-
1
-
-
84898874640
-
Biotechnological domestication of pseudomonads using synthetic biology
-
Nikel PI, Martínez-García E, de Lorenzo V. Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol. 2014;12:368-79.
-
(2014)
Nat Rev Microbiol
, vol.12
, pp. 368-379
-
-
Nikel, P.I.1
Martínez-García, E.2
Lorenzo, V.3
-
2
-
-
84973160909
-
Metabolic engineering of Pseudomonas putida KT2440 for complete mineralization of methyl parathion and γ-hexachlorocyclohexane
-
Gong T, Liu R, Zuo Z, Che Y, Yu H, Song C, et al. Metabolic engineering of Pseudomonas putida KT2440 for complete mineralization of methyl parathion and γ-hexachlorocyclohexane. ACS Synth Biol. 2016;5:434-42.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 434-442
-
-
Gong, T.1
Liu, R.2
Zuo, Z.3
Che, Y.4
Yu, H.5
Song, C.6
-
3
-
-
84949808982
-
Metabolic engineering of Pseudomonas putida KT2440 to produce anthranilate from glucose
-
Kuepper J, Dickler J, Biggel M, Behnken S, Jäger G, Wierckx N, et al. Metabolic engineering of Pseudomonas putida KT2440 to produce anthranilate from glucose. Front Microbiol. 2015;6:1-9.
-
(2015)
Front Microbiol
, vol.6
, pp. 1-9
-
-
Kuepper, J.1
Dickler, J.2
Biggel, M.3
Behnken, S.4
Jäger, G.5
Wierckx, N.6
-
4
-
-
84944175008
-
Reconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocatalyst for l-2-hydroxy-carboxylate production
-
Wang Y, Lv M, Zhang Y, Xiao X, Jiang T, Zhang W, et al. Reconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocatalyst for l-2-hydroxy-carboxylate production. Sci Rep. 2015;4:6939.
-
(2015)
Sci Rep
, vol.4
, pp. 6939
-
-
Wang, Y.1
Lv, M.2
Zhang, Y.3
Xiao, X.4
Jiang, T.5
Zhang, W.6
-
5
-
-
84987816272
-
Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange
-
Hmelo LR, Borlee BR, Almblad H, Love ME, Randall TE, Tseng BS, et al. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat Protoc. 2015;10:1820-41.
-
(2015)
Nat Protoc
, vol.10
, pp. 1820-1841
-
-
Hmelo, L.R.1
Borlee, B.R.2
Almblad, H.3
Love, M.E.4
Randall, T.E.5
Tseng, B.S.6
-
6
-
-
13544273854
-
Adaptation of the yeast URA3 selection system to gram-negative bacteria and generation of a incrementbetCDE Pseudomonas putida strain
-
Galvão TC, De Lorenzo V. Adaptation of the yeast URA3 selection system to gram-negative bacteria and generation of a incrementbetCDE Pseudomonas putida strain. Appl Environ Microbiol. 2005;71:883-92.
-
(2005)
Appl Environ Microbiol
, vol.71
, pp. 883-892
-
-
Galvão, T.C.1
Lorenzo, V.2
-
7
-
-
79961091830
-
Development of a method for markerless gene deletion in Pseudomonas putida
-
Graf N, Altenbuchner J. Development of a method for markerless gene deletion in Pseudomonas putida. Appl Environ Microbiol. 2011;77:5549-52.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 5549-5552
-
-
Graf, N.1
Altenbuchner, J.2
-
8
-
-
12344249544
-
Combined sacB-based negative selection and cre-lox antibiotic marker recycling for efficient gene deletion in Pseudomonas aeruginosa
-
Quénée L, Lamotte D, Polack B. Combined sacB-based negative selection and cre-lox antibiotic marker recycling for efficient gene deletion in Pseudomonas aeruginosa. Biotechniques. 2005;38:63-7.
-
(2005)
Biotechniques
, vol.38
, pp. 63-67
-
-
Quénée, L.1
Lamotte, D.2
Polack, B.3
-
9
-
-
0032575051
-
A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants
-
Hoang TT, Karkhoff-schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene. 1998;212:77-86.
-
(1998)
Gene
, vol.212
, pp. 77-86
-
-
Hoang, T.T.1
Karkhoff-schweizer, R.R.2
Kutchma, A.J.3
Schweizer, H.P.4
-
10
-
-
33750380250
-
Suicide vectors for antibiotic marker exchange and rapid generation of multiple knockout mutants by allelic exchange in Gram-negative bacteria
-
Ortiz-Martín I, Macho AP, Lambersten L, Ramos C, Beuzón CR. Suicide vectors for antibiotic marker exchange and rapid generation of multiple knockout mutants by allelic exchange in Gram-negative bacteria. J Microbiol Methods. 2006;67:395-407.
-
(2006)
J Microbiol Methods
, vol.67
, pp. 395-407
-
-
Ortiz-Martín, I.1
Macho, A.P.2
Lambersten, L.3
Ramos, C.4
Beuzón, C.R.5
-
11
-
-
15744370033
-
Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via Red/ET recombineering
-
Wenzel SC, Gross F, Zhang Y, Fu J, Stewart AF, Müller R. Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via Red/ET recombineering. Chem Biol. 2005;12:349-56.
-
(2005)
Chem Biol
, vol.12
, pp. 349-356
-
-
Wenzel, S.C.1
Gross, F.2
Zhang, Y.3
Fu, J.4
Stewart, A.F.5
Müller, R.6
-
12
-
-
77955117488
-
Scarless and sequential gene modification in Pseudomonas using PCR product flanked by short homology regions
-
Liang R, Liu J. Scarless and sequential gene modification in Pseudomonas using PCR product flanked by short homology regions. BMC Microbiol. 2010;10:209.
-
(2010)
BMC Microbiol
, vol.10
, pp. 209
-
-
Liang, R.1
Liu, J.2
-
13
-
-
84960105587
-
Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination
-
Luo X, Yang Y, Ling W, Zhuang H, Li Q, Shang G. Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination. FEMS Microbiol Lett. 2016;363:1-7.
-
(2016)
FEMS Microbiol Lett
, vol.363
, pp. 1-7
-
-
Luo, X.1
Yang, Y.2
Ling, W.3
Zhuang, H.4
Li, Q.5
Shang, G.6
-
14
-
-
80053648189
-
Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440
-
Martínez-García E, de Lorenzo V. Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol. 2011;13:2702-16.
-
(2011)
Environ Microbiol
, vol.13
, pp. 2702-2716
-
-
Martínez-García, E.1
Lorenzo, V.2
-
15
-
-
84949828112
-
Tn7-based device for calibrated heterologous gene expression in Pseudomonas putida
-
Zobel S, Benedetti I, Eisenbach L, De Lorenzo V, Wierckx N, Blank LM. Tn7-based device for calibrated heterologous gene expression in Pseudomonas putida. ACS Synth Biol. 2015;4:1341-51.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1341-1351
-
-
Zobel, S.1
Benedetti, I.2
Eisenbach, L.3
Lorenzo, V.4
Wierckx, N.5
Blank, L.M.6
-
16
-
-
79951794467
-
pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes
-
Martínez-García E, Calles B, Arévalo-Rodríguez M, de Lorenzo V. pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol. 2011;11:38.
-
(2011)
BMC Microbiol
, vol.11
, pp. 38
-
-
Martínez-García, E.1
Calles, B.2
Arévalo-Rodríguez, M.3
Lorenzo, V.4
-
17
-
-
84861943059
-
Random and cyclical deletion of large DNA segments in the genome of Pseudomonas putida
-
Leprince A, de Lorenzo V, Völler P, van Passel MWJ, Martins dos Santos VAP. Random and cyclical deletion of large DNA segments in the genome of Pseudomonas putida. Environ Microbiol. 2012;14:1444-53.
-
(2012)
Environ Microbiol
, vol.14
, pp. 1444-1453
-
-
Leprince, A.1
Lorenzo, V.2
Völler, P.3
Passel, M.W.J.4
Martins dos Santos, V.A.P.5
-
18
-
-
80755145195
-
The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
-
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011;39:9275-82.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 9275-9282
-
-
Sapranauskas, R.1
Gasiunas, G.2
Fremaux, C.3
Barrangou, R.4
Horvath, P.5
Siksnys, V.6
-
19
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13:722-36.
-
(2015)
Nat Rev Microbiol
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
Wolf, Y.I.2
Alkhnbashi, O.S.3
Costa, F.4
Shah, S.A.5
Saunders, S.J.6
-
20
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816-21.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
22
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci. 2012;109:E2579-86.
-
(2012)
Proc Natl Acad Sci
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
23
-
-
33749037701
-
Mechanism of homologous recombination: mediators and helicases take on regulatory functions
-
Sung P, Klein H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol. 2006;7:739-50.
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, pp. 739-750
-
-
Sung, P.1
Klein, H.2
-
24
-
-
2942525595
-
Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells
-
Guirouilh-Barbat J, Huck S, Bertrand P, Pirzio L, Desmaze C, Sabatier L, et al. Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol Cell. 2004;14:611-23.
-
(2004)
Mol Cell
, vol.14
, pp. 611-623
-
-
Guirouilh-Barbat, J.1
Huck, S.2
Bertrand, P.3
Pirzio, L.4
Desmaze, C.5
Sabatier, L.6
-
25
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran F, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819-22.
-
(2013)
Science
, vol.339
, pp. 819-822
-
-
Cong, L.1
Ran, F.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
-
26
-
-
79951565665
-
Single-strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template
-
Metzger MJ, McConnell-Smith A, Stoddard BL, Miller AD. Single-strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template. Nucleic Acids Res. 2011;39:926-35.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 926-935
-
-
Metzger, M.J.1
McConnell-Smith, A.2
Stoddard, B.L.3
Miller, A.D.4
-
27
-
-
84930971149
-
CRISPathBrick: modular combinatorial assembly of type II-A CRISPR arrays for dCas9-mediated multiplex transcriptional repression in E. coli
-
Cress BF, Toparlak OD, Guleria S, Lebovich M, Stieglitz JT, Englaender JA, et al. CRISPathBrick: modular combinatorial assembly of type II-A CRISPR arrays for dCas9-mediated multiplex transcriptional repression in E. coli. ACS Synth Biol. 2015;4:987-1000.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 987-1000
-
-
Cress, B.F.1
Toparlak, O.D.2
Guleria, S.3
Lebovich, M.4
Stieglitz, J.T.5
Englaender, J.A.6
-
28
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41:7429-37.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
Hochschild, A.4
Zhang, F.5
Marraffini, L.A.6
-
29
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015;81:2506-14.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
Chen, B.2
Duan, C.3
Sun, B.4
Yang, J.5
Yang, S.6
-
30
-
-
84930787559
-
Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase
-
Xu T, Li Y, Shi Z, Hemme CL, Li Y, Zhu Y, et al. Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl Environ Microbiol. 2015;81:4423-31.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 4423-4431
-
-
Xu, T.1
Li, Y.2
Shi, Z.3
Hemme, C.L.4
Li, Y.5
Zhu, Y.6
-
31
-
-
84934947770
-
High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
-
Cobb RE, Wang Y, Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol. 2015;4:723-8.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 723-728
-
-
Cobb, R.E.1
Wang, Y.2
Zhao, H.3
-
32
-
-
84982107482
-
Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis
-
Westbrook AW, Moo-Young M, Chou CP. Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis. Appl Environ Microbiol. 2016;82:4876-95.
-
(2016)
Appl Environ Microbiol
, vol.82
, pp. 4876-4895
-
-
Westbrook, A.W.1
Moo-Young, M.2
Chou, C.P.3
-
33
-
-
84976291789
-
Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system
-
Gao S, Tong Y, Wen Z, Zhu L, Ge M, Chen D, et al. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system. J Ind Microbiol Biotechnol. 2016;43:1085-93.
-
(2016)
J Ind Microbiol Biotechnol
, vol.43
, pp. 1085-1093
-
-
Gao, S.1
Tong, Y.2
Wen, Z.3
Zhu, L.4
Ge, M.5
Chen, D.6
-
34
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
Dicarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41:4336-43.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 4336-4343
-
-
Dicarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
35
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823-7.
-
(2013)
Science
, vol.339
, pp. 823-827
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
Dicarlo, J.E.6
-
36
-
-
84874617789
-
Efficient genome editing in zebrafish using a CRISPR-Cas system
-
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31:227-9.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 227-229
-
-
Hwang, W.Y.1
Fu, Y.2
Reyon, D.3
Maeder, M.L.4
Tsai, S.Q.5
Sander, J.D.6
-
37
-
-
85037347493
-
CRISPR/Cas9-based counterselection boosts recombineering efficiency in Pseudomonas putida
-
Aparicio Tomás, Víctor de Lorenzo EM-G. CRISPR/Cas9-based counterselection boosts recombineering efficiency in Pseudomonas putida. Biotechnol J. 2017. https://doi.org/10.1002/biot.201700161.
-
(2017)
Biotechnol J
-
-
Aparicio, T.1
Víctor de Lorenzo, E.-G.2
-
38
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system
-
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell. 2015;163:759-71.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
Essletzbichler, P.6
-
39
-
-
85009168682
-
SnapShot: class 2 CRISPR-Cas systems
-
328.
-
Makarova KS, Zhang F, Koonin EV. SnapShot: class 2 CRISPR-Cas systems. Cell. 2017;168(328-328):e1.
-
(2017)
Cell
, vol.168
, Issue.328
-
-
Makarova, K.S.1
Zhang, F.2
Koonin, E.V.3
-
40
-
-
84941112071
-
SEVA, 2.0: an update of the standard European vector architecture for de-/re-construction of bacterial functionalities
-
Martínez-Garćía E, Aparicio T, Goñi-Moreno A, Fraile S, De Lorenzo V. SEVA, 2.0: an update of the standard European vector architecture for de-/re-construction of bacterial functionalities. Nucleic Acids Res. 2015;43:D1183-9.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. D1183-D1189
-
-
Martínez-Garćía, E.1
Aparicio, T.2
Goñi-Moreno, A.3
Fraile, S.4
Lorenzo, V.5
-
41
-
-
78651267246
-
Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes
-
Winsor GL, Lam DKW, Fleming L, Lo R, Whiteside MD, Yu NY, et al. Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res. 2011;39:596-600.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 596-600
-
-
Winsor, G.L.1
Lam, D.K.W.2
Fleming, L.3
Lo, R.4
Whiteside, M.D.5
Yu, N.Y.6
-
42
-
-
84898889321
-
CasOT: a genome-wide Cas9/gRNA off-target searching tool
-
Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, et al. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics. 2014;30:1180-2.
-
(2014)
Bioinformatics
, vol.30
, pp. 1180-1182
-
-
Xiao, A.1
Cheng, Z.2
Kong, L.3
Zhu, Z.4
Lin, S.5
Gao, G.6
-
43
-
-
84938844508
-
Reprint of "Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16"
-
Gruber S, Hagen J, Schwab H, Koefinger P. Reprint of "Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16". J Biotechnol. 2014;192:410-8.
-
(2014)
J Biotechnol
, vol.192
, pp. 410-418
-
-
Gruber, S.1
Hagen, J.2
Schwab, H.3
Koefinger, P.4
-
44
-
-
70349964350
-
Automated design of synthetic ribosome binding sites to precisely control protein expression
-
Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to precisely control protein expression. Nat Biotechnol. 2010;27:946-50.
-
(2010)
Nat Biotechnol
, vol.27
, pp. 946-950
-
-
Salis, H.M.1
Mirsky, E.A.2
Voigt, C.A.3
-
45
-
-
85020726978
-
CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum
-
Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun. 2017;8:15179.
-
(2017)
Nat Commun
, vol.8
, pp. 15179
-
-
Jiang, Y.1
Qian, F.2
Yang, J.3
Liu, Y.4
Dong, F.5
Xu, C.6
-
46
-
-
84936967101
-
Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli
-
Pyne ME, Moo-Young M, Chung DA, Chou CP. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol. 2015;81:5103-14.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 5103-5114
-
-
Pyne, M.E.1
Moo-Young, M.2
Chung, D.A.3
Chou, C.P.4
-
47
-
-
84937538704
-
Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing
-
Li Y, Lin Z, Huang C, Zhang Y, Wang Z, Tang YJ, et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng. 2015;31:13-21.
-
(2015)
Metab Eng
, vol.31
, pp. 13-21
-
-
Li, Y.1
Lin, Z.2
Huang, C.3
Zhang, Y.4
Wang, Z.5
Tang, Y.J.6
-
48
-
-
85000936582
-
Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9
-
Zhao D, Yuan S, Xiong B, Sun H, Ye L, Li J, et al. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microb Cell Fact. 2016;15:205.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 205
-
-
Zhao, D.1
Yuan, S.2
Xiong, B.3
Sun, H.4
Ye, L.5
Li, J.6
-
49
-
-
32244448730
-
A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation
-
Choi KH, Kumar A, Schweizer HP. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods. 2006;64:391-7.
-
(2006)
J Microbiol Methods
, vol.64
, pp. 391-397
-
-
Choi, K.H.1
Kumar, A.2
Schweizer, H.P.3
-
50
-
-
84977527317
-
CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii
-
Li Q, Chen J, Minton NP, Zhang Y, Wen Z, Liu J, et al. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol J. 2016;11:961-72.
-
(2016)
Biotechnol J
, vol.11
, pp. 961-972
-
-
Li, Q.1
Chen, J.2
Minton, N.P.3
Zhang, Y.4
Wen, Z.5
Liu, J.6
-
51
-
-
21444449690
-
Novel spectinomycin/streptomycin resistance gene, aadA14, from Pasteurella multocida
-
Kehrenberg C, Catry B, Haesebrouck F, De Kruif A, Schwarz S. Novel spectinomycin/streptomycin resistance gene, aadA14, from Pasteurella multocida. Antimicrob Agents Chemother. 2005;49:3046-9.
-
(2005)
Antimicrob Agents Chemother
, vol.49
, pp. 3046-3049
-
-
Kehrenberg, C.1
Catry, B.2
Haesebrouck, F.3
De, K.A.4
Schwarz, S.5
-
52
-
-
84942240517
-
Engineering the central biosynthetic and secondary metabolic pathways of Pseudomonas aeruginosa strain PA1201 to improve phenazine-1-carboxylic acid production
-
Jin K, Zhou L, Jiang H, Sun S, Fang Y, Liu J, et al. Engineering the central biosynthetic and secondary metabolic pathways of Pseudomonas aeruginosa strain PA1201 to improve phenazine-1-carboxylic acid production. Metab Eng. 2015;32:30-8.
-
(2015)
Metab Eng
, vol.32
, pp. 30-38
-
-
Jin, K.1
Zhou, L.2
Jiang, H.3
Sun, S.4
Fang, Y.5
Liu, J.6
-
53
-
-
84978699037
-
Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable "clean" mutant selection in Clostridium beijerinckii as an example
-
Wang Y, Zhang ZT, Seo SO, Lynn P, Lu T, Jin YS, et al. Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable "clean" mutant selection in Clostridium beijerinckii as an example. ACS Synth Biol. 2016;5:721-32.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 721-732
-
-
Wang, Y.1
Zhang, Z.T.2
Seo, S.O.3
Lynn, P.4
Lu, T.5
Jin, Y.S.6
-
54
-
-
84940840437
-
Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli
-
Wu J, Du G, Chen J, Zhou J. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci Rep. 2015;5:13477.
-
(2015)
Sci Rep
, vol.5
, pp. 13477
-
-
Wu, J.1
Du, G.2
Chen, J.3
Zhou, J.4
-
55
-
-
85017390010
-
Multiplex gene editing in rice using the CRISPR-Cpf1 system
-
Wang M, Mao Y, Lu Y, Tao X, Zhu JK. Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant. 2017;10:1011-3.
-
(2017)
Mol Plant
, vol.10
, pp. 1011-1013
-
-
Wang, M.1
Mao, Y.2
Lu, Y.3
Tao, X.4
Zhu, J.K.5
-
56
-
-
84981347695
-
Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells
-
Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol. 2016;34:869-74.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 869-874
-
-
Kleinstiver, B.P.1
Tsai, S.Q.2
Prew, M.S.3
Nguyen, N.T.4
Welch, M.M.5
Lopez, J.M.6
-
57
-
-
84950292610
-
Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites
-
Park J, Bae S, Kim JS. Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics. 2015;31:4014.
-
(2015)
Bioinformatics
, vol.31
, pp. 4014
-
-
Park, J.1
Bae, S.2
Kim, J.S.3
-
58
-
-
84903549014
-
SgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites
-
Xie S, Shen B, Zhang C, Huang X, Zhang Y. SgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE. 2014;9:1-9.
-
(2014)
PLoS ONE
, vol.9
, pp. 1-9
-
-
Xie, S.1
Shen, B.2
Zhang, C.3
Huang, X.4
Zhang, Y.5
-
59
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351:84-8.
-
(2016)
Science
, vol.351
, pp. 84-88
-
-
Slaymaker, I.M.1
Gao, L.2
Zetsche, B.3
Scott, D.A.4
Yan, W.X.5
Zhang, F.6
-
60
-
-
0034739007
-
Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen
-
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406:959-64.
-
(2000)
Nature
, vol.406
, pp. 959-964
-
-
Stover, C.K.1
Pham, X.Q.2
Erwin, A.L.3
Mizoguchi, S.D.4
Warrener, P.5
Hickey, M.J.6
-
61
-
-
67649653746
-
Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens
-
Silby MW, Cerdeño-Tárraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, et al. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 2009;10:R51.
-
(2009)
Genome Biol
, vol.10
, pp. R51
-
-
Silby, M.W.1
Cerdeño-Tárraga, A.M.2
Vernikos, G.S.3
Giddens, S.R.4
Jackson, R.W.5
Preston, G.M.6
-
62
-
-
84862292281
-
Industrial biotechnology of Pseudomonas putida and related species
-
Poblete-Castro I, Becker J, Dohnt K, Dos Santos VM, Wittmann C. Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol. 2012;93:2279-90.
-
(2012)
Appl Microbiol Biotechnol
, vol.93
, pp. 2279-2290
-
-
Poblete-Castro, I.1
Becker, J.2
Dohnt, K.3
Dos, S.V.M.4
Wittmann, C.5
-
63
-
-
85006339809
-
The next generation of synthetic biology chassis: moving synthetic biology from the laboratory to the field
-
Adams BL. The next generation of synthetic biology chassis: moving synthetic biology from the laboratory to the field. ACS Synth Biol. 2016;5:1328-30.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 1328-1330
-
-
Adams, B.L.1
-
64
-
-
0036933705
-
Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440
-
Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol. 2002;4:799-808.
-
(2002)
Environ Microbiol
, vol.4
, pp. 799-808
-
-
Nelson, K.E.1
Weinel, C.2
Paulsen, I.T.3
Dodson, R.J.4
Hilbert, H.5
Martins dos Santos, V.A.P.6
-
65
-
-
84964771581
-
The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis
-
Belda E, van Heck RGA, José Lopez-Sanchez M, Cruveiller S, Barbe V, Fraser C, et al. The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. Environ Microbiol. 2016;18:3403-24.
-
(2016)
Environ Microbiol
, vol.18
, pp. 3403-3424
-
-
Belda, E.1
Heck, R.G.A.2
José Lopez-Sanchez, M.3
Cruveiller, S.4
Barbe, V.5
Fraser, C.6
-
66
-
-
71549122280
-
PutidaNET: interactome database service and network analysis of Pseudomonas putida KT2440
-
Park S-J, Choi J-S, Kim B-C, Jho S-W, Ryu J-W, Park D, et al. PutidaNET: interactome database service and network analysis of Pseudomonas putida KT2440. BMC Genom. 2009;10(Suppl 3):S18.
-
(2009)
BMC Genom
, vol.10
-
-
Park, S.-J.1
Choi, J.-S.2
Kim, B.-C.3
Jho, S.-W.4
Ryu, J.-W.5
Park, D.6
-
67
-
-
54449092307
-
A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory
-
Nogales J, Palsson BØ, Thiele I. A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol. 2008;2:79.
-
(2008)
BMC Syst Biol
, vol.2
, pp. 79
-
-
Nogales, J.1
Palsson, B.2
Thiele, I.3
|