, pp. 213-222
-
-
Jakočinas, T.1
-
58
-
-
84941358492
-
Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system
-
Liu, R., et al. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov., 1, 2015, 15007.
-
(2015)
Cell Discov.
, vol.1
, pp. 15007
-
-
Liu, R.1
-
59
-
-
84898542935
-
Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template
-
Rong, Z., et al. Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell 5 (2014), 258–260.
-
(2014)
Protein Cell
, vol.5
, pp. 258-260
-
-
Rong, Z.1
-
60
-
-
84923050777
-
Implementation of the CRISPR-Cas9 system in fission yeast
-
Jacobs, J.Z., et al. Implementation of the CRISPR-Cas9 system in fission yeast. Nat. Commun., 5, 2014, 5344.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5344
-
-
Jacobs, J.Z.1
-
61
-
-
85056560947
-
Candida albicans gene deletion with a transient CRISPR-Cas9 system
-
Min, K., et al. Candida albicans gene deletion with a transient CRISPR-Cas9 system. Host-Microbe Biol. 1 (2015), 1–9.
-
(2015)
Host-Microbe Biol.
, vol.1
, pp. 1-9
-
-
Min, K.1
-
62
-
-
84950264293
-
Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus
-
Zhang, C., et al. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet. Biol. 86 (2016), 47–57.
-
(2016)
Fungal Genet. Biol.
, vol.86
, pp. 47-57
-
-
Zhang, C.1
-
63
-
-
84960091376
-
Efficient gene editing in Neurospora crassa with CRISPR technology
-
Matsu-ura, T., et al. Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol. Biotechnol. 2 (2015), 1–7.
-
(2015)
Fungal Biol. Biotechnol.
, vol.2
, pp. 1-7
-
-
Matsu-ura, T.1
-
64
-
-
84945571205
-
Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus
-
Arazoe, T., et al. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol. Bioeng. 112 (2015), 2543–2549.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 2543-2549
-
-
Arazoe, T.1
-
65
-
-
84978765496
-
CRISPR/Cas9 based genome editing of Penicillium chrysogenum
-
Pohl, C., et al. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth. Biol. 5 (2016), 754–764.
-
(2016)
ACS Synth. Biol.
, vol.5
, pp. 754-764
-
-
Pohl, C.1
-
66
-
-
84884160273
-
CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
-
Mali, P., et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31 (2013), 833–838.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 833-838
-
-
Mali, P.1
-
67
-
-
84992170651
-
Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system
-
Singh, A.K., et al. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system. Nucleic Acids Res. 44 (2016), 3–13.
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. 3-13
-
-
Singh, A.K.1
-
68
-
-
84940106526
-
CRISPR-Cas9 based engineering of actinomycetal genomes
-
Tong, Y., et al. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4 (2015), 1020–1029.
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 1020-1029
-
-
Tong, Y.1
-
69
-
-
84960094162
-
Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design
-
Smith, J.D., et al. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol. 17 (2016), 1–16.
-
(2016)
Genome Biol.
, vol.17
, pp. 1-16
-
-
Smith, J.D.1
-
70
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard, D., et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41 (2013), 7429–7437.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
-
71
-
-
84920992414
-
Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
-
Zalatan, J., et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160 (2015), 339–350.
-
(2015)
Cell
, vol.160
, pp. 339-350
-
-
Zalatan, J.1
-
72
-
-
84912066885
-
RNA targeting by the Type III-A CRISPR-Cas Csm complex of Thermus thermophilus
-
Staals, R.H.J., et al. RNA targeting by the Type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol. Cell 56 (2014), 518–530.
-
(2014)
Mol. Cell
, vol.56
, pp. 518-530
-
-
Staals, R.H.J.1
-
73
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
Sternberg, S.H., et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507 (2014), 62–67.
-
(2014)
Nature
, vol.507
, pp. 62-67
-
-
Sternberg, S.H.1
-
74
-
-
84970002343
-
Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli
-
Cress, B.F., et al. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli. Nucleic Acids Res. 44 (2016), 4472–4485.
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. 4472-4485
-
-
Cress, B.F.1
-
75
-
-
85028928105
-
A thermostable Cas9 with increased lifetime in human plasma
-
Published online May 16, 2017
-
Harrington, L.B., et al. A thermostable Cas9 with increased lifetime in human plasma. bioRxiv, 2017, 10.1101/138867 Published online May 16, 2017.
-
(2017)
bioRxiv
-
-
Harrington, L.B.1
-
76
-
-
84962514403
-
Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9
-
Anders, C., et al. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol. Cell 61 (2016), 895–902.
-
(2016)
Mol. Cell
, vol.61
, pp. 895-902
-
-
Anders, C.1
-
77
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
Kleinstiver, B.P., et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523 (2015), 481–485.
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
-
78
-
-
85056526307
-
Structure and engineering of Francisella novicida Cas9 Hisato
-
Hirano, H., et al. Structure and engineering of Francisella novicida Cas9 Hisato. Cell 21 (2016), 193–201.
-
(2016)
Cell
, vol.21
, pp. 193-201
-
-
Hirano, H.1
-
79
-
-
84982095570
-
In vitro characterization of phenylacetate decarboxylase, a novel enzyme catalyzing toluene biosynthesis in an anaerobic microbial community
-
Zargar, K., et al. In vitro characterization of phenylacetate decarboxylase, a novel enzyme catalyzing toluene biosynthesis in an anaerobic microbial community. Sci. Rep., 6, 2016, 31362.
-
(2016)
Sci. Rep.
, vol.6
, pp. 31362
-
-
Zargar, K.1
-
80
-
-
85019610018
-
Efficient genome editing of a facultative thermophile using mesophilic spCas9
-
Mougiakos, I., et al. Efficient genome editing of a facultative thermophile using mesophilic spCas9. ACS Synth. Biol. 6 (2017), 849–861.
-
(2017)
ACS Synth. Biol.
, vol.6
, pp. 849-861
-
-
Mougiakos, I.1
-
81
-
-
84987875388
-
Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system
-
Altenbuchner, J., Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl. Environ. Microbiol. 2 (2016), 5421–5427.
-
(2016)
Appl. Environ. Microbiol.
, vol.2
, pp. 5421-5427
-
-
Altenbuchner, J.1
-
82
-
-
84992316948
-
Genome editing of Clostridium autoethanogenum using CRISPR/Cas9
-
Nagaraju, S., et al. Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol. Biofuels, 9, 2016, 219.
-
(2016)
Biotechnol. Biofuels
, vol.9
, pp. 219
-
-
Nagaraju, S.1
-
83
-
-
84924425397
-
Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
-
Wang, Y., et al. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J. Biotechnol. 200 (2015), 1–5.
-
(2015)
J. Biotechnol.
, vol.200
, pp. 1-5
-
-
Wang, Y.1
-
84
-
-
84978699037
-
Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable ‘clean’ mutant selection in Clostridium beijerinckii as an example
-
Wang, Y., et al. Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable ‘clean’ mutant selection in Clostridium beijerinckii as an example. ACS Synth. Biol. 5 (2016), 721–732.
-
(2016)
ACS Synth. Biol.
, vol.5
, pp. 721-732
-
-
Wang, Y.1
-
85
-
-
84930787559
-
Efficient genome editing in clostridium cellulolyticum via CRISPR-Cas9 nickase
-
Xu, T., et al. Efficient genome editing in clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl. Environ. Microbiol. 81 (2015), 4423–4431.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 4423-4431
-
-
Xu, T.1
-
86
-
-
84973136613
-
Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi)
-
Cleto, S., et al. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth. Biol. 5 (2016), 375–385.
-
(2016)
ACS Synth. Biol.
, vol.5
, pp. 375-385
-
-
Cleto, S.1
-
87
-
-
85006485809
-
CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium
-
Huang, H., et al. CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth. Biol. 5 (2016), 1355–1361.
-
(2016)
ACS Synth. Biol.
, vol.5
, pp. 1355-1361
-
-
Huang, H.1
-
88
-
-
84971265340
-
Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium
-
Pyne, M.E., et al. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Sci. Rep. 6 (2016), 1–15.
-
(2016)
Sci. Rep.
, vol.6
, pp. 1-15
-
-
Pyne, M.E.1
-
89
-
-
84936967101
-
Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli
-
Pyne, M.E., et al. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. 81 (2015), 5103–5114.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, pp. 5103-5114
-
-
Pyne, M.E.1
-
90
-
-
84947999145
-
Targeted large-scale deletion of bacterial genomes using CRISPR-nickases
-
Standage-Beier, K., et al. Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. ACS Synth. Biol. 4 (2015), 1217–1225.
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 1217-1225
-
-
Standage-Beier, K.1
-
91
-
-
84955464550
-
CRMAGE: CRISPR optimized MAGE recombineering
-
Ronda, C., et al. CRMAGE: CRISPR optimized MAGE recombineering. Sci. Rep., 6, 2016, 19452.
-
(2016)
Sci. Rep.
, vol.6
, pp. 19452
-
-
Ronda, C.1
-
92
-
-
84945944020
-
Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways
-
Cress, B.F., et al. Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways. Curr. Opin. Biotechnol. 36 (2015), 205–214.
-
(2015)
Curr. Opin. Biotechnol.
, vol.36
, pp. 205-214
-
-
Cress, B.F.1
-
93
-
-
84941084368
-
Efficient programmable gene silencing by Cascade
-
Rath, D., et al. Efficient programmable gene silencing by Cascade. Nucleic Acids Res. 43 (2014), 237–246.
-
(2014)
Nucleic Acids Res.
, vol.43
, pp. 237-246
-
-
Rath, D.1
-
94
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh, J.-H., van Pijkeren, J.-P., CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 42 (2014), 1–11.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 1-11
-
-
Oh, J.-H.1
van Pijkeren, J.-P.2
-
95
-
-
84934947770
-
High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
-
Cobb, R.E., et al. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 4 (2014), 723–728.
-
(2014)
ACS Synth. Biol.
, vol.4
, pp. 723-728
-
-
Cobb, R.E.1
-
96
-
-
29344453377
-
An isolated Candida albicans TL3 capable of degrading phenol at large concentration
-
Tsai, S., et al. An isolated Candida albicans TL3 capable of degrading phenol at large concentration. Biosci. Biotechnol. Biochem. 69 (2014), 2358–2367.
-
(2014)
Biosci. Biotechnol. Biochem.
, vol.69
, pp. 2358-2367
-
-
Tsai, S.1
-
97
-
-
84940726919
-
A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families
-
Vyas, V., et al. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci. Adv., 1, 2015, e1500248.
-
(2015)
Sci. Adv.
, vol.1
, pp. e1500248
-
-
Vyas, V.1
-
98
-
-
84963593243
-
Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris
-
Weninger, A., et al. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J. Biotechnol. 235 (2016), 139–149.
-
(2016)
J. Biotechnol.
, vol.235
, pp. 139-149
-
-
Weninger, A.1
-
99
-
-
85007557178
-
Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9
-
Biot-Pelletier, D., Martin, V.J.J., Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9. J. Biol. Eng, 10, 2016, 6.
-
(2016)
J. Biol. Eng
, vol.10
, pp. 6
-
-
Biot-Pelletier, D.1
Martin, V.J.J.2
-
100
-
-
84911871184
-
Selection of chromosomal DNA libraries using a multiplex CRISPR system
-
Ryan, O.W., et al. Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife, 3, 2014, e03703.
-
(2014)
Elife
, vol.3
, pp. e03703
-
-
Ryan, O.W.1
-
101
-
-
84929572600
-
Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
-
Bao, Z., et al. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth. Biol. 4 (2015), 585–594.
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 585-594
-
-
Bao, Z.1
-
102
-
-
84969309766
-
Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals
-
Geiser, E., et al. Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. Fungal Biol. Biotechnol., 1, 2014, 2.
-
(2014)
Fungal Biol. Biotechnol.
, vol.1
, pp. 2
-
-
Geiser, E.1
-
103
-
-
84960093445
-
Genome editing in Ustilago maydis using the CRISPR-Cas system
-
Schuster, M., et al. Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal. Genet. Biol. 89 (2016), 3–9.
-
(2016)
Fungal. Genet. Biol.
, vol.89
, pp. 3-9
-
-
Schuster, M.1
-
104
-
-
84976291789
-
Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system
-
Gao, S., et al. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system. J. Ind. Microbiol. Biotechnol. 43 (2016), 1085–1093.
-
(2016)
J. Ind. Microbiol. Biotechnol.
, vol.43
, pp. 1085-1093
-
-
Gao, S.1
-
105
-
-
85017584772
-
Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica
-
Schwartz, C., et al. Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth. Biol. 6 (2016), 402–409.
-
(2016)
ACS Synth. Biol.
, vol.6
, pp. 402-409
-
-
Schwartz, C.1
-
106
-
-
84950247991
-
Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae
-
Katayama, T., et al. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol. Lett. 38 (2016), 637–642.
-
(2016)
Biotechnol. Lett.
, vol.38
, pp. 637-642
-
-
Katayama, T.1
-
107
-
-
85009999725
-
Biotechnology for biofuels development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering
-
Liu, Q., et al. Biotechnology for biofuels development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol. Biofuels 10 (2017), 1–14.
-
(2017)
Biotechnol. Biofuels
, vol.10
, pp. 1-14
-
-
Liu, Q.1
|