-
1
-
-
84974851926
-
Effects of Lactobacillus casei Shirota ingestion on common cold infection and herpes virus antibodies in endurance athletes: a placebo-controlled, randomized trial
-
Gleeson M, Bishop NC, Struszczak L. 2016. Effects of Lactobacillus casei Shirota ingestion on common cold infection and herpes virus antibodies in endurance athletes: a placebo-controlled, randomized trial. Eur J Appl Physiol 116:1555-1563. https://doi.org/10.1007/s00421-016-3415-x
-
(2016)
Eur J Appl Physiol
, vol.116
, pp. 1555-1563
-
-
Gleeson, M.1
Bishop, N.C.2
Struszczak, L.3
-
2
-
-
84971612722
-
The impact of Lactobacillus casei on the composition of the cecal microbiota and innate immune system is strain specific
-
Aktas B, De Wolfe TJ, Safdar N, Darien BJ, Steele JL. 2016. The impact of Lactobacillus casei on the composition of the cecal microbiota and innate immune system is strain specific. PLoS One 11:e0156374. https:// doi.org/10.1371/journal.pone.0156374
-
(2016)
PLoS One
, vol.11
-
-
Aktas, B.1
De Wolfe, T.J.2
Safdar, N.3
Darien, B.J.4
Steele, J.L.5
-
3
-
-
84971371390
-
Fermented milk containing Lactobacillus casei strain Shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress
-
Kato-Kataoka A, Nishida K, Takada M, Kawai M, Kikuchi-Hayakawa H, Suda K, Ishikawa H, Gondo Y, Shimizu K, Matsuki T, Kushiro A, Hoshi R, Watanabe O, Igarashi T, Miyazaki K, Kuwano Y, Rokutan K. 2016. Fermented milk containing Lactobacillus casei strain Shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Appl Environ Microbiol 82:3649-3658. https://doi.org/10.1128/AEM.04134-15
-
(2016)
Appl Environ Microbiol
, vol.82
, pp. 3649-3658
-
-
Kato-Kataoka, A.1
Nishida, K.2
Takada, M.3
Kawai, M.4
Kikuchi-Hayakawa, H.5
Suda, K.6
Ishikawa, H.7
Gondo, Y.8
Shimizu, K.9
Matsuki, T.10
Kushiro, A.11
Hoshi, R.12
Watanabe, O.13
Igarashi, T.14
Miyazaki, K.15
Kuwano, Y.16
Rokutan, K.17
-
4
-
-
84975108991
-
Lactobacillus casei as a biocatalyst for biofuel production
-
Vinay-Lara EWS, Bai L, Phrommao E, Broadbent JR, Steele JL. 2016. Lactobacillus casei as a biocatalyst for biofuel production. Microbiol Biotechnol 43:1205-1213. https://doi.org/10.1007/s10295-016-1797-8
-
(2016)
Microbiol Biotechnol
, vol.43
, pp. 1205-1213
-
-
Vinay-Lara, E.W.S.1
Bai, L.2
Phrommao, E.3
Broadbent, J.R.4
Steele, J.L.5
-
5
-
-
2342594534
-
Multivitamin production in Lactococcus lactis using metabolic engineering
-
Sybesma W, Burgess C, Starrenburg M, van Sinderen D, Hugenholtz J. 2004. Multivitamin production in Lactococcus lactis using metabolic engineering. Metab Eng 6:109-115. https://doi.org/10.1016/j.ymben.2003.11.002
-
(2004)
Metab Eng
, vol.6
, pp. 109-115
-
-
Sybesma, W.1
Burgess, C.2
Starrenburg, M.3
van Sinderen, D.4
Hugenholtz, J.5
-
6
-
-
79952429363
-
Engineering lactic acid bacteria for increased industrial functionality
-
Bron PA, Kleerebezem M. 2011. Engineering lactic acid bacteria for increased industrial functionality. Bioeng Bugs 2:80-87. https://doi.org/ 10.4161/bbug.2.2.13910
-
(2011)
Bioeng Bugs
, vol.2
, pp. 80-87
-
-
Bron, P.A.1
Kleerebezem, M.2
-
7
-
-
78549293944
-
Diversity of lactic acid bacteria of the bioethanol process
-
Lucena BT, dos Santos BM, Moreira JL, Moreira AP, Nunes AC, Azevedo V, Miyoshi A, Thompson FL, de Morais MA, Jr. 2010. Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol 10:298. https:// doi.org/10.1186/1471-2180-10-298
-
(2010)
BMC Microbiol
, vol.10
, pp. 298
-
-
Lucena, B.T.1
dos Santos, B.M.2
Moreira, J.L.3
Moreira, A.P.4
Nunes, A.C.5
Azevedo, V.6
Miyoshi, A.7
Thompson, F.L.8
de Morais, M.A.9
-
8
-
-
84905560506
-
A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N-biose in Lactobacillus casei
-
Bidart GN, Rodriguez-Diaz J, Monedero V, Yebra MJ. 2014. A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N-biose in Lactobacillus casei. Mol Microbiol 93:521-538. https://doi.org/10.1111/mmi.12678
-
(2014)
Mol Microbiol
, vol.93
, pp. 521-538
-
-
Bidart, G.N.1
Rodriguez-Diaz, J.2
Monedero, V.3
Yebra, M.J.4
-
9
-
-
84871028274
-
Functional analysis of the Lactobacillus casei BL23 sortases
-
Munoz-Provencio D, Rodriguez-Diaz J, Collado MC, Langella P, Bermudez-Humaran LG, Monedero V. 2012. Functional analysis of the Lactobacillus casei BL23 sortases. Appl Environ Microbiol 78:8684-8693. https://doi.org/10.1128/AEM.02287-12
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 8684-8693
-
-
Munoz-Provencio, D.1
Rodriguez-Diaz, J.2
Collado, M.C.3
Langella, P.4
Bermudez-Humaran, L.G.5
Monedero, V.6
-
10
-
-
84946477202
-
Prophage recombinases-mediated genome engineering in Lactobacillus plantarum
-
Yang P, Wang J, Qi Q. 2015. Prophage recombinases-mediated genome engineering in Lactobacillus plantarum. Microb Cell Fact 14:154. https:// doi.org/10.1186/s12934-015-0344-z
-
(2015)
Microb Cell Fact
, vol.14
, pp. 154
-
-
Yang, P.1
Wang, J.2
Qi, Q.3
-
11
-
-
84857498858
-
High efficiency recombineering in lactic acid bacteria
-
van Pijkeren JP, Britton RA. 2012. High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res 40:e76. https://doi.org/10.1093/ nar/gks147
-
(2012)
Nucleic Acids Res
, vol.40
-
-
van Pijkeren, J.P.1
Britton, R.A.2
-
12
-
-
84906828539
-
Precision genome engineering in lactic acid bacteria
-
van Pijkeren JP, Britton RA. 2014. Precision genome engineering in lactic acid bacteria. Microb Cell Fact 13(Suppl 1):S10. https://doi.org/10.1186/ 1475-2859-13-S1-S10
-
(2014)
Microb Cell Fact
, vol.13
, pp. S10
-
-
van Pijkeren, J.P.1
Britton, R.A.2
-
13
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821. https://doi.org/10.1126/science.1225829
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
14
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang WY, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233-239. https://doi.org/10.1038/nbt.2508
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.Y.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
15
-
-
74249095519
-
CRISPR/Cas, the immune system of bacteria and archaea
-
Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167-170. https://doi.org/10.1126/science.1179555
-
(2010)
Science
, vol.327
, pp. 167-170
-
-
Horvath, P.1
Barrangou, R.2
-
16
-
-
84934947770
-
High-efficiency multiplex genome editing of streptomyces species using an engineered CRISPR/Cas system
-
Cobb RE, Wang YJ, Zhao HM. 2015. High-efficiency multiplex genome editing of streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723-728. https://doi.org/10.1021/sb500351f
-
(2015)
ACS Synth Biol
, vol.4
, pp. 723-728
-
-
Cobb, R.E.1
Wang, Y.J.2
Zhao, H.M.3
-
17
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-823. https://doi.org/10.1126/ science.1231143
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.L.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.B.8
Jiang, W.Y.9
Marraffini, L.A.10
Zhang, F.11
-
18
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336-4343. https://doi.org/10.1093/nar/gkt135
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
19
-
-
84926466507
-
One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces
-
Huang H, Zheng G, Jiang W, Hu H, Lu Y. 2015. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin (Shanghai) 47:231-243. https://doi.org/10.1093/abbs/gmv007
-
(2015)
Acta Biochim Biophys Sin (Shanghai)
, vol.47
, pp. 231-243
-
-
Huang, H.1
Zheng, G.2
Jiang, W.3
Hu, H.4
Lu, Y.5
-
20
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. 2015. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506-2514. https://doi.org/10.1128/AEM.04023-14
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
Chen, B.2
Duan, C.3
Sun, B.4
Yang, J.5
Yang, S.6
-
21
-
-
84936967101
-
Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli
-
Pyne ME, Moo-Young M, Chung DA, Chou CP. 2015. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol 81:5103-5114. https://doi.org/10.1128/AEM.01248-15
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 5103-5114
-
-
Pyne, M.E.1
Moo-Young, M.2
Chung, D.A.3
Chou, C.P.4
-
22
-
-
84924425397
-
Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
-
Wang Y, Zhang ZT, Seo SO, Choi KJ, Lu T, Jin YS, Blaschek HP. 2015. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 200:1-5. https://doi.org/10.1016/j.jbiotec.2015.02.005
-
(2015)
J Biotechnol
, vol.200
, pp. 1-5
-
-
Wang, Y.1
Zhang, Z.T.2
Seo, S.O.3
Choi, K.J.4
Lu, T.5
Jin, Y.S.6
Blaschek, H.P.7
-
23
-
-
84930787559
-
Efficient genome editing in Clostridium cellulolyticum via CRISPRCas9 nickase
-
Xu T, Li Y, Shi Z, Hemme CL, Li Y, Zhu Y, Van Nostrand JD, He Z, Zhou J. 2015. Efficient genome editing in Clostridium cellulolyticum via CRISPRCas9 nickase. Appl Environ Microbiol 81:4423-4431. https://doi.org/10.1128/AEM.00873-15
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 4423-4431
-
-
Xu, T.1
Li, Y.2
Shi, Z.3
Hemme, C.L.4
Li, Y.5
Zhu, Y.6
Van Nostrand, J.D.7
He, Z.8
Zhou, J.9
-
24
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh JH, van Pijkeren JP. 2014. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42:e131. https://doi.org/10.1093/ nar/gku623
-
(2014)
Nucleic Acids Res
, vol.42
-
-
Oh, J.H.1
van Pijkeren, J.P.2
-
25
-
-
49449088597
-
Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides
-
Yasuda E, Serata M, Sako T. 2008. Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides. Appl Environ Microbiol 74:4746-4755. https://doi.org/10.1128/AEM.00412-08
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 4746-4755
-
-
Yasuda, E.1
Serata, M.2
Sako, T.3
-
26
-
-
79959363282
-
Complete genome sequence of the probiotic bacterium Lactobacillus casei LC2W
-
Chen C, Ai L, Zhou F, Wang L, Zhang H, Chen W, Guo B. 2011. Complete genome sequence of the probiotic bacterium Lactobacillus casei LC2W. J Bacteriol 193:3419-3420. https://doi.org/10.1128/JB.05017-11
-
(2011)
J Bacteriol
, vol.193
, pp. 3419-3420
-
-
Chen, C.1
Ai, L.2
Zhou, F.3
Wang, L.4
Zhang, H.5
Chen, W.6
Guo, B.7
-
27
-
-
84900819084
-
Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperaturesensitive plasmid
-
Song L, Cui HY, Tang LJ, Qiao XY, Liu M, Jiang YP, Cui W, Li YJ. 2014. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperaturesensitive plasmid. J Microbiol Methods 102:37-44. https://doi.org/10.1016/j.mimet.2014.04.011
-
(2014)
J Microbiol Methods
, vol.102
, pp. 37-44
-
-
Song, L.1
Cui, H.Y.2
Tang, L.J.3
Qiao, X.Y.4
Liu, M.5
Jiang, Y.P.6
Cui, W.7
Li, Y.J.8
-
28
-
-
22144482785
-
Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria
-
Ruas-Madiedo P, de los Reyes-Gavilan CG. 2005. Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci 88:843-856. https://doi.org/ 10.3168/jds.S0022-0302(05)72750-8
-
(2005)
J Dairy Sci
, vol.88
, pp. 843-856
-
-
Ruas-Madiedo, P.1
de los Reyes-Gavilan, C.G.2
-
29
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380-1389. https://doi.org/10.1016/j.cell.2013.08.021
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
Gootenberg, J.S.4
Konermann, S.5
Trevino, A.E.6
Scott, D.A.7
Inoue, A.8
Matoba, S.9
Zhang, Y.10
Zhang, F.11
-
30
-
-
84876016461
-
Mammalian base excision repair: the forgotten archangel
-
Dianov GL, Hubscher U. 2013. Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res 41:3483-3490. https://doi.org/10.1093/nar/gkt076
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 3483-3490
-
-
Dianov, G.L.1
Hubscher, U.2
-
31
-
-
84896267457
-
Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair
-
Davis L, Maizels N. 2014. Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci U S A 111:E924-E932. https://doi.org/10.1073/pnas.1400236111
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. E924-E932
-
-
Davis, L.1
Maizels, N.2
-
32
-
-
0029908131
-
A general system for generating unlabelled gene replacements in bacterial chromosomes
-
Leenhouts K, Buist G, Bolhuis A, ten Berge A, Kiel J, Mierau I, Dabrowska M, Venema G, Kok J. 1996. A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 253: 217-224. https://doi.org/10.1007/s004380050315
-
(1996)
Mol Gen Genet
, vol.253
, pp. 217-224
-
-
Leenhouts, K.1
Buist, G.2
Bolhuis, A.3
ten Berge, A.4
Kiel, J.5
Mierau, I.6
Dabrowska, M.7
Venema, G.8
Kok, J.9
-
33
-
-
63849137437
-
Genetic tools for investigating the biology of commensal lactobacilli
-
Fang F, O'Toole PW. 2009. Genetic tools for investigating the biology of commensal lactobacilli. Front Biosci 14:3111-3127. https://doi.org/10.2741/3439
-
(2009)
Front Biosci
, vol.14
, pp. 3111-3127
-
-
Fang, F.1
O'Toole, P.W.2
-
34
-
-
0035462342
-
Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chro-mosomes via homologous recombination
-
Russell WM, Klaenhammer TR. 2001. Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chro-mosomes via homologous recombination. Appl Environ Microbiol 67: 4361-4364. https://doi.org/10.1128/AEM.67.9.4361-4364.2001
-
(2001)
Appl Environ Microbiol
, vol.67
, pp. 4361-4364
-
-
Russell, W.M.1
Klaenhammer, T.R.2
-
35
-
-
0027151798
-
High-efficiency gene inactivation and replacement system for gram-positive bacteria
-
Biswas I, Gruss A, Ehrlich SD, Maguin E. 1993. High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175:3628-3635. https://doi.org/10.1128/jb.175.11.3628-3635.1993
-
(1993)
J Bacteriol
, vol.175
, pp. 3628-3635
-
-
Biswas, I.1
Gruss, A.2
Ehrlich, S.D.3
Maguin, E.4
-
36
-
-
0038818572
-
Transposition in Lactobacillus delbrueckii subsp. bulgaricus: identification of two thermosensitive replicons and two functional insertion sequences
-
Serror P, Ilami G, Chouayekh H, Ehrlich SD, Maguin E. 2003. Transposition in Lactobacillus delbrueckii subsp. bulgaricus: identification of two thermosensitive replicons and two functional insertion sequences. Microbiology 149:1503-1511. https://doi.org/10.1099/mic.0.25827-0
-
(2003)
Microbiology
, vol.149
, pp. 1503-1511
-
-
Serror, P.1
Ilami, G.2
Chouayekh, H.3
Ehrlich, S.D.4
Maguin, E.5
-
37
-
-
84903610457
-
Characterization of pMC11, a plasmid with dual origins of replication isolated from Lactobacillus casei MCJ and construction of shuttle vectors with each replicon
-
Chen Z, Lin J, Ma C, Zhao S, She Q, Liang Y. 2014. Characterization of pMC11, a plasmid with dual origins of replication isolated from Lactobacillus casei MCJ and construction of shuttle vectors with each replicon. Appl Microbiol Biotechnol 98:5977-5989. https://doi.org/10.1007/ s00253-014-5649-z
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 5977-5989
-
-
Chen, Z.1
Lin, J.2
Ma, C.3
Zhao, S.4
She, Q.5
Liang, Y.6
-
38
-
-
0032478223
-
Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR
-
Kimmel SA, Roberts RF. 1998. Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. Int J Food Microbiol 40:87-92. https://doi.org/10.1016/ S0168-1605(98)00023-3
-
(1998)
Int J Food Microbiol
, vol.40
, pp. 87-92
-
-
Kimmel, S.A.1
Roberts, R.F.2
-
39
-
-
84931573824
-
An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose
-
DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE. 2015. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol 11:465-471. https://doi.org/10.1038/ nchembio.1816
-
(2015)
Nat Chem Biol
, vol.11
, pp. 465-471
-
-
DeLoache, W.C.1
Russ, Z.N.2
Narcross, L.3
Gonzales, A.M.4
Martin, V.J.5
Dueber, J.E.6
-
40
-
-
84862193202
-
The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids
-
Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J. 2012. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab Eng 14:449-457. https://doi.org/10.1016/j.ymben.2012.02.002
-
(2012)
Metab Eng
, vol.14
, pp. 449-457
-
-
Mustafi, N.1
Grunberger, A.2
Kohlheyer, D.3
Bott, M.4
Frunzke, J.5
-
41
-
-
0030931978
-
Regulation of expression of the Lactobacillus pentosus xylAB operon
-
Lokman BC, Heerikhuisen M, Leer RJ, van den Broek A, Borsboom Y, Chaillou S, Postma PW, Pouwels PH. 1997. Regulation of expression of the Lactobacillus pentosus xylAB operon. J Bacteriol 179:5391-5397. https://doi.org/10.1128/jb.179.17.5391-5397.1997
-
(1997)
J Bacteriol
, vol.179
, pp. 5391-5397
-
-
Lokman, B.C.1
Heerikhuisen, M.2
Leer, R.J.3
van den Broek, A.4
Borsboom, Y.5
Chaillou, S.6
Postma, P.W.7
Pouwels, P.H.8
-
42
-
-
0028882594
-
A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes
-
Law J, Buist G, Haandrikman A, Kok J, Venema G, Leenhouts K. 1995. A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol 177:7011-7018. https:// doi.org/10.1128/jb.177.24.7011-7018.1995
-
(1995)
J Bacteriol
, vol.177
, pp. 7011-7018
-
-
Law, J.1
Buist, G.2
Haandrikman, A.3
Kok, J.4
Venema, G.5
Leenhouts, K.6
-
43
-
-
0029973636
-
FACS-optimized mutants of the green fluorescent protein (GFP)
-
Cormack BP, Valdivia RH, Falkow S. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33-38. https://doi.org/10.1016/0378-1119(95)00685-0
-
(1996)
Gene
, vol.173
, pp. 33-38
-
-
Cormack, B.P.1
Valdivia, R.H.2
Falkow, S.3
|