메뉴 건너뛰기




Volumn 36, Issue 2, 2018, Pages 134-146

Advances in Industrial Biotechnology Using CRISPR-Cas Systems

Author keywords

[No Author keywords available]

Indexed keywords

CELL ENGINEERING; IMMUNIZATION; INDUSTRIAL CHEMICALS; INDUSTRIAL PLANTS; MICROORGANISMS; NUCLEIC ACIDS; PRECISION ENGINEERING; RNA; TRANSCRIPTION;

EID: 85026534475     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2017.07.007     Document Type: Review
Times cited : (177)

References (107)
  • 1
    • 84873800970 scopus 로고    scopus 로고
    • Genome-scale engineering for systems and synthetic biology
    • Esvelt, K.M., Wang, H.H., Genome-scale engineering for systems and synthetic biology. Mol. Syst. Biol. 9 (2013), 1–17.
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 1-17
    • Esvelt, K.M.1    Wang, H.H.2
  • 2
    • 84935472715 scopus 로고    scopus 로고
    • Advances in yeast genome engineering
    • David, F., Siewers, V., Advances in yeast genome engineering. FEMS Yeast Res. 15 (2015), 1–14.
    • (2015) FEMS Yeast Res. , vol.15 , pp. 1-14
    • David, F.1    Siewers, V.2
  • 3
    • 34047118522 scopus 로고    scopus 로고
    • CRISPR provides acquired resistance against viruses in prokaryotes
    • Barrangou, R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 (2007), 1709–1712.
    • (2007) Science , vol.315 , pp. 1709-1712
    • Barrangou, R.1
  • 4
    • 84935513637 scopus 로고    scopus 로고
    • Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas
    • Horwitz, A.A., et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 1 (2015), 1–9.
    • (2015) Cell Syst. , vol.1 , pp. 1-9
    • Horwitz, A.A.1
  • 5
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    • Jiang, W., et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31 (2013), 233–239.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 233-239
    • Jiang, W.1
  • 6
    • 84925355124 scopus 로고    scopus 로고
    • Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
    • Jiang, Y., et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 81 (2015), 2506–2514.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 2506-2514
    • Jiang, Y.1
  • 7
    • 84935426318 scopus 로고    scopus 로고
    • CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae
    • Ronda, C., et al. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb. Cell Fact. 14 (2015), 1–11.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 1-11
    • Ronda, C.1
  • 8
    • 84930638003 scopus 로고    scopus 로고
    • CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
    • Mans, R., et al. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 15 (2015), 1–15.
    • (2015) FEMS Yeast Res. , vol.15 , pp. 1-15
    • Mans, R.1
  • 9
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • Qi, L.S., et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152 (2013), 1173–1183.
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1
  • 10
    • 85056551157 scopus 로고    scopus 로고
    • CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
    • Gilbert, L.A., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154 (2013), 1–10.
    • (2013) Cell , vol.154 , pp. 1-10
    • Gilbert, L.A.1
  • 11
    • 84887830251 scopus 로고    scopus 로고
    • Control of gene expression by CRISPR-Cas systems
    • Bikard, D., Marraffini, L.a, Control of gene expression by CRISPR-Cas systems. F1000Prime Rep. 5 (2013), 1–8.
    • (2013) F1000Prime Rep. , vol.5 , pp. 1-8
    • Bikard, D.1    Marraffini, L.A.2
  • 12
    • 84934936070 scopus 로고    scopus 로고
    • Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks
    • Nielsen, A.A.K., Voigt, C.A., Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Syst. Biol. 10 (2014), 1–11.
    • (2014) Mol. Syst. Biol. , vol.10 , pp. 1-11
    • Nielsen, A.A.K.1    Voigt, C.A.2
  • 13
    • 84954421331 scopus 로고    scopus 로고
    • Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9
    • Didovyk, A., et al. Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9. ACS Synth. Biol. 5 (2016), 81–88.
    • (2016) ACS Synth. Biol. , vol.5 , pp. 81-88
    • Didovyk, A.1
  • 14
    • 85056495508 scopus 로고    scopus 로고
    • Robust digital logic circuits in eukaryotic cells with CRISPR/dCas9 NOR gates
    • Published online March 2, 2016
    • Gander, M.W., et al. Robust digital logic circuits in eukaryotic cells with CRISPR/dCas9 NOR gates. bioRxiv., 2016, 10.1101/041871 Published online March 2, 2016.
    • (2016) bioRxiv.
    • Gander, M.W.1
  • 15
    • 85056536482 scopus 로고    scopus 로고
    • CRISPR-Cas viral defence systems
    • Burstein, D., et al. CRISPR-Cas viral defence systems. Nat. Commun. 7 (2016), 1–8.
    • (2016) Nat. Commun. , vol.7 , pp. 1-8
    • Burstein, D.1
  • 16
    • 84902533278 scopus 로고    scopus 로고
    • Unravelling the structural and mechanistic basis of CRISPR-Cas systems
    • van der Oost, J., et al. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12 (2015), 479–492.
    • (2015) Nat. Rev. Microbiol. , vol.12 , pp. 479-492
    • van der Oost, J.1
  • 17
    • 84899105533 scopus 로고    scopus 로고
    • CRISPR-Cas systems: beyond adaptive immunity
    • Westra, E.R., et al. CRISPR-Cas systems: beyond adaptive immunity. Nat. Rev. Microbiol. 12 (2014), 317–326.
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 317-326
    • Westra, E.R.1
  • 18
    • 84902010986 scopus 로고    scopus 로고
    • Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity
    • Nuñez, J.K., et al. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21 (2014), 528–534.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 528-534
    • Nuñez, J.K.1
  • 19
    • 38949214103 scopus 로고    scopus 로고
    • Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. 190.
    • Horvath, P. et al. (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. 190, 1401–1412.
    • (2008) , pp. 1401-1412
    • Horvath, P.1
  • 20
    • 64049118040 scopus 로고    scopus 로고
    • Short motif sequences determine the targets of the prokaryotic CRISPR defence system
    • Mojica, F.J.M., et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155 (2008), 733–740.
    • (2008) Microbiology , vol.155 , pp. 733-740
    • Mojica, F.J.M.1
  • 21
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • Deltcheva, E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471 (2011), 602–607.
    • (2011) Nature , vol.471 , pp. 602-607
    • Deltcheva, E.1
  • 22
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (2012), 816–822.
    • (2012) Science , vol.337 , pp. 816-822
    • Jinek, M.1
  • 23
    • 84944449180 scopus 로고    scopus 로고
    • An updated evolutionary classification of CRISPR-Cas systems
    • Makarova, K.S., et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13 (2015), 722–736.
    • (2015) Nat. Rev. Microbiol. , vol.13 , pp. 722-736
    • Makarova, K.S.1
  • 24
    • 85010207605 scopus 로고    scopus 로고
    • Diversity and evolution of class 2 CRISPR–Cas systems
    • Shmakov, S., et al. Diversity and evolution of class 2 CRISPR–Cas systems. Nat. Rev. Microbiol. 15 (2017), 169–182.
    • (2017) Nat. Rev. Microbiol. , vol.15 , pp. 169-182
    • Shmakov, S.1
  • 25
    • 84975678715 scopus 로고    scopus 로고
    • Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system
    • Zetsche, B., et al. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell 163 (2015), 759–771.
    • (2015) Cell , vol.163 , pp. 759-771
    • Zetsche, B.1
  • 26
    • 84974606818 scopus 로고    scopus 로고
    • C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
    • Abudayyeh, O.O., et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353 (2016), 1–17.
    • (2016) Science , vol.353 , pp. 1-17
    • Abudayyeh, O.O.1
  • 27
    • 85012284419 scopus 로고    scopus 로고
    • New CRISPR-Cas systems from uncultivated microbes
    • Burstein, D., et al. New CRISPR-Cas systems from uncultivated microbes. Nature 542 (2016), 237–241.
    • (2016) Nature , vol.542 , pp. 237-241
    • Burstein, D.1
  • 28
    • 84947736727 scopus 로고    scopus 로고
    • Discovery and functional characterization of article discovery and functional characterization of diverse Class 2 CRISPR-Cas systems
    • Shmakov, S., et al. Discovery and functional characterization of article discovery and functional characterization of diverse Class 2 CRISPR-Cas systems. Mol. Cell 60 (2015), 385–397.
    • (2015) Mol. Cell , vol.60 , pp. 385-397
    • Shmakov, S.1
  • 29
    • 85008425651 scopus 로고    scopus 로고
    • Cas13b is a Type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28
    • 618–630.e7
    • Smargon, A., et al. Cas13b is a Type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell, 65, 2016 618–630.e7.
    • (2016) Mol. Cell , vol.65
    • Smargon, A.1
  • 30
    • 78149261827 scopus 로고    scopus 로고
    • The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
    • Garneau, J.E., et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468 (2010), 67–71.
    • (2010) Nature , vol.468 , pp. 67-71
    • Garneau, J.E.1
  • 31
    • 80755145195 scopus 로고    scopus 로고
    • The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
    • Sapranauskas, R., et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39 (2011), 9275–9282.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 9275-9282
    • Sapranauskas, R.1
  • 32
    • 84866859751 scopus 로고    scopus 로고
    • Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
    • Gasiunas, G., et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 2579–2586.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 2579-2586
    • Gasiunas, G.1
  • 33
    • 84881475586 scopus 로고    scopus 로고
    • Heritable genome editing in C. elegans via a CRISPR-Cas9 system
    • Friedland, A.E., et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10 (2014), 741–743.
    • (2014) Nat Methods , vol.10 , pp. 741-743
    • Friedland, A.E.1
  • 34
    • 84892437994 scopus 로고    scopus 로고
    • Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system
    • Bassett, A.R., et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4 (2013), 220–228.
    • (2013) Cell Rep. , vol.4 , pp. 220-228
    • Bassett, A.R.1
  • 35
    • 84883785822 scopus 로고    scopus 로고
    • Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
    • Li, J.-F., et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31 (2013), 688–691.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 688-691
    • Li, J.-F.1
  • 36
    • 84876567971 scopus 로고    scopus 로고
    • RNA-programmed genome editing in human cells
    • Jinek, M., et al. RNA-programmed genome editing in human cells. Elife 2013 (2013), 1–9.
    • (2013) Elife , vol.2013 , pp. 1-9
    • Jinek, M.1
  • 37
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • Mali, P., et al. RNA-guided human genome engineering via Cas9. Science 339 (2013), 823–826.
    • (2013) Science , vol.339 , pp. 823-826
    • Mali, P.1
  • 38
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong, L., et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339 (2013), 819–823.
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 39
    • 84877707375 scopus 로고    scopus 로고
    • One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
    • Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153 (2013), 910–918.
    • (2013) Cell , vol.153 , pp. 910-918
    • Wang, H.1
  • 40
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • DiCarlo, J.E., et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41 (2013), 4336–4343.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 4336-4343
    • DiCarlo, J.E.1
  • 41
    • 84940524988 scopus 로고    scopus 로고
    • A CRISPR-Cas9 system for genetic engineering of filamentous fungi
    • Nødvig, C.S., et al. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10 (2015), 1–18.
    • (2015) PLoS One , vol.10 , pp. 1-18
    • Nødvig, C.S.1
  • 42
    • 84892665620 scopus 로고    scopus 로고
    • Phylogenetic diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from genome-wide reference-free SNP characters
    • Timme, R.E., et al. Phylogenetic diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from genome-wide reference-free SNP characters. Genome Biol. Evol. 5 (2013), 2109–2123.
    • (2013) Genome Biol. Evol. , vol.5 , pp. 2109-2123
    • Timme, R.E.1
  • 43
    • 84929104165 scopus 로고    scopus 로고
    • CRISPR diversity in E. coli isolates from Australian animals, humans and environmental waters
    • Sheludchenko, M.S., et al. CRISPR diversity in E. coli isolates from Australian animals, humans and environmental waters. PLoS One 10 (2015), 1–12.
    • (2015) PLoS One , vol.10 , pp. 1-12
    • Sheludchenko, M.S.1
  • 44
    • 0030911908 scopus 로고    scopus 로고
    • Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology
    • Kamerbeek, J., et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 35 (1997), 907–914.
    • (1997) J. Clin. Microbiol. , vol.35 , pp. 907-914
    • Kamerbeek, J.1
  • 45
    • 84892453591 scopus 로고    scopus 로고
    • CRISPRs: molecular signatures used for pathogen subtyping. 80.
    • Shariat, N. and Dudley, E.G. (2014) CRISPRs: molecular signatures used for pathogen subtyping. 80, 430–439.
    • (2014) , pp. 430-439
    • Shariat, N.1    Dudley, E.G.2
  • 46
    • 84892992798 scopus 로고    scopus 로고
    • Lactobacillus buchneri genotyping on the basis of clustered regularly interspaced short palindromic repeat (CRISPR) locus diversity
    • Briner, A.E., Barrangou, R., Lactobacillus buchneri genotyping on the basis of clustered regularly interspaced short palindromic repeat (CRISPR) locus diversity. Appl. Environ. Microbiol. 80 (2014), 994–1001.
    • (2014) Appl. Environ. Microbiol. , vol.80 , pp. 994-1001
    • Briner, A.E.1    Barrangou, R.2
  • 47
    • 84887855994 scopus 로고    scopus 로고
    • Genomic impact of CRISPR immunization against bacteriophages
    • Barrangou, R., et al. Genomic impact of CRISPR immunization against bacteriophages. Biochem. Soc. Trans. 41 (2013), 1383–1391.
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 1383-1391
    • Barrangou, R.1
  • 48
    • 84925876620 scopus 로고    scopus 로고
    • Harnessing CRISPR-Cas systems for bacterial genome editing
    • Selle, K., Barrangou, R., Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol. 23 (2015), 225–232.
    • (2015) Trends Microbiol. , vol.23 , pp. 225-232
    • Selle, K.1    Barrangou, R.2
  • 49
    • 84983142945 scopus 로고    scopus 로고
    • Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases
    • Bikard, D., et al. Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases. Nat. Biotechnol. 32 (2015), 1146–1150.
    • (2015) Nat. Biotechnol. , vol.32 , pp. 1146-1150
    • Bikard, D.1
  • 50
    • 84903362877 scopus 로고    scopus 로고
    • Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas Systems
    • Gomaa, A.A., et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas Systems. MBio 5 (2014), 1–9.
    • (2014) MBio , vol.5 , pp. 1-9
    • Gomaa, A.A.1
  • 51
    • 84983208863 scopus 로고    scopus 로고
    • Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
    • Citorik, R.J., et al. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32 (2014), 1141–1145.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1141-1145
    • Citorik, R.J.1
  • 52
    • 85056513245 scopus 로고    scopus 로고
    • Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria., 2015
    • Yosef, I. et al. (2015) Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. 2015.
    • (2015)
    • Yosef, I.1
  • 53
    • 84876845227 scopus 로고    scopus 로고
    • Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands
    • Vercoe, R.B., et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 9 (2013), 1–13.
    • (2013) PLoS Genet. , vol.9 , pp. 1-13
    • Vercoe, R.B.1
  • 54
    • 84930197469 scopus 로고    scopus 로고
    • Targeted DNA degradation using a CRISPR device stably carried in the host genome
    • Caliando, B.J., Voigt, C.a, Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nat. Commun., 6, 2015, 6989.
    • (2015) Nat. Commun. , vol.6 , pp. 6989
    • Caliando, B.J.1    Voigt, C.A.2
  • 55
    • 84865144676 scopus 로고    scopus 로고
    • CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. 12.
    • Bikard, D. et al. (2012) CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. 12, 177–186.
    • (2012) , pp. 177-186
    • Bikard, D.1
  • 56
    • 84873571066 scopus 로고    scopus 로고
    • In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus
    • Sinkunas, T., et al. In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J. 32 (2013), 385–394.
    • (2013) EMBO J. , vol.32 , pp. 385-394
    • Sinkunas, T.1
  • 57
    • 84923021733 scopus 로고    scopus 로고
    • Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
    • Jakočinas, T., et al. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 28 (2015), 213–222.
    • (2015) Metab. Eng. , vol.28 , pp. 213-222
    • Jakočinas, T.1
  • 58
    • 84941358492 scopus 로고    scopus 로고
    • Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system
    • Liu, R., et al. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov., 1, 2015, 15007.
    • (2015) Cell Discov. , vol.1 , pp. 15007
    • Liu, R.1
  • 59
    • 84898542935 scopus 로고    scopus 로고
    • Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template
    • Rong, Z., et al. Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell 5 (2014), 258–260.
    • (2014) Protein Cell , vol.5 , pp. 258-260
    • Rong, Z.1
  • 60
    • 84923050777 scopus 로고    scopus 로고
    • Implementation of the CRISPR-Cas9 system in fission yeast
    • Jacobs, J.Z., et al. Implementation of the CRISPR-Cas9 system in fission yeast. Nat. Commun., 5, 2014, 5344.
    • (2014) Nat. Commun. , vol.5 , pp. 5344
    • Jacobs, J.Z.1
  • 61
    • 85056560947 scopus 로고    scopus 로고
    • Candida albicans gene deletion with a transient CRISPR-Cas9 system
    • Min, K., et al. Candida albicans gene deletion with a transient CRISPR-Cas9 system. Host-Microbe Biol. 1 (2015), 1–9.
    • (2015) Host-Microbe Biol. , vol.1 , pp. 1-9
    • Min, K.1
  • 62
    • 84950264293 scopus 로고    scopus 로고
    • Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus
    • Zhang, C., et al. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet. Biol. 86 (2016), 47–57.
    • (2016) Fungal Genet. Biol. , vol.86 , pp. 47-57
    • Zhang, C.1
  • 63
    • 84960091376 scopus 로고    scopus 로고
    • Efficient gene editing in Neurospora crassa with CRISPR technology
    • Matsu-ura, T., et al. Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol. Biotechnol. 2 (2015), 1–7.
    • (2015) Fungal Biol. Biotechnol. , vol.2 , pp. 1-7
    • Matsu-ura, T.1
  • 64
    • 84945571205 scopus 로고    scopus 로고
    • Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus
    • Arazoe, T., et al. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol. Bioeng. 112 (2015), 2543–2549.
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 2543-2549
    • Arazoe, T.1
  • 65
    • 84978765496 scopus 로고    scopus 로고
    • CRISPR/Cas9 based genome editing of Penicillium chrysogenum
    • Pohl, C., et al. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth. Biol. 5 (2016), 754–764.
    • (2016) ACS Synth. Biol. , vol.5 , pp. 754-764
    • Pohl, C.1
  • 66
    • 84884160273 scopus 로고    scopus 로고
    • CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
    • Mali, P., et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31 (2013), 833–838.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 833-838
    • Mali, P.1
  • 67
    • 84992170651 scopus 로고    scopus 로고
    • Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system
    • Singh, A.K., et al. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system. Nucleic Acids Res. 44 (2016), 3–13.
    • (2016) Nucleic Acids Res. , vol.44 , pp. 3-13
    • Singh, A.K.1
  • 68
    • 84940106526 scopus 로고    scopus 로고
    • CRISPR-Cas9 based engineering of actinomycetal genomes
    • Tong, Y., et al. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4 (2015), 1020–1029.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 1020-1029
    • Tong, Y.1
  • 69
    • 84960094162 scopus 로고    scopus 로고
    • Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design
    • Smith, J.D., et al. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol. 17 (2016), 1–16.
    • (2016) Genome Biol. , vol.17 , pp. 1-16
    • Smith, J.D.1
  • 70
    • 84882986957 scopus 로고    scopus 로고
    • Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
    • Bikard, D., et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41 (2013), 7429–7437.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 7429-7437
    • Bikard, D.1
  • 71
    • 84920992414 scopus 로고    scopus 로고
    • Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
    • Zalatan, J., et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160 (2015), 339–350.
    • (2015) Cell , vol.160 , pp. 339-350
    • Zalatan, J.1
  • 72
    • 84912066885 scopus 로고    scopus 로고
    • RNA targeting by the Type III-A CRISPR-Cas Csm complex of Thermus thermophilus
    • Staals, R.H.J., et al. RNA targeting by the Type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol. Cell 56 (2014), 518–530.
    • (2014) Mol. Cell , vol.56 , pp. 518-530
    • Staals, R.H.J.1
  • 73
    • 84895871173 scopus 로고    scopus 로고
    • DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
    • Sternberg, S.H., et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507 (2014), 62–67.
    • (2014) Nature , vol.507 , pp. 62-67
    • Sternberg, S.H.1
  • 74
    • 84970002343 scopus 로고    scopus 로고
    • Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli
    • Cress, B.F., et al. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli. Nucleic Acids Res. 44 (2016), 4472–4485.
    • (2016) Nucleic Acids Res. , vol.44 , pp. 4472-4485
    • Cress, B.F.1
  • 75
    • 85028928105 scopus 로고    scopus 로고
    • A thermostable Cas9 with increased lifetime in human plasma
    • Published online May 16, 2017
    • Harrington, L.B., et al. A thermostable Cas9 with increased lifetime in human plasma. bioRxiv, 2017, 10.1101/138867 Published online May 16, 2017.
    • (2017) bioRxiv
    • Harrington, L.B.1
  • 76
    • 84962514403 scopus 로고    scopus 로고
    • Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9
    • Anders, C., et al. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol. Cell 61 (2016), 895–902.
    • (2016) Mol. Cell , vol.61 , pp. 895-902
    • Anders, C.1
  • 77
    • 84937908208 scopus 로고    scopus 로고
    • Engineered CRISPR-Cas9 nucleases with altered PAM specificities
    • Kleinstiver, B.P., et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523 (2015), 481–485.
    • (2015) Nature , vol.523 , pp. 481-485
    • Kleinstiver, B.P.1
  • 78
    • 85056526307 scopus 로고    scopus 로고
    • Structure and engineering of Francisella novicida Cas9 Hisato
    • Hirano, H., et al. Structure and engineering of Francisella novicida Cas9 Hisato. Cell 21 (2016), 193–201.
    • (2016) Cell , vol.21 , pp. 193-201
    • Hirano, H.1
  • 79
    • 84982095570 scopus 로고    scopus 로고
    • In vitro characterization of phenylacetate decarboxylase, a novel enzyme catalyzing toluene biosynthesis in an anaerobic microbial community
    • Zargar, K., et al. In vitro characterization of phenylacetate decarboxylase, a novel enzyme catalyzing toluene biosynthesis in an anaerobic microbial community. Sci. Rep., 6, 2016, 31362.
    • (2016) Sci. Rep. , vol.6 , pp. 31362
    • Zargar, K.1
  • 80
    • 85019610018 scopus 로고    scopus 로고
    • Efficient genome editing of a facultative thermophile using mesophilic spCas9
    • Mougiakos, I., et al. Efficient genome editing of a facultative thermophile using mesophilic spCas9. ACS Synth. Biol. 6 (2017), 849–861.
    • (2017) ACS Synth. Biol. , vol.6 , pp. 849-861
    • Mougiakos, I.1
  • 81
    • 84987875388 scopus 로고    scopus 로고
    • Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system
    • Altenbuchner, J., Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl. Environ. Microbiol. 2 (2016), 5421–5427.
    • (2016) Appl. Environ. Microbiol. , vol.2 , pp. 5421-5427
    • Altenbuchner, J.1
  • 82
    • 84992316948 scopus 로고    scopus 로고
    • Genome editing of Clostridium autoethanogenum using CRISPR/Cas9
    • Nagaraju, S., et al. Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol. Biofuels, 9, 2016, 219.
    • (2016) Biotechnol. Biofuels , vol.9 , pp. 219
    • Nagaraju, S.1
  • 83
    • 84924425397 scopus 로고    scopus 로고
    • Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
    • Wang, Y., et al. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J. Biotechnol. 200 (2015), 1–5.
    • (2015) J. Biotechnol. , vol.200 , pp. 1-5
    • Wang, Y.1
  • 84
    • 84978699037 scopus 로고    scopus 로고
    • Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable ‘clean’ mutant selection in Clostridium beijerinckii as an example
    • Wang, Y., et al. Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable ‘clean’ mutant selection in Clostridium beijerinckii as an example. ACS Synth. Biol. 5 (2016), 721–732.
    • (2016) ACS Synth. Biol. , vol.5 , pp. 721-732
    • Wang, Y.1
  • 85
    • 84930787559 scopus 로고    scopus 로고
    • Efficient genome editing in clostridium cellulolyticum via CRISPR-Cas9 nickase
    • Xu, T., et al. Efficient genome editing in clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl. Environ. Microbiol. 81 (2015), 4423–4431.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 4423-4431
    • Xu, T.1
  • 86
    • 84973136613 scopus 로고    scopus 로고
    • Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi)
    • Cleto, S., et al. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth. Biol. 5 (2016), 375–385.
    • (2016) ACS Synth. Biol. , vol.5 , pp. 375-385
    • Cleto, S.1
  • 87
    • 85006485809 scopus 로고    scopus 로고
    • CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium
    • Huang, H., et al. CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth. Biol. 5 (2016), 1355–1361.
    • (2016) ACS Synth. Biol. , vol.5 , pp. 1355-1361
    • Huang, H.1
  • 88
    • 84971265340 scopus 로고    scopus 로고
    • Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium
    • Pyne, M.E., et al. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Sci. Rep. 6 (2016), 1–15.
    • (2016) Sci. Rep. , vol.6 , pp. 1-15
    • Pyne, M.E.1
  • 89
    • 84936967101 scopus 로고    scopus 로고
    • Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli
    • Pyne, M.E., et al. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. 81 (2015), 5103–5114.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 5103-5114
    • Pyne, M.E.1
  • 90
    • 84947999145 scopus 로고    scopus 로고
    • Targeted large-scale deletion of bacterial genomes using CRISPR-nickases
    • Standage-Beier, K., et al. Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. ACS Synth. Biol. 4 (2015), 1217–1225.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 1217-1225
    • Standage-Beier, K.1
  • 91
    • 84955464550 scopus 로고    scopus 로고
    • CRMAGE: CRISPR optimized MAGE recombineering
    • Ronda, C., et al. CRMAGE: CRISPR optimized MAGE recombineering. Sci. Rep., 6, 2016, 19452.
    • (2016) Sci. Rep. , vol.6 , pp. 19452
    • Ronda, C.1
  • 92
    • 84945944020 scopus 로고    scopus 로고
    • Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways
    • Cress, B.F., et al. Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways. Curr. Opin. Biotechnol. 36 (2015), 205–214.
    • (2015) Curr. Opin. Biotechnol. , vol.36 , pp. 205-214
    • Cress, B.F.1
  • 93
    • 84941084368 scopus 로고    scopus 로고
    • Efficient programmable gene silencing by Cascade
    • Rath, D., et al. Efficient programmable gene silencing by Cascade. Nucleic Acids Res. 43 (2014), 237–246.
    • (2014) Nucleic Acids Res. , vol.43 , pp. 237-246
    • Rath, D.1
  • 94
    • 84964315717 scopus 로고    scopus 로고
    • CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
    • Oh, J.-H., van Pijkeren, J.-P., CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 42 (2014), 1–11.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 1-11
    • Oh, J.-H.1    van Pijkeren, J.-P.2
  • 95
    • 84934947770 scopus 로고    scopus 로고
    • High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
    • Cobb, R.E., et al. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 4 (2014), 723–728.
    • (2014) ACS Synth. Biol. , vol.4 , pp. 723-728
    • Cobb, R.E.1
  • 96
    • 29344453377 scopus 로고    scopus 로고
    • An isolated Candida albicans TL3 capable of degrading phenol at large concentration
    • Tsai, S., et al. An isolated Candida albicans TL3 capable of degrading phenol at large concentration. Biosci. Biotechnol. Biochem. 69 (2014), 2358–2367.
    • (2014) Biosci. Biotechnol. Biochem. , vol.69 , pp. 2358-2367
    • Tsai, S.1
  • 97
    • 84940726919 scopus 로고    scopus 로고
    • A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families
    • Vyas, V., et al. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci. Adv., 1, 2015, e1500248.
    • (2015) Sci. Adv. , vol.1 , pp. e1500248
    • Vyas, V.1
  • 98
    • 84963593243 scopus 로고    scopus 로고
    • Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris
    • Weninger, A., et al. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J. Biotechnol. 235 (2016), 139–149.
    • (2016) J. Biotechnol. , vol.235 , pp. 139-149
    • Weninger, A.1
  • 99
    • 85007557178 scopus 로고    scopus 로고
    • Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9
    • Biot-Pelletier, D., Martin, V.J.J., Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9. J. Biol. Eng, 10, 2016, 6.
    • (2016) J. Biol. Eng , vol.10 , pp. 6
    • Biot-Pelletier, D.1    Martin, V.J.J.2
  • 100
    • 84911871184 scopus 로고    scopus 로고
    • Selection of chromosomal DNA libraries using a multiplex CRISPR system
    • Ryan, O.W., et al. Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife, 3, 2014, e03703.
    • (2014) Elife , vol.3 , pp. e03703
    • Ryan, O.W.1
  • 101
    • 84929572600 scopus 로고    scopus 로고
    • Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
    • Bao, Z., et al. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth. Biol. 4 (2015), 585–594.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 585-594
    • Bao, Z.1
  • 102
    • 84969309766 scopus 로고    scopus 로고
    • Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals
    • Geiser, E., et al. Prospecting the biodiversity of the fungal family Ustilaginaceae for the production of value-added chemicals. Fungal Biol. Biotechnol., 1, 2014, 2.
    • (2014) Fungal Biol. Biotechnol. , vol.1 , pp. 2
    • Geiser, E.1
  • 103
    • 84960093445 scopus 로고    scopus 로고
    • Genome editing in Ustilago maydis using the CRISPR-Cas system
    • Schuster, M., et al. Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal. Genet. Biol. 89 (2016), 3–9.
    • (2016) Fungal. Genet. Biol. , vol.89 , pp. 3-9
    • Schuster, M.1
  • 104
    • 84976291789 scopus 로고    scopus 로고
    • Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system
    • Gao, S., et al. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system. J. Ind. Microbiol. Biotechnol. 43 (2016), 1085–1093.
    • (2016) J. Ind. Microbiol. Biotechnol. , vol.43 , pp. 1085-1093
    • Gao, S.1
  • 105
    • 85017584772 scopus 로고    scopus 로고
    • Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica
    • Schwartz, C., et al. Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth. Biol. 6 (2016), 402–409.
    • (2016) ACS Synth. Biol. , vol.6 , pp. 402-409
    • Schwartz, C.1
  • 106
    • 84950247991 scopus 로고    scopus 로고
    • Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae
    • Katayama, T., et al. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol. Lett. 38 (2016), 637–642.
    • (2016) Biotechnol. Lett. , vol.38 , pp. 637-642
    • Katayama, T.1
  • 107
    • 85009999725 scopus 로고    scopus 로고
    • Biotechnology for biofuels development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering
    • Liu, Q., et al. Biotechnology for biofuels development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol. Biofuels 10 (2017), 1–14.
    • (2017) Biotechnol. Biofuels , vol.10 , pp. 1-14
    • Liu, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.