-
1
-
-
33749865029
-
Bacteriological analytical Manual: enumeration of Escherichia coli and the Coliform bacteria
-
Feng, P., Weagant, S., Grant, M., Burkhardt, W., Bacteriological analytical Manual: enumeration of Escherichia coli and the Coliform bacteria. Bacteriol. Anal. Man(6), 2002, 1–13.
-
(2002)
Bacteriol. Anal. Man
, Issue.6
, pp. 1-13
-
-
Feng, P.1
Weagant, S.2
Grant, M.3
Burkhardt, W.4
-
2
-
-
85056979719
-
-
[Online]. Available:
-
NIH, 2016. NIH GUIDELINES FOR RESEARCH INVOLVING RECOMBINANT OR SYNTHETIC NUCLEIC ACID MOLECULES,. [Online]. Available: 〈https://osp.od.nih.gov/wp-content/uploads/NIH_Guidelines.html#_Appendix_C-II-A._Exceptions〉.
-
(2016)
-
-
NIH1
-
3
-
-
85056967556
-
-
“Method for producing an L-amino acid using a bacterium of the family Enterobacteriaceae having a disrupted putrescine degradation pathway,”.
-
M. M. Gusyatiner, Y. G. Rostova, M. Y. Kiryukhin, and A. Y. Romkina, “Method for producing an L-amino acid using a bacterium of the family Enterobacteriaceae having a disrupted putrescine degradation pathway,” 2017.
-
(2017)
-
-
Gusyatiner, M.M.1
Rostova, Y.G.2
Kiryukhin, M.Y.3
Romkina, A.Y.4
-
4
-
-
79955611425
-
Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
-
Shen, C.R., Lan, E.I., Dekishima, Y., Baez, A., Cho, K.M., Liao, J.C., Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol. 77:9 (2011), 2905–2915.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, Issue.9
, pp. 2905-2915
-
-
Shen, C.R.1
Lan, E.I.2
Dekishima, Y.3
Baez, A.4
Cho, K.M.5
Liao, J.C.6
-
5
-
-
85017430967
-
Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli
-
(no. April)
-
Ohtake, T., Pontrelli, S., Laviña, W.A., Liao, J.C., Putri, S.P., Fukusaki, E., Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. (no. April) Metab. Eng. 41 (2017), 135–143.
-
(2017)
Metab. Eng.
, vol.41
, pp. 135-143
-
-
Ohtake, T.1
Pontrelli, S.2
Laviña, W.A.3
Liao, J.C.4
Putri, S.P.5
Fukusaki, E.6
-
6
-
-
85056926262
-
-
“Method of producing L-lysine by fermentation,”.
-
H. Kojima, Y. Ogawa, K. Kawamura, and K. Sano, “Method of producing L-lysine by fermentation,” 2000.
-
(2000)
-
-
Kojima, H.1
Ogawa, Y.2
Kawamura, K.3
Sano, K.4
-
7
-
-
84954571280
-
Microbial cell factories for diol production
-
Sabra, W., Groeger, C., Zeng, A.P., Microbial cell factories for diol production. Bioreact. Eng. Res. Ind. Appl. I Cell Factor. 155 (2016), 165–197.
-
(2016)
Bioreact. Eng. Res. Ind. Appl. I Cell Factor.
, vol.155
, pp. 165-197
-
-
Sabra, W.1
Groeger, C.2
Zeng, A.P.3
-
8
-
-
84964509986
-
Development of a commercial scale process for production of 1,4-butanediol from sugar
-
Burgard, A., Burk, M.J., Osterhout, R., Van Dien, S., Yim, H., Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr. Opin. Biotechnol. 42 (2016), 118–125.
-
(2016)
Curr. Opin. Biotechnol.
, vol.42
, pp. 118-125
-
-
Burgard, A.1
Burk, M.J.2
Osterhout, R.3
Van Dien, S.4
Yim, H.5
-
9
-
-
84957808466
-
Scaling up of renewable chemicals
-
Sanford, K., Chotani, G., Danielson, N., Zahn, J.A., Scaling up of renewable chemicals. Curr. Opin. Biotechnol. 38 (2016), 112–122.
-
(2016)
Curr. Opin. Biotechnol.
, vol.38
, pp. 112-122
-
-
Sanford, K.1
Chotani, G.2
Danielson, N.3
Zahn, J.A.4
-
10
-
-
84878031093
-
Microbial expression systems and manufacturing from a market and economic perspective
-
Meyer, H., Schmidhalter, D.R., Microbial expression systems and manufacturing from a market and economic perspective. Innov. Biotechnol., 2012, 211–250.
-
(2012)
Innov. Biotechnol.
, pp. 211-250
-
-
Meyer, H.1
Schmidhalter, D.R.2
-
11
-
-
15444350252
-
The complete genome sequence of Escherichia coli K-12
-
Blattner, F.R., et al. The complete genome sequence of Escherichia coli K-12. Science (80-.) 277:5331 (1997), 1453–1462.
-
(1997)
Science (80-.)
, vol.277
, Issue.5331
, pp. 1453-1462
-
-
Blattner, F.R.1
-
12
-
-
85056954083
-
-
Genome Assembly and Annotation report. [Online]. Available: (accessed 02-Feb-2018).
-
NCBI, Genome Assembly and Annotation report. [Online]. Available: 〈https://www.ncbi.nlm.nih.gov/genome/genomes/167〉. (accessed 02-Feb-2018).
-
-
-
NCBI1
-
13
-
-
31544450286
-
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection
-
(2006.0008) (2006.0008)
-
Baba, T., et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. (2006.0008) Mol. Syst. Biol., 2, 2006 (2006.0008).
-
(2006)
Mol. Syst. Biol.
, vol.2
-
-
Baba, T.1
-
14
-
-
0023042283
-
Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes
-
Studier, F.W., Moffatt, B.A., Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189:1 (1986), 113–130.
-
(1986)
J. Mol. Biol.
, vol.189
, Issue.1
, pp. 113-130
-
-
Studier, F.W.1
Moffatt, B.A.2
-
15
-
-
55549128624
-
Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5$α$)
-
Phue, J.N., Sang, J.L., Trinh, L., Shiloach, J., Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5$α$). Biotechnol. Bioeng. 101:4 (2008), 831–836.
-
(2008)
Biotechnol. Bioeng.
, vol.101
, Issue.4
, pp. 831-836
-
-
Phue, J.N.1
Sang, J.L.2
Trinh, L.3
Shiloach, J.4
-
16
-
-
85056923887
-
-
Novagen
-
Novagen, 〈http://www.novagen.com〉.
-
-
-
-
17
-
-
79953162662
-
Escherichia coli W as a new platform strain for the enhanced production of L-Valine by systems metabolic engineering
-
Park, J.H., Jang, Y.S., Lee, J.W., Lee, S.Y., Escherichia coli W as a new platform strain for the enhanced production of L-Valine by systems metabolic engineering. Biotechnol. Bioeng. 108:5 (2011), 1140–1147.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, Issue.5
, pp. 1140-1147
-
-
Park, J.H.1
Jang, Y.S.2
Lee, J.W.3
Lee, S.Y.4
-
18
-
-
0030029182
-
Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster
-
Prieto, M.A., Diaz, E., Garcia, J., Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. Microbiology 178:1 (1996), 111–120.
-
(1996)
Microbiology
, vol.178
, Issue.1
, pp. 111-120
-
-
Prieto, M.A.1
Diaz, E.2
Garcia, J.3
-
19
-
-
0025825737
-
Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II
-
Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T., Ingram, L., Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl. Environ. Microbiol. 57:4 (1991), 893–900.
-
(1991)
Appl. Environ. Microbiol.
, vol.57
, Issue.4
, pp. 893-900
-
-
Ohta, K.1
Beall, D.S.2
Mejia, J.P.3
Shanmugam, K.T.4
Ingram, L.5
-
20
-
-
34548716431
-
Development of Ethanologenic Bacteria
-
Springer
-
Jarboe, L.R., Grabar, T.B., Yomano, K.T., Shanmugan, L.P., Ingram, L.O., Development of Ethanologenic Bacteria. 2007, Springer.
-
(2007)
-
-
Jarboe, L.R.1
Grabar, T.B.2
Yomano, K.T.3
Shanmugan, L.P.4
Ingram, L.O.5
-
21
-
-
84863467493
-
Optical mapping and sequencing of the Escherichia coli KO11 genome reveal extensive chromosomal rearrangements, and multiple tandem copies of the Zymomonas mobilis pdc and adhB genes
-
Turner, P.C., et al. Optical mapping and sequencing of the Escherichia coli KO11 genome reveal extensive chromosomal rearrangements, and multiple tandem copies of the Zymomonas mobilis pdc and adhB genes. J. Ind. Microbiol. Biotechnol. 39:4 (2012), 629–639.
-
(2012)
J. Ind. Microbiol. Biotechnol.
, vol.39
, Issue.4
, pp. 629-639
-
-
Turner, P.C.1
-
22
-
-
4444330508
-
Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition
-
Tao, F., Miao, J.Y., Shi, G.Y., Zhang, K.C., Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition. Process Biochem. 40:1 (2005), 183–187.
-
(2005)
Process Biochem.
, vol.40
, Issue.1
, pp. 183-187
-
-
Tao, F.1
Miao, J.Y.2
Shi, G.Y.3
Zhang, K.C.4
-
23
-
-
84956672842
-
Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis
-
Wernick, D.G., Pontrelli, S.P., Pollock, A.W., Liao, J.C., Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis. Sci. Rep., 6, 2016, 20224.
-
(2016)
Sci. Rep.
, vol.6
, pp. 20224
-
-
Wernick, D.G.1
Pontrelli, S.P.2
Pollock, A.W.3
Liao, J.C.4
-
24
-
-
84862882871
-
Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains
-
Hasunuma, T., Kondo, A., Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem. 47:9 (2012), 1287–1294.
-
(2012)
Process Biochem.
, vol.47
, Issue.9
, pp. 1287-1294
-
-
Hasunuma, T.1
Kondo, A.2
-
25
-
-
84873119880
-
Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes
-
Bhalla, A., Bansal, N., Kumar, S., Bischoff, K.M., Sani, R.K., Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour. Technol. 128 (2013), 751–759.
-
(2013)
Bioresour. Technol.
, vol.128
, pp. 751-759
-
-
Bhalla, A.1
Bansal, N.2
Kumar, S.3
Bischoff, K.M.4
Sani, R.K.5
-
26
-
-
84861982164
-
Recent progress in consolidated bioprocessing
-
Olson, D.G., McBride, J.E., Joe Shaw, A., Lynd, L.R., Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 23:3 (2012), 396–405.
-
(2012)
Curr. Opin. Biotechnol.
, vol.23
, Issue.3
, pp. 396-405
-
-
Olson, D.G.1
McBride, J.E.2
Joe Shaw, A.3
Lynd, L.R.4
-
27
-
-
85030699857
-
Phages as friends and enemies in food processing
-
de Melo, A.G., Levesque, S., Moineau, S., Phages as friends and enemies in food processing. Curr. Opin. Biotechnol. 49 (2018), 185–190.
-
(2018)
Curr. Opin. Biotechnol.
, vol.49
, pp. 185-190
-
-
de Melo, A.G.1
Levesque, S.2
Moineau, S.3
-
28
-
-
84874853719
-
Bacteriophages in food fermentations: new frontiers in a continuous arms race
-
Samson, J.E., Moineau, S., Bacteriophages in food fermentations: new frontiers in a continuous arms race. Annu. Rev. Food Sci. Technol. 4:1 (2013), 347–368.
-
(2013)
Annu. Rev. Food Sci. Technol.
, vol.4
, Issue.1
, pp. 347-368
-
-
Samson, J.E.1
Moineau, S.2
-
29
-
-
77952552068
-
Regulatory roles of the bacterial nitrogen-related phosphotransferase system
-
Pflüger-Grau, K., Görke, B., Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol. 18:5 (2010), 205–214.
-
(2010)
Trends Microbiol.
, vol.18
, Issue.5
, pp. 205-214
-
-
Pflüger-Grau, K.1
Görke, B.2
-
30
-
-
0030571222
-
Pathway analysis, engineering, and physiological considerations for redirecting central metabolism
-
Liao, J.C., Hou, S., Chao, Y., Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol. Bioeng. 52:1 (1996), 129–140.
-
(1996)
Biotechnol. Bioeng.
, vol.52
, Issue.1
, pp. 129-140
-
-
Liao, J.C.1
Hou, S.2
Chao, Y.3
-
31
-
-
0014413329
-
Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli
-
Blangy, D., Buc, H., Monod, J., Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J. Mol. Biol. 31:1 (1968), 13–35.
-
(1968)
J. Mol. Biol.
, vol.31
, Issue.1
, pp. 13-35
-
-
Blangy, D.1
Buc, H.2
Monod, J.3
-
32
-
-
33845626641
-
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria
-
Deutscher, J., Francke, C., Postma, P.W., How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70:4 (2006), 939–1031.
-
(2006)
Microbiol. Mol. Biol. Rev.
, vol.70
, Issue.4
, pp. 939-1031
-
-
Deutscher, J.1
Francke, C.2
Postma, P.W.3
-
33
-
-
0030899266
-
Cra-mediated regulation of Escherichia coli adenylate cyclase
-
Crasnier-Mednansky, M., Park, M.C., Studley, W.K., Saier, M.H., Cra-mediated regulation of Escherichia coli adenylate cyclase. Microbiology 143:Pt 3 (1997), 785–792.
-
(1997)
Microbiology
, vol.143
, pp. 785-792
-
-
Crasnier-Mednansky, M.1
Park, M.C.2
Studley, W.K.3
Saier, M.H.4
-
34
-
-
85056984109
-
The relationship between external glucose concentration and cAMP levels inside
-
Notley-mcrobb, L., Death, A., Ferenci, T., The relationship between external glucose concentration and cAMP levels inside. Biochem. J. 1997 (2006), 1909–1918.
-
(2006)
Biochem. J.
, vol.1997
, pp. 1909-1918
-
-
Notley-mcrobb, L.1
Death, A.2
Ferenci, T.3
-
35
-
-
0031912637
-
Modulation of Escherichia coli adenylyl cyclase activity by catalytic-site mutants of protein IIA(Glc) of the phosphoenolpyruvate: sugar phosphotransferase system
-
Reddy, P., Kamireddi, M., Modulation of Escherichia coli adenylyl cyclase activity by catalytic-site mutants of protein IIA(Glc) of the phosphoenolpyruvate: sugar phosphotransferase system. J. Bacteriol. 180:3 (1998), 732–736.
-
(1998)
J. Bacteriol.
, vol.180
, Issue.3
, pp. 732-736
-
-
Reddy, P.1
Kamireddi, M.2
-
36
-
-
84868620752
-
Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems
-
Steinsiek, S., Bettenbrock, K., Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems. J. Bacteriol. 194:21 (2012), 5897–5908.
-
(2012)
J. Bacteriol.
, vol.194
, Issue.21
, pp. 5897-5908
-
-
Steinsiek, S.1
Bettenbrock, K.2
-
37
-
-
80955179563
-
The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell
-
Gabor, E., Göhler, A.K., Kosfeld, A., Staab, A., Kremling, A., Jahreis, K., The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell. Eur. J. Cell Biol. 90:9 (2011), 711–720.
-
(2011)
Eur. J. Cell Biol.
, vol.90
, Issue.9
, pp. 711-720
-
-
Gabor, E.1
Göhler, A.K.2
Kosfeld, A.3
Staab, A.4
Kremling, A.5
Jahreis, K.6
-
38
-
-
77957168526
-
Glucose uptake regulation in E. coli by the small RNA SgrS: comparative analysis of E. coli K (JM109 and MG1655) and E. coli B (BL21)
-
Negrete, A., Ng, W.I., Shiloach, J., Glucose uptake regulation in E. coli by the small RNA SgrS: comparative analysis of E. coli K (JM109 and MG1655) and E. coli B (BL21). Microb. Cell Fact., 9(1), 2010, 75.
-
(2010)
Microb. Cell Fact.
, vol.9
, Issue.1
, pp. 75
-
-
Negrete, A.1
Ng, W.I.2
Shiloach, J.3
-
39
-
-
84872383524
-
Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS
-
Negrete, A., Majdalani, N., Phue, J.N., Shiloach, J., Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS. N. Biotechnol. 30:2 (2013), 269–273.
-
(2013)
N. Biotechnol.
, vol.30
, Issue.2
, pp. 269-273
-
-
Negrete, A.1
Majdalani, N.2
Phue, J.N.3
Shiloach, J.4
-
40
-
-
84989166120
-
Tn5 transposition in Escherichia coli is repressed by Hfq and activated by over-expression of the small non-coding RNA SgrS
-
Ross, J.A., Trussler, R.S., Black, M.D., McLellan, C.R., Haniford, D.B., Tn5 transposition in Escherichia coli is repressed by Hfq and activated by over-expression of the small non-coding RNA SgrS. Mob. DNA 5:1 (2014), 1–16.
-
(2014)
Mob. DNA
, vol.5
, Issue.1
, pp. 1-16
-
-
Ross, J.A.1
Trussler, R.S.2
Black, M.D.3
McLellan, C.R.4
Haniford, D.B.5
-
41
-
-
33947139094
-
The novel transcription factor SgrR coordinates the response to glucose-phosphate stress
-
Vanderpool, C.K., Gottesman, S., The novel transcription factor SgrR coordinates the response to glucose-phosphate stress. J. Bacteriol. 189:6 (2007), 2238–2248.
-
(2007)
J. Bacteriol.
, vol.189
, Issue.6
, pp. 2238-2248
-
-
Vanderpool, C.K.1
Gottesman, S.2
-
42
-
-
85019088711
-
The small protein SgrT controls transport activity of the glucose- specific phosphotransferase system
-
Chelsea, C.K.V., Lloyd, R., Park, Seongjin, Fei, Jingyi, The small protein SgrT controls transport activity of the glucose- specific phosphotransferase system. J. Bacteriol. 199:11 (2017), 1–14.
-
(2017)
J. Bacteriol.
, vol.199
, Issue.11
, pp. 1-14
-
-
Chelsea, C.K.V.1
Lloyd, R.2
Park, S.3
Fei, J.4
-
43
-
-
0028036558
-
Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Engineering of Escherichia coli Central Metabolism for Aromatic Metabolite Production with Near Theoretical Yield
-
Patnaik, R., Liao, J.C., Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Engineering of Escherichia coli Central Metabolism for Aromatic Metabolite Production with Near Theoretical Yield. Appl. Enviromental Microbiol 60:11 (1994), 3903–3908.
-
(1994)
Appl. Enviromental Microbiol
, vol.60
, Issue.11
, pp. 3903-3908
-
-
Patnaik, R.1
Liao, J.C.2
-
44
-
-
0043023507
-
Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products
-
Hernández-Montalvo, V., Martínez, A., Hernández-Chavez, G., Bolivar, F., Valle, F., Gosset, G., Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol. Bioeng. 83:6 (2003), 687–694.
-
(2003)
Biotechnol. Bioeng.
, vol.83
, Issue.6
, pp. 687-694
-
-
Hernández-Montalvo, V.1
Martínez, A.2
Hernández-Chavez, G.3
Bolivar, F.4
Valle, F.5
Gosset, G.6
-
45
-
-
84886947479
-
Synthetic non-oxidative glycolysis enables complete carbon conservation
-
Bogorad, I.W., Lin, T.-S., Liao, J.C., Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502:7473 (2013), 693–697.
-
(2013)
Nature
, vol.502
, Issue.7473
, pp. 693-697
-
-
Bogorad, I.W.1
Lin, T.-S.2
Liao, J.C.3
-
46
-
-
85056910728
-
-
et al., Construction and evolution of an Escherichia coli strain solely relying on non-oxidative glycolysis for sugar catabolism, Proceedings Natl. Acad. Sci.
-
Lin, P.P. et al., Construction and evolution of an Escherichia coli strain solely relying on non-oxidative glycolysis for sugar catabolism, Proceedings Natl. Acad. Sci.
-
-
-
Lin, P.P.1
-
47
-
-
0003742927
-
Physiology of the Bacterial Cell: A Molecular Approach
-
Sinauer Associates Sunderland, MA
-
Neidhardt, F.C., Ingraham, J.L., Schaechter, M., Physiology of the Bacterial Cell: A Molecular Approach. 1990, Sinauer Associates, Sunderland, MA.
-
(1990)
-
-
Neidhardt, F.C.1
Ingraham, J.L.2
Schaechter, M.3
-
48
-
-
0026539733
-
Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes
-
Gunsalus, R.P., Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes. J. Bacteriol. 174:22 (1992), 7069–7074.
-
(1992)
J. Bacteriol.
, vol.174
, Issue.22
, pp. 7069-7074
-
-
Gunsalus, R.P.1
-
49
-
-
0030738589
-
Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors
-
Unden, G., Bongaerts, J., Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim. Biophys. Acta 1320:3 (1997), 217–234.
-
(1997)
Biochim. Biophys. Acta
, vol.1320
, Issue.3
, pp. 217-234
-
-
Unden, G.1
Bongaerts, J.2
-
50
-
-
0030738589
-
Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors
-
Unden, G., Bongaerts, J., Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim. Biophys. Acta 1320:3 (1997), 217–234.
-
(1997)
Biochim. Biophys. Acta
, vol.1320
, Issue.3
, pp. 217-234
-
-
Unden, G.1
Bongaerts, J.2
-
51
-
-
0001547949
-
Signal transduction in the Arc system for control of operons encoding aerobic respiratory enzymes
-
Iuchi, S., Lin, E.C.C., Signal transduction in the Arc system for control of operons encoding aerobic respiratory enzymes. Two-Compon. Signal Transduct., 1995, 223–232.
-
(1995)
Two-Compon. Signal Transduct.
, pp. 223-232
-
-
Iuchi, S.1
Lin, E.C.C.2
-
52
-
-
17644381300
-
Global gene expression profiling in Escherichia coli K12
-
Salmon, K.A., et al. Global gene expression profiling in Escherichia coli K12. J. Biol. Chem. 280:15 (2005), 15084–15096.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.15
, pp. 15084-15096
-
-
Salmon, K.A.1
-
53
-
-
0030447225
-
Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments
-
Iuchi, S., Weiner, L., Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. J. Biochem. 120:6 (1996), 1055–1063.
-
(1996)
J. Biochem.
, vol.120
, Issue.6
, pp. 1055-1063
-
-
Iuchi, S.1
Weiner, L.2
-
54
-
-
0037216801
-
Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions
-
Alexeeva, S., Hellingwerf, K.J., Teixeira de Mattos, M.J., Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J. Bacteriol. 185:1 (2003), 204–209.
-
(2003)
J. Bacteriol.
, vol.185
, Issue.1
, pp. 204-209
-
-
Alexeeva, S.1
Hellingwerf, K.J.2
Teixeira de Mattos, M.J.3
-
55
-
-
0038352097
-
The role of Fe-S proteins in sensing and regulation in bacteria
-
Kiley, P.J., Beinert, H., The role of Fe-S proteins in sensing and regulation in bacteria. Curr. Opin. Microbiol. 6:2 (2003), 181–185.
-
(2003)
Curr. Opin. Microbiol.
, vol.6
, Issue.2
, pp. 181-185
-
-
Kiley, P.J.1
Beinert, H.2
-
56
-
-
13244289800
-
Genome-Wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown Function
-
Kang, Y., Weber, K.D., Qiu, Y., Kiley, P.J., Blattner, F.R., Genome-Wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown Function. Society 187:3 (2005), 1135–1160.
-
(2005)
Society
, vol.187
, Issue.3
, pp. 1135-1160
-
-
Kang, Y.1
Weber, K.D.2
Qiu, Y.3
Kiley, P.J.4
Blattner, F.R.5
-
57
-
-
0036302723
-
The glycolytic flux in Escherichia coli is controlled by the demand for ATP
-
Koebmann, B.J., Westerhoff, H.V., Snoep, J.L., Nilsson, D., Jensen, P.R., The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 184:14 (2002), 3909–3916.
-
(2002)
J. Bacteriol.
, vol.184
, Issue.14
, pp. 3909-3916
-
-
Koebmann, B.J.1
Westerhoff, H.V.2
Snoep, J.L.3
Nilsson, D.4
Jensen, P.R.5
-
58
-
-
0032906898
-
The steady-state internal redox state (NADH / NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli
-
Mark, R., Amsterdam, B., The steady-state internal redox state (NADH / NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J. Bacteriol. 181:8 (1999), 2351–2357.
-
(1999)
J. Bacteriol.
, vol.181
, Issue.8
, pp. 2351-2357
-
-
Mark, R.1
Amsterdam, B.2
-
59
-
-
44349173795
-
Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12
-
Kim, Y., Ingram, L.O., Shanmugam, K.T., Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. J. Bacteriol. 190:11 (2008), 3851–3858.
-
(2008)
J. Bacteriol.
, vol.190
, Issue.11
, pp. 3851-3858
-
-
Kim, Y.1
Ingram, L.O.2
Shanmugam, K.T.3
-
60
-
-
85021344456
-
Orthogonal partial least squares/projections to latent structures regression-based metabolomics approach for identification of gene targets for improvement of 1-butanol production in Escherichia coli
-
Nitta, K., Laviña, W.A., Pontrelli, S., Liao, J.C., Putri, S.P., Fukusaki, E., Orthogonal partial least squares/projections to latent structures regression-based metabolomics approach for identification of gene targets for improvement of 1-butanol production in Escherichia coli. J. Biosci. Bioeng. 124:5 (2017), 498–505.
-
(2017)
J. Biosci. Bioeng.
, vol.124
, Issue.5
, pp. 498-505
-
-
Nitta, K.1
Laviña, W.A.2
Pontrelli, S.3
Liao, J.C.4
Putri, S.P.5
Fukusaki, E.6
-
61
-
-
84877892843
-
Genome-wide analysis of redox reactions reveals metabolic engineering targets for d-lactate overproduction in Escherichia coli
-
Kim, H.J., Hou, B.K., Lee, S.G., Kim, J.S., Lee, D.W., Lee, S.J., Genome-wide analysis of redox reactions reveals metabolic engineering targets for d-lactate overproduction in Escherichia coli. Metab. Eng. 18 (2013), 44–52.
-
(2013)
Metab. Eng.
, vol.18
, pp. 44-52
-
-
Kim, H.J.1
Hou, B.K.2
Lee, S.G.3
Kim, J.S.4
Lee, D.W.5
Lee, S.J.6
-
62
-
-
84896408319
-
Butyrate Production in engineered Escherichia coli with synthetic scaffolds
-
Baek, J.M., et al. Butyrate Production in engineered Escherichia coli with synthetic scaffolds. Biotechnol. Bioeng. 110:10 (2013), 2790–2794.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, Issue.10
, pp. 2790-2794
-
-
Baek, J.M.1
-
63
-
-
84876471111
-
Refactoring redox cofactor regeneration for high-yield biocatalysis of glucose to butyric acid in Escherichia coli
-
Lim, J.H., Seo, S.W., Kim, S.Y., Jung, G.Y., Refactoring redox cofactor regeneration for high-yield biocatalysis of glucose to butyric acid in Escherichia coli. Bioresour. Technol. 135 (2013), 568–573.
-
(2013)
Bioresour. Technol.
, vol.135
, pp. 568-573
-
-
Lim, J.H.1
Seo, S.W.2
Kim, S.Y.3
Jung, G.Y.4
-
64
-
-
18944378749
-
Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity
-
Sánchez, A.M., Bennett, G.N., San, K.Y., Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab. Eng. 7:3 (2005), 229–239.
-
(2005)
Metab. Eng.
, vol.7
, Issue.3
, pp. 229-239
-
-
Sánchez, A.M.1
Bennett, G.N.2
San, K.Y.3
-
65
-
-
84901340681
-
Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli
-
(no. July)
-
Zhu, X., Tan, Z., Xu, H., Chen, J., Tang, J., Zhang, X., Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. (no. July) Metab. Eng. 24 (2014), 87–96.
-
(2014)
Metab. Eng.
, vol.24
, pp. 87-96
-
-
Zhu, X.1
Tan, Z.2
Xu, H.3
Chen, J.4
Tang, J.5
Zhang, X.6
-
66
-
-
33746868000
-
Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering
-
Dharmadi, Y., Murarka, A., Gonzalez, R., Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol. Bioeng. 94:5 (2005), 821–829.
-
(2005)
Biotechnol. Bioeng.
, vol.94
, Issue.5
, pp. 821-829
-
-
Dharmadi, Y.1
Murarka, A.2
Gonzalez, R.3
-
67
-
-
82355186005
-
Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation
-
Siedler, S., Bringer, S., Bott, M., Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation. Appl. Microbiol. Biotechnol. 92:5 (2011), 929–937.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.92
, Issue.5
, pp. 929-937
-
-
Siedler, S.1
Bringer, S.2
Bott, M.3
-
68
-
-
57049150799
-
Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways
-
Martínez, I., Zhu, J., Lin, H., Bennett, G.N., San, K.Y., Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab. Eng. 10:6 (2008), 352–359.
-
(2008)
Metab. Eng.
, vol.10
, Issue.6
, pp. 352-359
-
-
Martínez, I.1
Zhu, J.2
Lin, H.3
Bennett, G.N.4
San, K.Y.5
-
69
-
-
0036663710
-
Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase
-
Berríos-Rivera, S.J., Bennett, G.N., San, K.Y., Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase. Metab. Eng. 4:3 (2002), 217–229.
-
(2002)
Metab. Eng.
, vol.4
, Issue.3
, pp. 217-229
-
-
Berríos-Rivera, S.J.1
Bennett, G.N.2
San, K.Y.3
-
70
-
-
33947357776
-
Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes
-
Kim, Y., Ingram, L.O., Shanmugam, K.T., Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl. Environ. Microbiol. 73: 6 (2007), 1766–1771.
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, Issue.6
, pp. 1766-1771
-
-
Kim, Y.1
Ingram, L.O.2
Shanmugam, K.T.3
-
71
-
-
57049188930
-
Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products
-
Yazdani, S. Shams, Gonzalez, R., Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab. Eng. 10:6 (2008), 340–351.
-
(2008)
Metab. Eng.
, vol.10
, Issue.6
, pp. 340-351
-
-
Yazdani, S.S.1
Gonzalez, R.2
-
72
-
-
38049001166
-
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
-
Atsumi, S., Hanai, T., Liao, J.C., Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:7174 (2008), 86–89.
-
(2008)
Nature
, vol.451
, Issue.7174
, pp. 86-89
-
-
Atsumi, S.1
Hanai, T.2
Liao, J.C.3
-
73
-
-
84879706316
-
General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH
-
Brinkmann-Chen, S., et al. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. Proc. Natl. Acad. Sci. 110:27 (2013), 10946–10951.
-
(2013)
Proc. Natl. Acad. Sci.
, vol.110
, Issue.27
, pp. 10946-10951
-
-
Brinkmann-Chen, S.1
-
74
-
-
85002523976
-
13C-metabolic flux analysis for mevalonate-producing strain of Escherichia coli
-
Wada, K., Toya, Y., Banno, S., Yoshikawa, K., Matsuda, F., Shimizu, H., 13C-metabolic flux analysis for mevalonate-producing strain of Escherichia coli. J. Biosci. Bioeng. 123:2 (2017), 177–182.
-
(2017)
J. Biosci. Bioeng.
, vol.123
, Issue.2
, pp. 177-182
-
-
Wada, K.1
Toya, Y.2
Banno, S.3
Yoshikawa, K.4
Matsuda, F.5
Shimizu, H.6
-
75
-
-
77955429093
-
High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain
-
Lee, H.C., Kim, J.S., Jang, W., Kim, S.Y., High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J. Biotechnol. 149:1–2 (2010), 24–32.
-
(2010)
J. Biotechnol.
, vol.149
, Issue.1-2
, pp. 24-32
-
-
Lee, H.C.1
Kim, J.S.2
Jang, W.3
Kim, S.Y.4
-
76
-
-
84857449564
-
Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains
-
Rathnasingh, C., Raj, S.M., Lee, Y., Catherine, C., Ashok, S., Park, S., Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J. Biotechnol. 157:4 (2012), 633–640.
-
(2012)
J. Biotechnol.
, vol.157
, Issue.4
, pp. 633-640
-
-
Rathnasingh, C.1
Raj, S.M.2
Lee, Y.3
Catherine, C.4
Ashok, S.5
Park, S.6
-
77
-
-
76749151341
-
Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering
-
Chemler, J.A., Fowler, Z.L., McHugh, K.P., Koffas, M.A.G., Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab. Eng. 12:2 (2010), 96–104.
-
(2010)
Metab. Eng.
, vol.12
, Issue.2
, pp. 96-104
-
-
Chemler, J.A.1
Fowler, Z.L.2
McHugh, K.P.3
Koffas, M.A.G.4
-
78
-
-
84907504864
-
Bacterial sigma factors: aa historical, structural, and genomic perspective
-
Feklístov, A., Sharon, B.D., Darst, S.A., Gross, C.A., Bacterial sigma factors: aa historical, structural, and genomic perspective. Annu. Rev. Microbiol. 68:1 (2014), 357–376.
-
(2014)
Annu. Rev. Microbiol.
, vol.68
, Issue.1
, pp. 357-376
-
-
Feklístov, A.1
Sharon, B.D.2
Darst, S.A.3
Gross, C.A.4
-
79
-
-
11144228250
-
Association of RNA polymerase with transcribed regions in Escherichia coli
-
Wade, J.T., Struhl, K., Association of RNA polymerase with transcribed regions in Escherichia coli. Proc. Natl. Acad. Sci. USA, 2004, 2004.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.2004
-
-
Wade, J.T.1
Struhl, K.2
-
80
-
-
0029810991
-
Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli : intracellular levels of four species of sigma subunit under various growth conditions
-
Jishage, M., Iwata, A., Ueda, S., Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli : intracellular levels of four species of sigma subunit under various growth conditions. J. Bacteriol. 178:18 (1996), 5447–5451.
-
(1996)
J. Bacteriol.
, vol.178
, Issue.18
, pp. 5447-5451
-
-
Jishage, M.1
Iwata, A.2
Ueda, S.3
-
81
-
-
85056928037
-
Effect of rpoS gene knockout on the metabolism of escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations Mahbuba
-
Rahman, M., Hasan, M.R., Oba, T., Shimizu, K., Effect of rpoS gene knockout on the metabolism of escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations Mahbuba. Appl. Environ. Microbiol. 94:3 (2009), 2705–2711.
-
(2009)
Appl. Environ. Microbiol.
, vol.94
, Issue.3
, pp. 2705-2711
-
-
Rahman, M.1
Hasan, M.R.2
Oba, T.3
Shimizu, K.4
-
82
-
-
84885943611
-
Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress
-
Gaida, S.M., Al-Hinai, M.A., Indurthi, D.C., Nicolaou, S.A., Papoutsakis, E.T., Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Res. 41:18 (2013), 8726–8737.
-
(2013)
Nucleic Acids Res.
, vol.41
, Issue.18
, pp. 8726-8737
-
-
Gaida, S.M.1
Al-Hinai, M.A.2
Indurthi, D.C.3
Nicolaou, S.A.4
Papoutsakis, E.T.5
-
83
-
-
85018327220
-
Switching between nitrogen and glucose limitation: unraveling transcriptional dynamics in Escherichia coli
-
(no. January)
-
Löffler, M., et al. Switching between nitrogen and glucose limitation: unraveling transcriptional dynamics in Escherichia coli. (no. January) J. Biotechnol. 258 (2017), 2–12.
-
(2017)
J. Biotechnol.
, vol.258
, pp. 2-12
-
-
Löffler, M.1
-
84
-
-
33845442201
-
Engineering yeast transcription machinery for improved ethanol tolerance and Production
-
Alper, H., Moxley, J., Nevoigt, E., Fink, G.R., Stephanopoulos, G., Engineering yeast transcription machinery for improved ethanol tolerance and Production. Science (80-) 314:2006 (2006), 1565–1568.
-
(2006)
Science (80-)
, vol.314
, Issue.2006
, pp. 1565-1568
-
-
Alper, H.1
Moxley, J.2
Nevoigt, E.3
Fink, G.R.4
Stephanopoulos, G.5
-
85
-
-
33847083318
-
Global transcription machinery engineering: a new approach for improving cellular phenotype
-
Alper, H., Stephanopoulos, G., Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab. Eng. 9:3 (2007), 258–267.
-
(2007)
Metab. Eng.
, vol.9
, Issue.3
, pp. 258-267
-
-
Alper, H.1
Stephanopoulos, G.2
-
86
-
-
18844392599
-
Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli
-
Alper, H., Jin, Y.S., Moxley, J.F., Stephanopoulos, G., Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7:3 (2005), 155–164.
-
(2005)
Metab. Eng.
, vol.7
, Issue.3
, pp. 155-164
-
-
Alper, H.1
Jin, Y.S.2
Moxley, J.F.3
Stephanopoulos, G.4
-
87
-
-
84946415752
-
Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering
-
Zhang, F., Qian, X., Si, H., Xu, G., Han, R., Ni, Y., Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering. Microb. Cell Fact. 14:1 (2015), 1–11.
-
(2015)
Microb. Cell Fact.
, vol.14
, Issue.1
, pp. 1-11
-
-
Zhang, F.1
Qian, X.2
Si, H.3
Xu, G.4
Han, R.5
Ni, Y.6
-
88
-
-
84921283583
-
BREX is a novel phage resistance system widespread in microbial genomes
-
Goldfarb, T., et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 34:2 (2015), 169–183.
-
(2015)
EMBO J.
, vol.34
, Issue.2
, pp. 169-183
-
-
Goldfarb, T.1
-
89
-
-
34948909644
-
Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12
-
Bettenbrock, K., Sauter, T., Jahreis, K., Kremling, A., Lengeler, J.W., Gilles, E.D., Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. J. Bacteriol. 189:19 (2007), 6891–6900.
-
(2007)
J. Bacteriol.
, vol.189
, Issue.19
, pp. 6891-6900
-
-
Bettenbrock, K.1
Sauter, T.2
Jahreis, K.3
Kremling, A.4
Lengeler, J.W.5
Gilles, E.D.6
-
90
-
-
70350508288
-
Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine
-
Qian, Z.G., Xia, X.X., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol. Bioeng. 104:4 (2009), 651–662.
-
(2009)
Biotechnol. Bioeng.
, vol.104
, Issue.4
, pp. 651-662
-
-
Qian, Z.G.1
Xia, X.X.2
Lee, S.Y.3
-
91
-
-
80555150662
-
An evolutionary strategy for isobutanol production strain development in Escherichia coli
-
Smith, K.M., Liao, J.C., An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab. Eng. 13:6 (2011), 674–681.
-
(2011)
Metab. Eng.
, vol.13
, Issue.6
, pp. 674-681
-
-
Smith, K.M.1
Liao, J.C.2
-
92
-
-
84865281539
-
Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli
-
Santos, C.N.S., Xiao, W., Stephanopoulos, G., Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proc. Natl. Acad. Sci. USA 109:34 (2012), 13538–13543.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, Issue.34
, pp. 13538-13543
-
-
Santos, C.N.S.1
Xiao, W.2
Stephanopoulos, G.3
-
93
-
-
77149120797
-
Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux and metabolic flux
-
(no. May)
-
Wang, Q., Zhang, Y., Yang, C., Xiong, H., Lin, Y., Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux and metabolic flux. (no. May) Science (80) 327 (2010), 1004–1007.
-
(2010)
Science (80)
, vol.327
, pp. 1004-1007
-
-
Wang, Q.1
Zhang, Y.2
Yang, C.3
Xiong, H.4
Lin, Y.5
-
94
-
-
85018466567
-
Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions
-
Brown, C.W., et al. Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions. BMC Genom., 18(1), 2017, 301.
-
(2017)
BMC Genom.
, vol.18
, Issue.1
, pp. 301
-
-
Brown, C.W.1
-
95
-
-
84879401680
-
Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium
-
Soares, N.C., Spat, P., Krug, K., Macek, B., Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium. J. Proteome Res. 12:6 (2013), 2611–2621.
-
(2013)
J. Proteome Res.
, vol.12
, Issue.6
, pp. 2611-2621
-
-
Soares, N.C.1
Spat, P.2
Krug, K.3
Macek, B.4
-
96
-
-
61649089277
-
Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli
-
Zhang, J., et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol. Cell. Proteom. 8:2 (2009), 215–225.
-
(2009)
Mol. Cell. Proteom.
, vol.8
, Issue.2
, pp. 215-225
-
-
Zhang, J.1
-
97
-
-
84953737483
-
The quantitative and condition-dependent Escherichia coli proteome
-
Schmidt, A., et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34:1 (2016), 104–110.
-
(2016)
Nat. Biotechnol.
, vol.34
, Issue.1
, pp. 104-110
-
-
Schmidt, A.1
-
98
-
-
84940476302
-
Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic Stress
-
Hentchel, K.L., Escalante-Semerena, J.C., Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic Stress. Microbiol. Mol. Biol. Rev. 79:3 (2015), 321–346.
-
(2015)
Microbiol. Mol. Biol. Rev.
, vol.79
, Issue.3
, pp. 321-346
-
-
Hentchel, K.L.1
Escalante-Semerena, J.C.2
-
99
-
-
84880426255
-
Acetyl-phosphate is a critical determinant of lysine acetylation in E.coli
-
Weinert, B.T., et al. Acetyl-phosphate is a critical determinant of lysine acetylation in E.coli. Mol. Cell 51:2 (2013), 265–272.
-
(2013)
Mol. Cell
, vol.51
, Issue.2
, pp. 265-272
-
-
Weinert, B.T.1
-
100
-
-
77954013335
-
Bacterial protein acetylation: the dawning of a new age
-
Linda I, H., Bruno P, L., Alan J, W., Bacterial protein acetylation: the dawning of a new age. Mol. Microbiol. 77:1 (2010), 15–21.
-
(2010)
Mol. Microbiol.
, vol.77
, Issue.1
, pp. 15-21
-
-
Linda I, H.1
Bruno P, L.2
Alan J, W.3
-
101
-
-
79954582107
-
Control of protein function by reversible N-lysine acetylation in bacteria
-
Thao, S., Escalante-Semerena, J.C., Control of protein function by reversible N-lysine acetylation in bacteria. Curr. Opin. Microbiol. 14:2 (2011), 200–204.
-
(2011)
Curr. Opin. Microbiol.
, vol.14
, Issue.2
, pp. 200-204
-
-
Thao, S.1
Escalante-Semerena, J.C.2
-
102
-
-
84922810755
-
The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites
-
Abouelfetouh, A., et al. The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. Microbiologyopen 4:1 (2015), 66–83.
-
(2015)
Microbiologyopen
, vol.4
, Issue.1
, pp. 66-83
-
-
Abouelfetouh, A.1
-
103
-
-
82155175630
-
cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli
-
Castaño-Cerezo, S., Bernal, V., Blanco-Catalá, J., Iborra, J.L., Cánovas, M., cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli. Mol. Microbiol 82:5 (2011), 1110–1128.
-
(2011)
Mol. Microbiol
, vol.82
, Issue.5
, pp. 1110-1128
-
-
Castaño-Cerezo, S.1
Bernal, V.2
Blanco-Catalá, J.3
Iborra, J.L.4
Cánovas, M.5
-
104
-
-
84983188006
-
Protein acetylation dynamics in response to carbon overflow in Escherichia coli
-
Schilling, B., et al. Protein acetylation dynamics in response to carbon overflow in Escherichia coli. Mol. Microbiol. 98:5 (2015), 847–863.
-
(2015)
Mol. Microbiol.
, vol.98
, Issue.5
, pp. 847-863
-
-
Schilling, B.1
-
105
-
-
0019275308
-
Structural, enzymatic, and genetic studies of ??-ketoacyl-acyl carrier protein synthases I and II of Escherichia coli
-
Garwin, J.L., Klages, a.L., Cronan, J.E., Structural, enzymatic, and genetic studies of ??-ketoacyl-acyl carrier protein synthases I and II of Escherichia coli. J. Biol. Chem. 255:24 (1980), 11949–11956.
-
(1980)
J. Biol. Chem.
, vol.255
, Issue.24
, pp. 11949-11956
-
-
Garwin, J.L.1
Klages, A.L.2
Cronan, J.E.3
-
106
-
-
84921498354
-
Ser/Thr phosphorylation as a regulatory mechanism in bacteria
-
Dworkin, J., Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr. Opin. Microbiol. 24 (2015), 47–52.
-
(2015)
Curr. Opin. Microbiol.
, vol.24
, pp. 47-52
-
-
Dworkin, J.1
-
107
-
-
0033038516
-
Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb
-
Vincent, C., Doublet, P., Grangeasse, C., Vaganay, E., Cozzone, A.J., Duclos, B., Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J. Bacteriol. 181:11 (1999), 3472–3477.
-
(1999)
J. Bacteriol.
, vol.181
, Issue.11
, pp. 3472-3477
-
-
Vincent, C.1
Doublet, P.2
Grangeasse, C.3
Vaganay, E.4
Cozzone, A.J.5
Duclos, B.6
-
108
-
-
85000842795
-
Characterization of protein lysine propionylation in Escherichia coli: global profiling, dynamic change, and enzymatic regulation
-
Sun, M., et al. Characterization of protein lysine propionylation in Escherichia coli: global profiling, dynamic change, and enzymatic regulation. J. Proteome Res. 15:12 (2016), 4696–4708.
-
(2016)
J. Proteome Res.
, vol.15
, Issue.12
, pp. 4696-4708
-
-
Sun, M.1
-
109
-
-
84890673317
-
Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli
-
Colak, G., et al. Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol. Cell. Proteom. 12:12 (2013), 3509–3520.
-
(2013)
Mol. Cell. Proteom.
, vol.12
, Issue.12
, pp. 3509-3520
-
-
Colak, G.1
-
110
-
-
0033546122
-
High-throughput mass spectrometric discovery of protein post-translational modifications
-
Wilkins, M.R., et al. High-throughput mass spectrometric discovery of protein post-translational modifications. J. Mol. Biol. 289:3 (1999), 645–657.
-
(1999)
J. Mol. Biol.
, vol.289
, Issue.3
, pp. 645-657
-
-
Wilkins, M.R.1
-
111
-
-
81855227262
-
Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals
-
Jarboe, L.R., Liu, P., Royce, L.A., Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Curr. Opin. Chem. Eng. 1:1 (2011), 38–42.
-
(2011)
Curr. Opin. Chem. Eng.
, vol.1
, Issue.1
, pp. 38-42
-
-
Jarboe, L.R.1
Liu, P.2
Royce, L.A.3
-
112
-
-
77953022341
-
A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation
-
Nicolaou, S.A., Gaida, S.M., E. T. P. Ã, A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab. Eng. 12:4 (2010), 307–331.
-
(2010)
Metab. Eng.
, vol.12
, Issue.4
, pp. 307-331
-
-
Nicolaou, S.A.1
Gaida, S.M.2
E.T.P. Ã3
-
113
-
-
78650647970
-
Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli
-
Atsumi, S., et al. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol. Syst. Biol., 6(449), 2010, 449.
-
(2010)
Mol. Syst. Biol.
, vol.6
, Issue.449
, pp. 449
-
-
Atsumi, S.1
-
114
-
-
80053172430
-
Engineering microbes for tolerance to next-generation biofuels
-
Dunlop, M.J., Engineering microbes for tolerance to next-generation biofuels. Biotechnol. Biofuels 4 (2011), 1–9.
-
(2011)
Biotechnol. Biofuels
, vol.4
, pp. 1-9
-
-
Dunlop, M.J.1
-
115
-
-
84883554012
-
The damaging effects of short chain fatty acids on Escherichia coli membranes
-
Royce, L.A., Liu, P., Stebbins, M.J., Hanson, B.C., Jarboe, L.R., The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl. Microbiol Biotechnol. 97 (2013), 8317–8327.
-
(2013)
Appl. Microbiol Biotechnol.
, vol.97
, pp. 8317-8327
-
-
Royce, L.A.1
Liu, P.2
Stebbins, M.J.3
Hanson, B.C.4
Jarboe, L.R.5
-
116
-
-
84955264971
-
Production of biorenewable styrene: utilization of biomass ‑ derived sugars and insights into toxicity
-
Lian, J., Mckenna, R., Rover, M.R., Nielsen, D.R., Wen, Z., Jarboe, L.R., Production of biorenewable styrene: utilization of biomass ‑ derived sugars and insights into toxicity. J. Ind. Microbiol. Biotechnol. 43:5 (2016), 595–604.
-
(2016)
J. Ind. Microbiol. Biotechnol.
, vol.43
, Issue.5
, pp. 595-604
-
-
Lian, J.1
Mckenna, R.2
Rover, M.R.3
Nielsen, D.R.4
Wen, Z.5
Jarboe, L.R.6
-
117
-
-
85056965176
-
Engineering microbial biofuel tolerance and export using efflux pumps
-
Dunlop, M.J., et al. Engineering microbial biofuel tolerance and export using efflux pumps. Mol. Syst. Biol. 7:487 (2011), 1–7.
-
(2011)
Mol. Syst. Biol.
, vol.7
, Issue.487
, pp. 1-7
-
-
Dunlop, M.J.1
-
118
-
-
77951074736
-
Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli
-
Takatsuka, Y., Chen, C., Nikaido, H., Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc. Natl. Acad. Sci. USA 107:15 (2010), 6559–6565.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, Issue.15
, pp. 6559-6565
-
-
Takatsuka, Y.1
Chen, C.2
Nikaido, H.3
-
119
-
-
77749245785
-
Functional genomic study of exogenous n-butanol stress in Escherichia coli
-
Rutherford, B.J., et al. Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl. Environ. Microbiol. 76:6 (2010), 1935–1945.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, Issue.6
, pp. 1935-1945
-
-
Rutherford, B.J.1
-
120
-
-
84959482163
-
Engineering of high yield production of L-serine in Escherichia coli
-
Mundhada, H., Schneider, K., Christensen, H.B., Nielsen, A.T., Engineering of high yield production of L-serine in Escherichia coli. Biotechnol. Bioeng. 113:4 (2016), 807–816.
-
(2016)
Biotechnol. Bioeng.
, vol.113
, Issue.4
, pp. 807-816
-
-
Mundhada, H.1
Schneider, K.2
Christensen, H.B.3
Nielsen, A.T.4
-
121
-
-
85008192136
-
Increased production of L-serine in Escherichia coli through adaptive laboratory evolution
-
(no. May 2016)
-
Mundhada, H., et al. Increased production of L-serine in Escherichia coli through adaptive laboratory evolution. (no. May 2016) Metab. Eng. 39 (2017), 141–150.
-
(2017)
Metab. Eng.
, vol.39
, pp. 141-150
-
-
Mundhada, H.1
-
122
-
-
84927514444
-
Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity
-
Royce, L.A., Yoon, J.M., Chen, Y., Rickenbach, E., Shanks, J.V., Jarboe, L.R., Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab. Eng. 29 (2015), 180–188.
-
(2015)
Metab. Eng.
, vol.29
, pp. 180-188
-
-
Royce, L.A.1
Yoon, J.M.2
Chen, Y.3
Rickenbach, E.4
Shanks, J.V.5
Jarboe, L.R.6
-
123
-
-
85019708894
-
Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance
-
Jin, T., et al. Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance. J. Ind. Microbiol. Biotechnol. 44:9 (2017), 1279–1292.
-
(2017)
J. Ind. Microbiol. Biotechnol.
, vol.44
, Issue.9
, pp. 1279-1292
-
-
Jin, T.1
-
124
-
-
85028962913
-
Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables
-
(no. August)
-
Tana, Z., et al. Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables. (no. August) Metab. Eng. 44 (2017), 1–12.
-
(2017)
Metab. Eng.
, vol.44
, pp. 1-12
-
-
Tana, Z.1
-
125
-
-
84959318102
-
Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of bioren
-
(no. February)
-
Tan, Z., Shanks, J.V., Jarboe, L.R., Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of bioren. (no. February) Metab. Eng. 35 (2016), 105–113.
-
(2016)
Metab. Eng.
, vol.35
, pp. 105-113
-
-
Tan, Z.1
Shanks, J.V.2
Jarboe, L.R.3
-
126
-
-
0036165418
-
BRENDA: a resource for enzyme data and metabolic information
-
Schomburg, I., Chang, A., Hofmann, O., Ebeling, C., Ehrentreich, F., Schomburg, D., BRENDA: a resource for enzyme data and metabolic information. Trends Biochem. Sci. 27:1 (2002), 54–56.
-
(2002)
Trends Biochem. Sci.
, vol.27
, Issue.1
, pp. 54-56
-
-
Schomburg, I.1
Chang, A.2
Hofmann, O.3
Ebeling, C.4
Ehrentreich, F.5
Schomburg, D.6
-
127
-
-
13444262374
-
EcoCyc: a comprehensive database resource for Escherichia coli
-
(no. Database issue)
-
Keseler, I.M., et al. EcoCyc: a comprehensive database resource for Escherichia coli. (no. Database issue) Nucleic Acids Res 33 (2005), 334–337.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 334-337
-
-
Keseler, I.M.1
-
128
-
-
84921340441
-
Model-driven discovery of underground metabolic functions in Escherichia coli
-
Guzmán, G.I., Utrilla, J., Nurk, S., Brunk, E., Monk, J.M., Ebrahim, A., Model-driven discovery of underground metabolic functions in Escherichia coli. Proc. Natl. Acad. Sci. USA 112:3 (2014), 929–934.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.112
, Issue.3
, pp. 929-934
-
-
Guzmán, G.I.1
Utrilla, J.2
Nurk, S.3
Brunk, E.4
Monk, J.M.5
Ebrahim, A.6
-
129
-
-
85027715197
-
Underground metabolism: network-level perspective and biotechnological potential
-
Notebaart, R.A., Kintses, B., Feist, A.M., Papp, B., Underground metabolism: network-level perspective and biotechnological potential. Curr. Opin. Biotechnol. 49 (2018), 108–114.
-
(2018)
Curr. Opin. Biotechnol.
, vol.49
, pp. 108-114
-
-
Notebaart, R.A.1
Kintses, B.2
Feist, A.M.3
Papp, B.4
-
130
-
-
84872715396
-
Metabolite damage and its repair or pre-emption
-
Linster, C.L., Van Schaftingen, E., Hanson, A.D., Metabolite damage and its repair or pre-emption. Nat. Chem. Biol. 9:2 (2013), 72–80.
-
(2013)
Nat. Chem. Biol.
, vol.9
, Issue.2
, pp. 72-80
-
-
Linster, C.L.1
Van Schaftingen, E.2
Hanson, A.D.3
-
131
-
-
0021471746
-
Acid-Base catalysis of the elimination and isomerization reactions of triose phosphates
-
Richard, J.P., Acid-Base catalysis of the elimination and isomerization reactions of triose phosphates. J. Am. Chem. Soc. 106:17 (1984), 4926–4936.
-
(1984)
J. Am. Chem. Soc.
, vol.106
, Issue.17
, pp. 4926-4936
-
-
Richard, J.P.1
-
132
-
-
0027286747
-
Mechanism for the formation of methylglyoxal from triosephosphates
-
Richard, J.P., Mechanism for the formation of methylglyoxal from triosephosphates. Biochem. Soc. Trans. 21:2 (1993), 171–174.
-
(1993)
Biochem. Soc. Trans.
, vol.21
, Issue.2
, pp. 171-174
-
-
Richard, J.P.1
-
133
-
-
84922264295
-
Parkinsonism-associated protein DJ-1/park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues
-
Richarme, G., Mihoub, M., Dairou, J., Chi Bui, L., Leger, T., Lamouri, A., Parkinsonism-associated protein DJ-1/park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues. J. Biol. Chem. 290:3 (2015), 1885–1897.
-
(2015)
J. Biol. Chem.
, vol.290
, Issue.3
, pp. 1885-1897
-
-
Richarme, G.1
Mihoub, M.2
Dairou, J.3
Chi Bui, L.4
Leger, T.5
Lamouri, A.6
-
135
-
-
84968735652
-
The costs of photorespiration to food production now and in the Future
-
Walker, B.J., VanLoocke, A., Bernacchi, C.J., Ort, D.R., The costs of photorespiration to food production now and in the Future. Annu. Rev. Plant Biol. 67:1 (2016), 107–129.
-
(2016)
Annu. Rev. Plant Biol.
, vol.67
, Issue.1
, pp. 107-129
-
-
Walker, B.J.1
VanLoocke, A.2
Bernacchi, C.J.3
Ort, D.R.4
-
136
-
-
85031774799
-
Metabolite damage and repair in metabolic engineering design
-
(no. October)
-
Sun, J., Jeffryes, J.G., Henry, C.S., Bruner, S.D., Hanson, A.D., Metabolite damage and repair in metabolic engineering design. (no. October) Metab. Eng. 44 (2017), 150–159.
-
(2017)
Metab. Eng.
, vol.44
, pp. 150-159
-
-
Sun, J.1
Jeffryes, J.G.2
Henry, C.S.3
Bruner, S.D.4
Hanson, A.D.5
-
137
-
-
84956575857
-
The DJ-1 superfamily members YhbO and YajL from Escherichia coli repair proteins from glycation by methylglyoxal and glyoxal
-
Abdallah, J., Mihoub, M., Gautier, V., Richarme, G., The DJ-1 superfamily members YhbO and YajL from Escherichia coli repair proteins from glycation by methylglyoxal and glyoxal. Biochem. Biophys. Res. Commun. 470:2 (2016), 282–286.
-
(2016)
Biochem. Biophys. Res. Commun.
, vol.470
, Issue.2
, pp. 282-286
-
-
Abdallah, J.1
Mihoub, M.2
Gautier, V.3
Richarme, G.4
-
138
-
-
0016302743
-
Glyceraldehyde-3-phosphate dehydrogenase catalyzed hydration of the 5-6 double bond of reduced β-nicotinamide adenine dinucleotide (βNADH). Formation of β-6-hydroxy-1, 4, 5, 6-tetrahydronicotinamide adenine dinucleotide
-
Oppenheimer, N.J., Kaplan, N.O., Glyceraldehyde-3-phosphate dehydrogenase catalyzed hydration of the 5-6 double bond of reduced β-nicotinamide adenine dinucleotide (βNADH). Formation of β-6-hydroxy-1, 4, 5, 6-tetrahydronicotinamide adenine dinucleotide. Biochemistry 13:23 (1974), 4685–4694.
-
(1974)
Biochemistry
, vol.13
, Issue.23
, pp. 4685-4694
-
-
Oppenheimer, N.J.1
Kaplan, N.O.2
-
139
-
-
82355171918
-
Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide
-
Marbaix, A.Y., Noël, G., Detroux, A.M., Vertommen, D., Van Schaftingen, E., Linster, C.L., Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide. J. Biol. Chem. 286:48 (2011), 41246–41252.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.48
, pp. 41246-41252
-
-
Marbaix, A.Y.1
Noël, G.2
Detroux, A.M.3
Vertommen, D.4
Van Schaftingen, E.5
Linster, C.L.6
-
140
-
-
85017594637
-
Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione
-
Peracchi, A., et al. Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione. Proc. Natl. Acad. Sci. USA 114:16 (2017), E3233–E3242.
-
(2017)
Proc. Natl. Acad. Sci. USA
, vol.114
, Issue.16
, pp. E3233-E3242
-
-
Peracchi, A.1
-
141
-
-
0025160752
-
Serine hydroxymethyltransferase catalyzes the hydrolysis to 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate
-
Stover, P., Schirchs, V., Serine hydroxymethyltransferase catalyzes the hydrolysis to 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. J. Biol. Chem. 265:24 (1990), 14227–14233.
-
(1990)
J. Biol. Chem.
, vol.265
, Issue.24
, pp. 14227-14233
-
-
Stover, P.1
Schirchs, V.2
-
142
-
-
0035433143
-
L-pyroglutamate spontaneously formed from L -glutamate inhibits growth of the hyperthermophilic archaeon sulfolobus solfataricus
-
Park, C.B., Lee, S.B., Ryu, D.D.Y., L-pyroglutamate spontaneously formed from L -glutamate inhibits growth of the hyperthermophilic archaeon sulfolobus solfataricus. Appl. Environ. Microbiol. 67:8 (2001), 3650–3654.
-
(2001)
Appl. Environ. Microbiol.
, vol.67
, Issue.8
, pp. 3650-3654
-
-
Park, C.B.1
Lee, S.B.2
Ryu, D.D.Y.3
-
143
-
-
84991740197
-
Multi-omics Quantification of species variation of Escherichia coli links molecular features with strain phenotypes
-
(238–251.e12) (238–251.e12)
-
Monk, J.M., et al. Multi-omics Quantification of species variation of Escherichia coli links molecular features with strain phenotypes. (238–251.e12) Cell Syst., 3(3), 2016 (238–251.e12).
-
(2016)
Cell Syst.
, vol.3
, Issue.3
-
-
Monk, J.M.1
-
144
-
-
84899047521
-
Coordination of microbial metabolism
-
Chubukov, V., Gerosa, L., Kochanowski, K., Sauer, U., Coordination of microbial metabolism. Nat. Rev. Microbiol. 12:5 (2014), 327–340.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, Issue.5
, pp. 327-340
-
-
Chubukov, V.1
Gerosa, L.2
Kochanowski, K.3
Sauer, U.4
-
145
-
-
78650475398
-
Phenotypic landscape of a bacterial cell
-
Nichols, R.J., et al. Phenotypic landscape of a bacterial cell. Cell 144:1 (2011), 143–156.
-
(2011)
Cell
, vol.144
, Issue.1
, pp. 143-156
-
-
Nichols, R.J.1
-
146
-
-
84949116757
-
Biological insights through nontargeted metabolomics
-
Sévin, D.C., Kuehne, A., Zamboni, N., Sauer, U., Biological insights through nontargeted metabolomics. Curr. Opin. Biotechnol. 34 (2015), 1–8.
-
(2015)
Curr. Opin. Biotechnol.
, vol.34
, pp. 1-8
-
-
Sévin, D.C.1
Kuehne, A.2
Zamboni, N.3
Sauer, U.4
-
147
-
-
84906861310
-
High-throughput discovery metabolomics
-
Fuhrer, T., Zamboni, N., High-throughput discovery metabolomics. Curr. Opin. Biotechnol. 31 (2015), 73–78.
-
(2015)
Curr. Opin. Biotechnol.
, vol.31
, pp. 73-78
-
-
Fuhrer, T.1
Zamboni, N.2
-
148
-
-
85010886942
-
Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli
-
Kochanowski, K., Gerosa, L., Brunner, S.F., Christodoulou, D., Nikolaev, Y.V., Sauer, U., Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli. Mol. Syst. Biol., 13(1), 2017, 903.
-
(2017)
Mol. Syst. Biol.
, vol.13
, Issue.1
, pp. 903
-
-
Kochanowski, K.1
Gerosa, L.2
Brunner, S.F.3
Christodoulou, D.4
Nikolaev, Y.V.5
Sauer, U.6
-
149
-
-
85004191344
-
Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli
-
Sévin, D.C., Fuhrer, T., Zamboni, N., Sauer, U., Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. Nat. Methods 14:2 (2017), 187–194.
-
(2017)
Nat. Methods
, vol.14
, Issue.2
, pp. 187-194
-
-
Sévin, D.C.1
Fuhrer, T.2
Zamboni, N.3
Sauer, U.4
-
150
-
-
84903144112
-
Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production
-
George, K.W., et al. Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. Biotechnol. Bioeng. 111:8 (2014), 1648–1658.
-
(2014)
Biotechnol. Bioeng.
, vol.111
, Issue.8
, pp. 1648-1658
-
-
George, K.W.1
-
151
-
-
85044223832
-
Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology
-
(no. September)
-
Haas, R., Zelezniak, A., Iacovacci, J., Kamrad, S., Townsend, S., Ralser, M., Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology. (no. September) Curr. Opin. Syst. Biol. 6 (2017), 37–45.
-
(2017)
Curr. Opin. Syst. Biol.
, vol.6
, pp. 37-45
-
-
Haas, R.1
Zelezniak, A.2
Iacovacci, J.3
Kamrad, S.4
Townsend, S.5
Ralser, M.6
-
152
-
-
0029828233
-
Strategies for achieving high-level expression of genes in Escherichia coli
-
Makrides, S.C., Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Mol. Biol. Rev. 60:3 (1996), 512–538.
-
(1996)
Microbiol. Mol. Biol. Rev.
, vol.60
, Issue.3
, pp. 512-538
-
-
Makrides, S.C.1
-
153
-
-
33847073370
-
Expanding the metabolic engineering toolbox: more options to engineer cells
-
Tyo, K.E., Alper, H.S., Stephanopoulos, G.N., Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol. 25:3 (2007), 132–137.
-
(2007)
Trends Biotechnol.
, vol.25
, Issue.3
, pp. 132-137
-
-
Tyo, K.E.1
Alper, H.S.2
Stephanopoulos, G.N.3
-
154
-
-
0035337803
-
Techniques: recombinogenic engineering - new options for cloning and manipulating DNA
-
Muyrers, J.P.P., Zhang, Y., Stewart, A.F., Techniques: recombinogenic engineering - new options for cloning and manipulating DNA. Trends Biochem. Sci. 26:5 (2001), 325–331.
-
(2001)
Trends Biochem. Sci.
, vol.26
, Issue.5
, pp. 325-331
-
-
Muyrers, J.P.P.1
Zhang, Y.2
Stewart, A.F.3
-
155
-
-
33745454125
-
Synthetic biology: new engineering rules for an emerging discipline
-
Andrianantoandro, E., Basu, S., Karig, D.K., Weiss, R., Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2 (2006), 1–14.
-
(2006)
Mol. Syst. Biol.
, vol.2
, pp. 1-14
-
-
Andrianantoandro, E.1
Basu, S.2
Karig, D.K.3
Weiss, R.4
-
156
-
-
0034612342
-
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
-
Datsenko, K. a., Wanner, B.L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97:12 (2000), 6640–6645.
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, Issue.12
, pp. 6640-6645
-
-
Datsenko, K.A.1
Wanner, B.L.2
-
157
-
-
43149090031
-
Simple generation of site-directed point mutations in the Escherichia coli chromosome using Red(R)/ET(R) Recombination
-
Heermann, R., Zeppenfeld, T., Jung, K., Simple generation of site-directed point mutations in the Escherichia coli chromosome using Red(R)/ET(R) Recombination. Microb. Cell Fact., 7, 2008, 14.
-
(2008)
Microb. Cell Fact.
, vol.7
, pp. 14
-
-
Heermann, R.1
Zeppenfeld, T.2
Jung, K.3
-
158
-
-
77951278557
-
Site-specific chromosomal integration of large synthetic constructs
-
Kuhlman, T.E., Cox, E.C., Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res., 38(6), 2010.
-
(2010)
Nucleic Acids Res.
, vol.38
, Issue.6
-
-
Kuhlman, T.E.1
Cox, E.C.2
-
159
-
-
33644542404
-
Tuning genetic control through promoter engineering
-
Alper, H., Fischer, C., Nevoigt, E., Stephanopoulos, G., Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA 103:36 (2006), 3006–3007.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, Issue.36
, pp. 3006-3007
-
-
Alper, H.1
Fischer, C.2
Nevoigt, E.3
Stephanopoulos, G.4
-
160
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., Yang, S., Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 81:7 (2015), 2506–2514.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, Issue.7
, pp. 2506-2514
-
-
Jiang, Y.1
Chen, B.2
Duan, C.3
Sun, B.4
Yang, J.5
Yang, S.6
-
161
-
-
68949161807
-
Programming cells by multiplex genome engineering and accelerated evolution
-
Wang, H.H., et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:7257 (2009), 894–898.
-
(2009)
Nature
, vol.460
, Issue.7257
, pp. 894-898
-
-
Wang, H.H.1
-
162
-
-
0035810938
-
High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides
-
Ellis, H.M., Yu, D., DiTizio, T., Court, D.L., High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. USA 98:12 (2001), 6742–6746.
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, Issue.12
, pp. 6742-6746
-
-
Ellis, H.M.1
Yu, D.2
DiTizio, T.3
Court, D.L.4
-
163
-
-
67651164996
-
Conformational adaptability of Redβ during DNa annealing and implications for its structural relationship with Rad52
-
Erler, A., et al. Conformational adaptability of Redβ during DNa annealing and implications for its structural relationship with Rad52. J. Mol. Biol. 391:3 (2009), 586–598.
-
(2009)
J. Mol. Biol.
, vol.391
, Issue.3
, pp. 586-598
-
-
Erler, A.1
-
164
-
-
0026355962
-
Mechanisms and biological effects of mismatch repair
-
Modrich, P., Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet., 25, 1991.
-
(1991)
Annu. Rev. Genet.
, vol.25
-
-
Modrich, P.1
-
165
-
-
79957439984
-
Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion
-
Wang, H.H., Xu, G., Vonner, A.J., Church, G., Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion. Nucleic Acids Res. 39:16 (2011), 7336–7347.
-
(2011)
Nucleic Acids Res.
, vol.39
, Issue.16
, pp. 7336-7347
-
-
Wang, H.H.1
Xu, G.2
Vonner, A.J.3
Church, G.4
-
166
-
-
79960502359
-
Precise manipulation of chromosomes in vivo enables genome-wide codon replacement
-
(no. July)
-
Isaacs, F.J., et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. (no. July) Science 333 (2011), 348–353.
-
(2011)
Science
, vol.333
, pp. 348-353
-
-
Isaacs, F.J.1
-
167
-
-
84861963767
-
Genome-scale promoter engineering by coselection MAGE
-
Wang, H.H., Kim, H., Cong, L., Jeong, J., Bang, D., Church, G.M., Genome-scale promoter engineering by coselection MAGE. Nat. Methods 9:6 (2012), 591–593.
-
(2012)
Nat. Methods
, vol.9
, Issue.6
, pp. 591-593
-
-
Wang, H.H.1
Kim, H.2
Cong, L.3
Jeong, J.4
Bang, D.5
Church, G.M.6
-
168
-
-
84994391729
-
CRISPR technologies for bacterial systems: current achievements and future directions
-
Choi, K.R., Lee, S.Y., CRISPR technologies for bacterial systems: current achievements and future directions. Biotechnol. Adv. 34:7 (2016), 1180–1209.
-
(2016)
Biotechnol. Adv.
, vol.34
, Issue.7
, pp. 1180-1209
-
-
Choi, K.R.1
Lee, S.Y.2
-
169
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
-
Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S. Dusko, Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:8 (2005), 2551–2561.
-
(2005)
Microbiology
, vol.151
, Issue.8
, pp. 2551-2561
-
-
Bolotin, A.1
Quinquis, B.2
Sorokin, A.3
Ehrlich, S.D.4
-
170
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J., Soria, E., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60:2 (2005), 174–182.
-
(2005)
J. Mol. Evol.
, vol.60
, Issue.2
, pp. 174-182
-
-
Mojica, F.J.M.1
Díez-Villaseñor, C.2
García-Martínez, J.3
Soria, E.4
-
171
-
-
85056958387
-
Small CRISPR RNAs guide antiviral defense in prokaryotes stan
-
(no. May)
-
Brouns, S.J.J., et al. Small CRISPR RNAs guide antiviral defense in prokaryotes stan. (no. May) Science 311 (2006), 518–522.
-
(2006)
Science
, vol.311
, pp. 518-522
-
-
Brouns, S.J.J.1
-
172
-
-
84865070369
-
A programmable Dual-RNA – guided DNA endonuclease in adaptice bacterial immunity
-
(no. August)
-
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., A programmable Dual-RNA – guided DNA endonuclease in adaptice bacterial immunity. (no. August) Science 337 (2012), 816–822.
-
(2012)
Science
, vol.337
, pp. 816-822
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
173
-
-
85041475002
-
Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects
-
Mougiakos, I., Bosma, E.F., Ganguly, J., Van Der Oost, J., Van Kranenburg, R., Kranenburg, R., Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects. Curr. Opin. Biotechnol. 50 (2018), 146–157.
-
(2018)
Curr. Opin. Biotechnol.
, vol.50
, pp. 146-157
-
-
Mougiakos, I.1
Bosma, E.F.2
Ganguly, J.3
Van Der Oost, J.4
Van Kranenburg, R.5
Kranenburg, R.6
-
174
-
-
85026534475
-
Advances in industrial biotechnology using CRISPR-Cas systems
-
Donohoue, P.D., Barrangou, R., May, A.P., Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol., 36(2), 2017.
-
(2017)
Trends Biotechnol.
, vol.36
, Issue.2
-
-
Donohoue, P.D.1
Barrangou, R.2
May, A.P.3
-
175
-
-
79956157571
-
Evolution and classification of the CRISPR-Cas systems
-
Makarova, K.S., et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9:6 (2011), 467–477.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, Issue.6
, pp. 467-477
-
-
Makarova, K.S.1
-
176
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang, W., Bikard, D., Cox, D., Zhang, F., Marraffini, L.A., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31:3 (2013), 233–239.
-
(2013)
Nat. Biotechnol.
, vol.31
, Issue.3
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
177
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva, E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:7340 (2011), 602–607.
-
(2011)
Nature
, vol.471
, Issue.7340
, pp. 602-607
-
-
Deltcheva, E.1
-
178
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C., Doudna, J.A., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:7490 (2014), 62–67.
-
(2014)
Nature
, vol.507
, Issue.7490
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.A.5
-
179
-
-
84970046200
-
Consequences of Cas9 cleavage in the chromosome of Escherichia coli
-
Cui, L., Bikard, D., Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. 44:9 (2016), 4243–4251.
-
(2016)
Nucleic Acids Res.
, vol.44
, Issue.9
, pp. 4243-4251
-
-
Cui, L.1
Bikard, D.2
-
180
-
-
35348890199
-
Bacterial DNA repair by non-homologous end joining
-
Shuman, S., Glickman, M.S., Bacterial DNA repair by non-homologous end joining. Nat. Rev. Microbiol. 5:11 (2007), 852–861.
-
(2007)
Nat. Rev. Microbiol.
, vol.5
, Issue.11
, pp. 852-861
-
-
Shuman, S.1
Glickman, M.S.2
-
181
-
-
84936967101
-
Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli
-
Pyne, M.E., Moo-Young, M., Chung, D.A., Chou, C.P., Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. 81:15 (2015), 5103–5114.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, Issue.15
, pp. 5103-5114
-
-
Pyne, M.E.1
Moo-Young, M.2
Chung, D.A.3
Chou, C.P.4
-
182
-
-
84937538704
-
Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing
-
Li, Y., et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab. Eng. 31 (2015), 13–21.
-
(2015)
Metab. Eng.
, vol.31
, pp. 13-21
-
-
Li, Y.1
-
183
-
-
84944320385
-
The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli
-
(no. September)
-
Reisch, C.R., Prather, K.L.J., The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli. (no. September) Sci. Rep. 5 (2015), 1–12.
-
(2015)
Sci. Rep.
, vol.5
, pp. 1-12
-
-
Reisch, C.R.1
Prather, K.L.J.2
-
184
-
-
85032981856
-
A systematically chromosomally engineered Escherichia coli efficiently produces butanol
-
(no. November)
-
Dong, H., et al. A systematically chromosomally engineered Escherichia coli efficiently produces butanol. (no. November) Metab. Eng. 44 (2017), 284–292.
-
(2017)
Metab. Eng.
, vol.44
, pp. 284-292
-
-
Dong, H.1
-
185
-
-
85038608824
-
Combining CRISPR and CRISPRi systems for metabolic engineering of E. coli and 1,4-BDO biosynthesis
-
Wu, M.Y., Sung, L.Y., Li, H., Huang, C.H., Hu, Y.C., Combining CRISPR and CRISPRi systems for metabolic engineering of E. coli and 1,4-BDO biosynthesis. ACS Synth. Biol. 6:12 (2017), 2350–2361.
-
(2017)
ACS Synth. Biol.
, vol.6
, Issue.12
, pp. 2350-2361
-
-
Wu, M.Y.1
Sung, L.Y.2
Li, H.3
Huang, C.H.4
Hu, Y.C.5
-
186
-
-
84980351609
-
Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9
-
Chung, M.E., et al. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnol. Bioeng. 114:1 (2017), 172–183.
-
(2017)
Biotechnol. Bioeng.
, vol.114
, Issue.1
, pp. 172-183
-
-
Chung, M.E.1
-
187
-
-
85056949988
-
Towards industrial production of isoprenoids in Escherichia coli: lessons learned from CRISPR-Cas9 based optimization of a chromosomally integrated mevalonate pathway
-
Alonso-Gutierrez, J., et al. Towards industrial production of isoprenoids in Escherichia coli: lessons learned from CRISPR-Cas9 based optimization of a chromosomally integrated mevalonate pathway. Biotechnol. Bioeng., 2017.
-
(2017)
Biotechnol. Bioeng.
-
-
Alonso-Gutierrez, J.1
-
188
-
-
85029106382
-
The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway
-
(no. March)
-
Zhu, X., et al. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. (no. March) Metab. Eng. 43 (2017), 37–45.
-
(2017)
Metab. Eng.
, vol.43
, pp. 37-45
-
-
Zhu, X.1
-
189
-
-
85014750171
-
CRISPR Enabled trackable genome engineering for isopropanol production in Escherichia coli
-
Liang, L., et al. CRISPR Enabled trackable genome engineering for isopropanol production in Escherichia coli. Metab. Eng. 41 (2017), 1–10.
-
(2017)
Metab. Eng.
, vol.41
, pp. 1-10
-
-
Liang, L.1
-
190
-
-
84930197469
-
Targeted DNA degradation using a CRISPR device stably carried in the host genome
-
(no. May)
-
Caliando, B.J., Voigt, C.A., Targeted DNA degradation using a CRISPR device stably carried in the host genome. (no. May) Nat. Commun. 6 (2015), 1–10.
-
(2015)
Nat. Commun.
, vol.6
, pp. 1-10
-
-
Caliando, B.J.1
Voigt, C.A.2
-
191
-
-
0034783686
-
Using inactivated microbial biomass as fertilizer: the fate of antibiotic resistance genes in the environment
-
Andersen, J.T., Schäfer, T., Jørgensen, P.L., Møller, S., Using inactivated microbial biomass as fertilizer: the fate of antibiotic resistance genes in the environment. Res. Microbiol. 152:9 (2001), 823–833.
-
(2001)
Res. Microbiol.
, vol.152
, Issue.9
, pp. 823-833
-
-
Andersen, J.T.1
Schäfer, T.2
Jørgensen, P.L.3
Møller, S.4
-
192
-
-
37249047440
-
Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides
-
Parisien, A., Allain, B., Zhang, J., Mandeville, R., Lan, C.Q., Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J. Appl. Microbiol. 104:1 (2008), 1–13.
-
(2008)
J. Appl. Microbiol.
, vol.104
, Issue.1
, pp. 1-13
-
-
Parisien, A.1
Allain, B.2
Zhang, J.3
Mandeville, R.4
Lan, C.Q.5
-
193
-
-
84903362877
-
Programmable removal of bacterial strains by use of genome-targeting CRISPR/Cas systems
-
Gomaa, A. a., Klumpe, H.E., Luo, M.L., Selle, K., Barrangou, R., Beisel, L., Programmable removal of bacterial strains by use of genome-targeting CRISPR/Cas systems. MBio 5:1 (2014), e00928–13.
-
(2014)
MBio
, vol.5
, Issue.1
, pp. e00928-13
-
-
Gomaa, A.A.1
Klumpe, H.E.2
Luo, M.L.3
Selle, K.4
Barrangou, R.5
Beisel, L.6
-
194
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., Marraffini, L.A., Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41:15 (2013), 7429–7437.
-
(2013)
Nucleic Acids Res.
, vol.41
, Issue.15
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
Hochschild, A.4
Zhang, F.5
Marraffini, L.A.6
-
195
-
-
84899052707
-
Engineering synergy in biotechnology
-
Nielsen, J., et al. Engineering synergy in biotechnology. Nat. Chem. Biol. 10:5 (2014), 319–322.
-
(2014)
Nat. Chem. Biol.
, vol.10
, Issue.5
, pp. 319-322
-
-
Nielsen, J.1
-
196
-
-
84887855994
-
Genomic impact of CRISPR immunization against bacteriophages
-
Barrangou, R., et al. Genomic impact of CRISPR immunization against bacteriophages. Biochem. Soc. Trans. 41:6 (2013), 1383–1391.
-
(2013)
Biochem. Soc. Trans.
, vol.41
, Issue.6
, pp. 1383-1391
-
-
Barrangou, R.1
-
197
-
-
84874687019
-
Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression
-
Qi, L.S., et al. Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression. Cell 152:5 (2013), 1173–1183.
-
(2013)
Cell
, vol.152
, Issue.5
, pp. 1173-1183
-
-
Qi, L.S.1
-
198
-
-
84865144676
-
CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection
-
Bikard, D., Hatoum-Aslan, A., Mucida, D., Marraffini, L.A., CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12:2 (2012), 177–186.
-
(2012)
Cell Host Microbe
, vol.12
, Issue.2
, pp. 177-186
-
-
Bikard, D.1
Hatoum-Aslan, A.2
Mucida, D.3
Marraffini, L.A.4
-
199
-
-
84941084368
-
Efficient programmable gene silencing by Cascade
-
Rath, D., Amlinger, L., Hoekzema, M., Devulapally, P.R., Lundgren, M., Efficient programmable gene silencing by Cascade. Nucleic Acids Res. 43:1 (2015), 237–246.
-
(2015)
Nucleic Acids Res.
, vol.43
, Issue.1
, pp. 237-246
-
-
Rath, D.1
Amlinger, L.2
Hoekzema, M.3
Devulapally, P.R.4
Lundgren, M.5
-
200
-
-
78651397316
-
Robust multicellular computing using genetically encoded NOR gates and chemical ‘wiresg,’
-
Tamsir, A., Tabor, J.J., Voigt, C.A., Robust multicellular computing using genetically encoded NOR gates and chemical ‘wiresg,’. Nature 469:7329 (2011), 212–215.
-
(2011)
Nature
, vol.469
, Issue.7329
, pp. 212-215
-
-
Tamsir, A.1
Tabor, J.J.2
Voigt, C.A.3
-
201
-
-
84897096810
-
Genomic mining of prokaryotic repressors for orthogonal logic gates
-
Stanton, B.C., Nielsen, A.A.K., Tamsir, A., Clancy, K., Peterson, T., Voigt, C.A., Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat. Chem. Biol. 10:2 (2014), 99–105.
-
(2014)
Nat. Chem. Biol.
, vol.10
, Issue.2
, pp. 99-105
-
-
Stanton, B.C.1
Nielsen, A.A.K.2
Tamsir, A.3
Clancy, K.4
Peterson, T.5
Voigt, C.A.6
-
202
-
-
84868619337
-
Genetic programs constructed from layered logic gates in single cells
-
Moon, T.S., Lou, C., Tamsir, A., Stanton, B.C., Voigt, C.A., Genetic programs constructed from layered logic gates in single cells. Nature 491:7423 (2012), 249–253.
-
(2012)
Nature
, vol.491
, Issue.7423
, pp. 249-253
-
-
Moon, T.S.1
Lou, C.2
Tamsir, A.3
Stanton, B.C.4
Voigt, C.A.5
-
203
-
-
0036168937
-
Engineering polydactyl zinc-finger transcription factors
-
Beerli, R.R., Barbas, C.F., Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20:2 (2002), 135–141.
-
(2002)
Nat. Biotechnol.
, vol.20
, Issue.2
, pp. 135-141
-
-
Beerli, R.R.1
Barbas, C.F.2
-
204
-
-
34447319080
-
An improved zinc-finger nuclease architecture for highly specific genome editing
-
Miller, J.C., et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25:7 (2007), 778–785.
-
(2007)
Nat. Biotechnol.
, vol.25
, Issue.7
, pp. 778-785
-
-
Miller, J.C.1
-
205
-
-
78650739853
-
Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors
-
Morbitzer, R., Romer, P., Boch, J., Lahaye, T., Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc. Natl. Acad. Sci. USA 107:50 (2010), 21617–21622.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, Issue.50
, pp. 21617-21622
-
-
Morbitzer, R.1
Romer, P.2
Boch, J.3
Lahaye, T.4
-
206
-
-
84970002343
-
Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli
-
Cress, B.F., et al. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli. Nucleic Acids Res. 44:9 (2016), 4472–4485.
-
(2016)
Nucleic Acids Res.
, vol.44
, Issue.9
, pp. 4472-4485
-
-
Cress, B.F.1
-
207
-
-
84934936070
-
Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks
-
Nielsen, A.A., Voigt, C.A., Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Syst. Biol., 10(11), 2014, 763.
-
(2014)
Mol. Syst. Biol.
, vol.10
, Issue.11
, pp. 763
-
-
Nielsen, A.A.1
Voigt, C.A.2
-
208
-
-
84954421331
-
Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9
-
Didovyk, A., Borek, B., Hasty, J., Tsimring, L., Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9. ACS Synth. Biol. 5:1 (2016), 81–88.
-
(2016)
ACS Synth. Biol.
, vol.5
, Issue.1
, pp. 81-88
-
-
Didovyk, A.1
Borek, B.2
Hasty, J.3
Tsimring, L.4
-
209
-
-
84886488970
-
Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas
-
Farzadfard, F., Perli, S.D., Lu, T.K., Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2:10 (2013), 604–613.
-
(2013)
ACS Synth. Biol.
, vol.2
, Issue.10
, pp. 604-613
-
-
Farzadfard, F.1
Perli, S.D.2
Lu, T.K.3
-
210
-
-
33748537078
-
The evolving story of the omega subunit of bacterial RNA polymerase
-
Mathew, R., Chatterji, D., The evolving story of the omega subunit of bacterial RNA polymerase. Trends Microbiol. 14:10 (2006), 450–455.
-
(2006)
Trends Microbiol.
, vol.14
, Issue.10
, pp. 450-455
-
-
Mathew, R.1
Chatterji, D.2
-
211
-
-
85032740297
-
CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli
-
Kim, S.K., Seong, W., Han, G.H., Lee, D.H., Lee, S.G., CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli. Microb. Cell Fact. 16:1 (2017), 1–15.
-
(2017)
Microb. Cell Fact.
, vol.16
, Issue.1
, pp. 1-15
-
-
Kim, S.K.1
Seong, W.2
Han, G.H.3
Lee, D.H.4
Lee, S.G.5
-
212
-
-
85011320204
-
CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production
-
Cress, B.F., et al. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb. Cell Fact. 16:1 (2017), 1–14.
-
(2017)
Microb. Cell Fact.
, vol.16
, Issue.1
, pp. 1-14
-
-
Cress, B.F.1
-
213
-
-
84869097100
-
An adaptor from translational to transcriptional control enables predictable assembly of complex regulation
-
Liu, C.C., et al. An adaptor from translational to transcriptional control enables predictable assembly of complex regulation. Nat. Methods 9:11 (2012), 1088–1094.
-
(2012)
Nat. Methods
, vol.9
, Issue.11
, pp. 1088-1094
-
-
Liu, C.C.1
-
214
-
-
84866559567
-
De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells
-
Rodrigo, G., Landrain, T.E., Jaramillo, A., De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proc. Natl. Acad. Sci. USA 109:38 (2012), 15271–15276.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, Issue.38
, pp. 15271-15276
-
-
Rodrigo, G.1
Landrain, T.E.2
Jaramillo, A.3
-
215
-
-
84859842558
-
Rationally designed families of orthogonal RNA regulators of translation
-
Mutalik, V.K., Qi, L., Guimaraes, J.C., Lucks, J.B., Arkin, A.P., Rationally designed families of orthogonal RNA regulators of translation. Nat. Chem. Biol. 8:5 (2012), 447–454.
-
(2012)
Nat. Chem. Biol.
, vol.8
, Issue.5
, pp. 447-454
-
-
Mutalik, V.K.1
Qi, L.2
Guimaraes, J.C.3
Lucks, J.B.4
Arkin, A.P.5
-
216
-
-
79957700542
-
Versatile RNA-sensing transcriptional regulators for engineering genetic networks
-
Lucks, J.B., Qi, L., Mutalik, V.K., Wang, D., Arkin, A.P., Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc. Natl. Acad. Sci. 108:21 (2011), 8617–8622.
-
(2011)
Proc. Natl. Acad. Sci.
, vol.108
, Issue.21
, pp. 8617-8622
-
-
Lucks, J.B.1
Qi, L.2
Mutalik, V.K.3
Wang, D.4
Arkin, A.P.5
-
217
-
-
85031911259
-
Computational design of small transcription activating RNAs for versatile and dynamic gene regulation
-
Chappell, J., Westbrook, A., Verosloff, M., Lucks, J.B., Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nat. Commun. 8:1051 (2017), 1–11.
-
(2017)
Nat. Commun.
, vol.8
, Issue.1051
, pp. 1-11
-
-
Chappell, J.1
Westbrook, A.2
Verosloff, M.3
Lucks, J.B.4
-
218
-
-
84909963314
-
Toehold switches: de-novo-designed regulators of gene expression
-
Green, A.A., Silver, P.A., Collins, J.J., Yin, P., Toehold switches: de-novo-designed regulators of gene expression. Cell 159:4 (2014), 925–939.
-
(2014)
Cell
, vol.159
, Issue.4
, pp. 925-939
-
-
Green, A.A.1
Silver, P.A.2
Collins, J.J.3
Yin, P.4
-
219
-
-
84873596341
-
Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs
-
Na, D., Yoo, S.M., Chung, H., Park, H., Park, J.H., Lee, S.Y., Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31:2 (2013), 170–174.
-
(2013)
Nat. Biotechnol.
, vol.31
, Issue.2
, pp. 170-174
-
-
Na, D.1
Yoo, S.M.2
Chung, H.3
Park, H.4
Park, J.H.5
Lee, S.Y.6
-
220
-
-
85040128169
-
-
Design rules of synthetic non-coding RNAs in bacteria, Methods, 2018 Jan 5.
-
Lee, Y.J., Moon, T.S., 2018. Design rules of synthetic non-coding RNAs in bacteria, Methods, 2018 Jan 5.
-
(2018)
-
-
Lee, Y.J.1
Moon, T.S.2
-
221
-
-
85016061428
-
Engineering bacterial translation initiation — do we have all the tools we need?
-
Vigar, J.R.J., Wieden, H.J., Engineering bacterial translation initiation — do we have all the tools we need?. Biochim. Biophys. Acta - Gen. Subj. 1861:11 (2017), 3060–3069.
-
(2017)
Biochim. Biophys. Acta - Gen. Subj.
, vol.1861
, Issue.11
, pp. 3060-3069
-
-
Vigar, J.R.J.1
Wieden, H.J.2
-
222
-
-
84991063112
-
Tools and applications in synthetic biology
-
MacDonald, I.C., Deans, T.L., Tools and applications in synthetic biology. Adv. Drug Deliv. Rev. 105 (2016), 20–34.
-
(2016)
Adv. Drug Deliv. Rev.
, vol.105
, pp. 20-34
-
-
MacDonald, I.C.1
Deans, T.L.2
-
223
-
-
84947614984
-
Modularization of genetic elements promotes synthetic metabolic engineering
-
Qi, H., Li, B.Z., Zhang, W.Q., Liu, D., Yuan, Y.J., Modularization of genetic elements promotes synthetic metabolic engineering. Biotechnol. Adv. 33:7 (2015), 1412–1419.
-
(2015)
Biotechnol. Adv.
, vol.33
, Issue.7
, pp. 1412-1419
-
-
Qi, H.1
Li, B.Z.2
Zhang, W.Q.3
Liu, D.4
Yuan, Y.J.5
-
224
-
-
84886948663
-
Microbial production of short-chain alkanes
-
Choi, Y.J., Lee, S.Y., Microbial production of short-chain alkanes. Nature 502:7472 (2013), 571–574.
-
(2013)
Nature
, vol.502
, Issue.7472
, pp. 571-574
-
-
Choi, Y.J.1
Lee, S.Y.2
-
225
-
-
84939207951
-
Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine
-
(no. March)
-
Chae, T.U., Kim, W.J., Choi, S., Park, S.J., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. (no. March) Sci. Rep, 5, 2015, 1–13.
-
(2015)
Sci. Rep
, vol.5
, pp. 1-13
-
-
Chae, T.U.1
Kim, W.J.2
Choi, S.3
Park, S.J.4
Lee, S.Y.5
-
226
-
-
84899747343
-
Metabolic engineering of Escherichia coli for the production of phenol from glucose
-
Kim, B., Park, H., Na, D., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnol. J. 9:5 (2014), 621–629.
-
(2014)
Biotechnol. J.
, vol.9
, Issue.5
, pp. 621-629
-
-
Kim, B.1
Park, H.2
Na, D.3
Lee, S.Y.4
-
227
-
-
84917705874
-
Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium
-
LaCroix, R.A., et al. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. Appl. Environ. Microbiol. 81:1 (2015), 17–30.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, Issue.1
, pp. 17-30
-
-
LaCroix, R.A.1
-
228
-
-
0030952877
-
Negative effects of chemical mutagenesis on the adaptive behavior of vesicular stomatitis virus
-
Lee, C.H., Gilbertson, D.L., Novella, I.S., Huerta, R., Domingo, E., Holland, J.J., Negative effects of chemical mutagenesis on the adaptive behavior of vesicular stomatitis virus. J. Virol. 71:5 (1997), 3636–3640.
-
(1997)
J. Virol.
, vol.71
, Issue.5
, pp. 3636-3640
-
-
Lee, C.H.1
Gilbertson, D.L.2
Novella, I.S.3
Huerta, R.4
Domingo, E.5
Holland, J.J.6
-
229
-
-
84976892364
-
2 in Escherichia coli
-
2 in Escherichia coli. Cell 166:1 (2016), 115–125.
-
(2016)
Cell
, vol.166
, Issue.1
, pp. 115-125
-
-
Antonovsky, N.1
-
230
-
-
84886022252
-
Programming adaptive control to evolve increased metabolite production
-
Chou, H.H., Keasling, J.D., Programming adaptive control to evolve increased metabolite production. Nat. Commun., 4, 2013, 2595.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2595
-
-
Chou, H.H.1
Keasling, J.D.2
-
231
-
-
84856258903
-
The molecular diversity of adaptive convergence
-
Tenaillon, O., et al. The molecular diversity of adaptive convergence. Science 335:6067 (2012), 457–462.
-
(2012)
Science
, vol.335
, Issue.6067
, pp. 457-462
-
-
Tenaillon, O.1
-
232
-
-
34250848992
-
Evolutionary adaptation to environmental ph in experimental lineages of Escherichia coli
-
Hughes, B.S., Cullum, A.J., Bennett, A.F., Evolutionary adaptation to environmental ph in experimental lineages of Escherichia coli. Evolution 61:7 (2007), 1725–1734.
-
(2007)
Evolution
, vol.61
, Issue.7
, pp. 1725-1734
-
-
Hughes, B.S.1
Cullum, A.J.2
Bennett, A.F.3
-
233
-
-
79955027266
-
Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution
-
Dhar, R., Sägesser, R., Weikert, C., Yuan, J., Wagner, A., Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J. Evol. Biol. 24:5 (2011), 1135–1153.
-
(2011)
J. Evol. Biol.
, vol.24
, Issue.5
, pp. 1135-1153
-
-
Dhar, R.1
Sägesser, R.2
Weikert, C.3
Yuan, J.4
Wagner, A.5
-
234
-
-
84896419256
-
Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass
-
Almario, M.P., Reyes, L.H., Kao, K.C., Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol. Bioeng. 110:10 (2013), 2616–2623.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, Issue.10
, pp. 2616-2623
-
-
Almario, M.P.1
Reyes, L.H.2
Kao, K.C.3
-
235
-
-
85020503243
-
Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies
-
Sandberg, T., Lloyd, C., Palsson, B., Feist, A., Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies. Appl. Environ. Microbiol. 83:13 (2017), 1–15.
-
(2017)
Appl. Environ. Microbiol.
, vol.83
, Issue.13
, pp. 1-15
-
-
Sandberg, T.1
Lloyd, C.2
Palsson, B.3
Feist, A.4
-
236
-
-
83255174918
-
High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes
-
Argyros, D.A., et al. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl. Environ. Microbiol. 77:23 (2011), 8288–8294.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, Issue.23
, pp. 8288-8294
-
-
Argyros, D.A.1
-
237
-
-
0242487787
-
OptKnock : A Bilevel Programming Framework for Identifying Gene Knockout Strategies for Microbial Strain Optimization
-
Burgard, A.P., Pharkya, P., Maranas, C.D., OptKnock : A Bilevel Programming Framework for Identifying Gene Knockout Strategies for Microbial Strain Optimization. Biotechnol Bioeng, 2003.
-
(2003)
Biotechnol Bioeng
-
-
Burgard, A.P.1
Pharkya, P.2
Maranas, C.D.3
-
238
-
-
25144505718
-
In silico design and adaptive evolution of Escherichia coli for production of lactic acid
-
Fong, S.S., et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91:5 (2005), 643–648.
-
(2005)
Biotechnol. Bioeng.
, vol.91
, Issue.5
, pp. 643-648
-
-
Fong, S.S.1
-
239
-
-
84888771270
-
Improving carotenoids production in yeast via adaptive laboratory evolution
-
Reyes, L.H., Gomez, J.M., Kao, K.C., Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21 (2014), 26–33.
-
(2014)
Metab. Eng.
, vol.21
, pp. 26-33
-
-
Reyes, L.H.1
Gomez, J.M.2
Kao, K.C.3
-
240
-
-
85038608921
-
Maltose utilization as a novel selection strategy for continuous evolution of microbes with enhanced metabolite Production
-
Liu, S.-D., Wu, Y.-N., Wang, T.-M., Zhang, C., Xing, X.-H., Maltose utilization as a novel selection strategy for continuous evolution of microbes with enhanced metabolite Production. ACS Synth. Biol., p. acssynbio, 7b00247, 2017.
-
(2017)
ACS Synth. Biol., p. acssynbio
, vol.7b00247
-
-
Liu, S.-D.1
Wu, Y.-N.2
Wang, T.-M.3
Zhang, C.4
Xing, X.-H.5
-
241
-
-
73949115238
-
Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli
-
Zhang, X., Jantama, K., Moore, J.C., Jarboe, L.R., Shanmugam, K.T., Ingram, L.O., Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc. Natl. Acad. Sci. USA 106:48 (2009), 20180–20185.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, Issue.48
, pp. 20180-20185
-
-
Zhang, X.1
Jantama, K.2
Moore, J.C.3
Jarboe, L.R.4
Shanmugam, K.T.5
Ingram, L.O.6
-
242
-
-
85039896618
-
Long-term adaptive evolution of genomically recoded Escherichia coli
-
Wannier, T.M., Kunjapur, A.M., Rice, D.P., McDonald, M.J., Desai, M.M., Church, G.M., Long-term adaptive evolution of genomically recoded Escherichia coli. bioRxiv, 2017, 162834.
-
(2017)
bioRxiv
, pp. 162834
-
-
Wannier, T.M.1
Kunjapur, A.M.2
Rice, D.P.3
McDonald, M.J.4
Desai, M.M.5
Church, G.M.6
-
243
-
-
78650546051
-
RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media
-
Conrad, T.M., et al. RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc. Natl. Acad. Sci. USA 107:47 (2010), 20500–20505.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, Issue.47
, pp. 20500-20505
-
-
Conrad, T.M.1
-
244
-
-
85030212667
-
Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring
-
Long, C.P., Gonzalez, J.E., Feist, A.M., Palsson, B.O., Antoniewicz, M.R., Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring. Metab. Eng. 44:August (2017), 100–107.
-
(2017)
Metab. Eng.
, vol.44
, Issue.August
, pp. 100-107
-
-
Long, C.P.1
Gonzalez, J.E.2
Feist, A.M.3
Palsson, B.O.4
Antoniewicz, M.R.5
-
245
-
-
84962602150
-
Evolution of E. coli on [U-13C]glucose reveals a negligible isotopic influence on metabolism and physiology
-
Sandberg, T.E., Long, C.P., Gonzalez, J.E., Feist, A.M., Antoniewicz, M.R., Palsson, B.O., Evolution of E. coli on [U-13C]glucose reveals a negligible isotopic influence on metabolism and physiology. PLoS One 11:3 (2016), 1–14.
-
(2016)
PLoS One
, vol.11
, Issue.3
, pp. 1-14
-
-
Sandberg, T.E.1
Long, C.P.2
Gonzalez, J.E.3
Feist, A.M.4
Antoniewicz, M.R.5
Palsson, B.O.6
-
246
-
-
85040197882
-
Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli
-
Long, C.P., Gonzalez, J.E., Feist, A.M., Palsson, B.O., Antoniewicz, M.R., Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli. Proc. Natl. Acad. Sci. 115:1 (2018), 222–227.
-
(2018)
Proc. Natl. Acad. Sci.
, vol.115
, Issue.1
, pp. 222-227
-
-
Long, C.P.1
Gonzalez, J.E.2
Feist, A.M.3
Palsson, B.O.4
Antoniewicz, M.R.5
-
247
-
-
84956858047
-
Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli
-
Mirza, N., Crocoll, C., Olsen, C.E., Halkier, B.A., Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli. Metab. Eng. 35 (2016), 31–37.
-
(2016)
Metab. Eng.
, vol.35
, pp. 31-37
-
-
Mirza, N.1
Crocoll, C.2
Olsen, C.E.3
Halkier, B.A.4
-
248
-
-
84946831928
-
Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone
-
(no. Supplement C)
-
Zhang, J., Kao, E., Wang, G., Baidoo, E.E.K., Chen, M., Keasling, J.D., Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone. (no. Supplement C) Metab. Eng. Commun. 3 (2016), 1–7.
-
(2016)
Metab. Eng. Commun.
, vol.3
, pp. 1-7
-
-
Zhang, J.1
Kao, E.2
Wang, G.3
Baidoo, E.E.K.4
Chen, M.5
Keasling, J.D.6
-
249
-
-
85021929291
-
Complete Biosynthesis of Anthocyanins Using E. coli Polycultures
-
Jones, J.A., et al. Complete Biosynthesis of Anthocyanins Using E. coli Polycultures. MBio, 8(3), 2017.
-
(2017)
MBio
, vol.8
, Issue.3
-
-
Jones, J.A.1
-
250
-
-
84933074087
-
Engineering Escherichia coli for renewable benzyl alcohol production
-
(no. Supplement C)
-
Pugh, S., McKenna, R., Halloum, I., Nielsen, D.R., Engineering Escherichia coli for renewable benzyl alcohol production. (no. Supplement C) Metab. Eng. Commun. 2 (2015), 39–45.
-
(2015)
Metab. Eng. Commun.
, vol.2
, pp. 39-45
-
-
Pugh, S.1
McKenna, R.2
Halloum, I.3
Nielsen, D.R.4
-
251
-
-
85030783766
-
Metabolic engineering of Escherichia coli for production of valerenadiene
-
Nybo, S.E., Saunders, J., McCormick, S.P., Metabolic engineering of Escherichia coli for production of valerenadiene. J. Biotechnol. 262 (2017), 60–66.
-
(2017)
J. Biotechnol.
, vol.262
, pp. 60-66
-
-
Nybo, S.E.1
Saunders, J.2
McCormick, S.P.3
-
252
-
-
84906330621
-
Synthesis and Accumulation of Aromatic Aldehydes in an Engineered Strain of Escherichia coli
-
Kunjapur, A.M., Tarasova, Y., Prather, K.L.J., Synthesis and Accumulation of Aromatic Aldehydes in an Engineered Strain of Escherichia coli. J. Am. Chem. Soc. 136:33 (2014), 11644–11654.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, Issue.33
, pp. 11644-11654
-
-
Kunjapur, A.M.1
Tarasova, Y.2
Prather, K.L.J.3
-
253
-
-
84955267195
-
Metabolic engineering of Escherichia coli for the production of cinnamaldehyde
-
Bang, H.B., Lee, Y.H., Kim, S.C., Sung, C.K., Jeong, K.J., Metabolic engineering of Escherichia coli for the production of cinnamaldehyde. Microb. Cell Fact., 15, 2016.
-
(2016)
Microb. Cell Fact.
, vol.15
-
-
Bang, H.B.1
Lee, Y.H.2
Kim, S.C.3
Sung, C.K.4
Jeong, K.J.5
-
254
-
-
84909619164
-
Engineered biosynthesis of medium-chain esters in Escherichia coli
-
Tai, Y.S., Xiong, M.Y., Zhang, K.C., Engineered biosynthesis of medium-chain esters in Escherichia coli. Metab. Eng. 27 (2015), 20–28.
-
(2015)
Metab. Eng.
, vol.27
, pp. 20-28
-
-
Tai, Y.S.1
Xiong, M.Y.2
Zhang, K.C.3
-
255
-
-
84933073492
-
Two-dimensional isobutyl acetate production pathways to improve carbon yield
-
Tashiro, Y., Desai, S.H., Atsumi, S., Two-dimensional isobutyl acetate production pathways to improve carbon yield. Nat. Commun., 6, 2015.
-
(2015)
Nat. Commun.
, vol.6
-
-
Tashiro, Y.1
Desai, S.H.2
Atsumi, S.3
-
256
-
-
84897025067
-
Expanding ester biosynthesis in Escherichia coli
-
Rodriguez, G.M., Tashiro, Y., Atsumi, S., Expanding ester biosynthesis in Escherichia coli. Nat. Chem. Biol., 10(4), 2014, 259.
-
(2014)
Nat. Chem. Biol.
, vol.10
, Issue.4
, pp. 259
-
-
Rodriguez, G.M.1
Tashiro, Y.2
Atsumi, S.3
-
257
-
-
85018875501
-
Metabolic engineering of Escherichia coli for production of 2-Phenylethylacetate from L-phenylalanine
-
Guo, D., Zhang, L., Pan, H., Li, X., Metabolic engineering of Escherichia coli for production of 2-Phenylethylacetate from L-phenylalanine. Microbiologyopen, 6(4), 2017.
-
(2017)
Microbiologyopen
, vol.6
, Issue.4
-
-
Guo, D.1
Zhang, L.2
Pan, H.3
Li, X.4
-
258
-
-
85042682755
-
Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol
-
Wang, P., Yang, X., Lin, B., Huang, J., Tao, Y., Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol. Metab. Eng. 44 (2017), 143–149.
-
(2017)
Metab. Eng.
, vol.44
, pp. 143-149
-
-
Wang, P.1
Yang, X.2
Lin, B.3
Huang, J.4
Tao, Y.5
-
259
-
-
84896314132
-
Metabolic engineering of escherichia coli for production of 2-phenylethanol from renewable Glucose
-
Kang, Z., Zhang, C.Z., Du, G.C., Chen, J., Metabolic engineering of escherichia coli for production of 2-phenylethanol from renewable Glucose. Appl. Biochem. Biotechnol. 172:4 (2014), 2012–2021.
-
(2014)
Appl. Biochem. Biotechnol.
, vol.172
, Issue.4
, pp. 2012-2021
-
-
Kang, Z.1
Zhang, C.Z.2
Du, G.C.3
Chen, J.4
-
260
-
-
84866285573
-
Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway
-
Koma, D., Yamanaka, H., Moriyoshi, K., Ohmoto, T., Sakai, K., Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl. Environ. Microbiol. 78:17 (2012), 6203–6216.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, Issue.17
, pp. 6203-6216
-
-
Koma, D.1
Yamanaka, H.2
Moriyoshi, K.3
Ohmoto, T.4
Sakai, K.5
-
261
-
-
84879829307
-
Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production
-
Alonso-Gutierrez, J., et al. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab. Eng. 19 (2013), 33–41.
-
(2013)
Metab. Eng.
, vol.19
, pp. 33-41
-
-
Alonso-Gutierrez, J.1
-
262
-
-
84929376563
-
Microbial synthesis of myrcene by metabolically engineered Escherichia coli
-
Kim, E.M., Eom, J.H., Um, Y., Kim, Y., Woo, H.M., Microbial synthesis of myrcene by metabolically engineered Escherichia coli. J. Agric. Food Chem. 63:18 (2015), 4606–4612.
-
(2015)
J. Agric. Food Chem.
, vol.63
, Issue.18
, pp. 4606-4612
-
-
Kim, E.M.1
Eom, J.H.2
Um, Y.3
Kim, Y.4
Woo, H.M.5
-
263
-
-
85056936080
-
-
Engineering Escherichia coli for Production of Mixtures of Caryophyllene, Caryophyllene Alcohol, and their Stereoisomers as Potential Aviation Fuel Compounds, Metab. Eng. Commun.
-
Wu, W., Liu, F., Davis, R.W., Engineering Escherichia coli for Production of Mixtures of Caryophyllene, Caryophyllene Alcohol, and their Stereoisomers as Potential Aviation Fuel Compounds, Metab. Eng. Commun.
-
-
-
Wu, W.1
Liu, F.2
Davis, R.W.3
-
264
-
-
85021239673
-
Production of jet fuel precursor monoterpenoids from engineered Escherichia coli
-
Mendez-Perez, D., et al. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli. Biotechnol. Bioeng. 114:8 (2017), 1703–1712.
-
(2017)
Biotechnol. Bioeng.
, vol.114
, Issue.8
, pp. 1703-1712
-
-
Mendez-Perez, D.1
-
265
-
-
84960844069
-
Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture
-
Liu, W., et al. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture. Biotechnol. Biofuels, 9, 2016.
-
(2016)
Biotechnol. Biofuels
, vol.9
-
-
Liu, W.1
-
266
-
-
84876799409
-
Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene
-
Yang, J.M., et al. Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol. Biofuels, 6, 2013.
-
(2013)
Biotechnol. Biofuels
, vol.6
-
-
Yang, J.M.1
-
267
-
-
84931292024
-
EPathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways
-
Jones, J.A., et al. EPathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways. Sci. Rep. 5 (2015), 1–10.
-
(2015)
Sci. Rep.
, vol.5
, pp. 1-10
-
-
Jones, J.A.1
-
268
-
-
84994806228
-
E-coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent
-
Ahmadi, M.K., Fang, L., Moscatello, N., Pfeifer, B.A., E-coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent. Metab. Eng. 38 (2016), 382–388.
-
(2016)
Metab. Eng.
, vol.38
, pp. 382-388
-
-
Ahmadi, M.K.1
Fang, L.2
Moscatello, N.3
Pfeifer, B.A.4
-
269
-
-
41249084917
-
Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate
-
Jantama, K., et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol. Bioeng. 99:5 (2008), 1140–1153.
-
(2008)
Biotechnol. Bioeng.
, vol.99
, Issue.5
, pp. 1140-1153
-
-
Jantama, K.1
-
270
-
-
84955497406
-
A novel MVA-mediated pathway for isoprene production in engineered E-coli
-
Yang, J.M., Nie, Q.J., Liu, H., Xian, M., Liu, H.Z., A novel MVA-mediated pathway for isoprene production in engineered E-coli. BMC Biotechnol., 16, 2016.
-
(2016)
BMC Biotechnol.
, vol.16
-
-
Yang, J.M.1
Nie, Q.J.2
Liu, H.3
Xian, M.4
Liu, H.Z.5
-
271
-
-
85012034095
-
Efficient anaerobic production of succinate from glycerol in engineered Escherichia coli by using dual carbon sources and limiting oxygen supply in preceding aerobic culture
-
Li, Q., Huang, B., Wu, H., Li, Z.M., Ye, Q., Efficient anaerobic production of succinate from glycerol in engineered Escherichia coli by using dual carbon sources and limiting oxygen supply in preceding aerobic culture. Bioresour. Technol. 231 (2017), 75–84.
-
(2017)
Bioresour. Technol.
, vol.231
, pp. 75-84
-
-
Li, Q.1
Huang, B.2
Wu, H.3
Li, Z.M.4
Ye, Q.5
-
272
-
-
84872156620
-
Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals
-
Park, S.J., et al. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab. Eng. 16 (2013), 42–47.
-
(2013)
Metab. Eng.
, vol.16
, pp. 42-47
-
-
Park, S.J.1
-
273
-
-
84966269203
-
Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions
-
Cheong, S., Clomburg, J.M., Gonzalez, R., Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nat. Biotechnol. 34:5 (2016), 556–561.
-
(2016)
Nat. Biotechnol.
, vol.34
, Issue.5
, pp. 556-561
-
-
Cheong, S.1
Clomburg, J.M.2
Gonzalez, R.3
-
274
-
-
85016013618
-
Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through beta-alanine route
-
Song, C.W., Kim, J.W., Cho, I.J., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through beta-alanine route. ACS Synth. Biol. 5:11 (2016), 1256–1263.
-
(2016)
ACS Synth. Biol.
, vol.5
, Issue.11
, pp. 1256-1263
-
-
Song, C.W.1
Kim, J.W.2
Cho, I.J.3
Lee, S.Y.4
-
275
-
-
79551490770
-
L-Malate Production by metabolically engineered Escherichia coli
-
Zhang, X., Wang, X., Shanmugam, K.T., Ingram, L.O., L-Malate Production by metabolically engineered Escherichia coli. Appl. Environ. Microbiol. 77:2 (2011), 427–434.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, Issue.2
, pp. 427-434
-
-
Zhang, X.1
Wang, X.2
Shanmugam, K.T.3
Ingram, L.O.4
-
276
-
-
84878409603
-
Metabolic engineering of Escherichia coli for the production of fumaric acid
-
Song, C.W., Kim, D.I., Choi, S., Jang, J.W., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol. Bioeng. 110:7 (2013), 2025–2034.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, Issue.7
, pp. 2025-2034
-
-
Song, C.W.1
Kim, D.I.2
Choi, S.3
Jang, J.W.4
Lee, S.Y.5
-
277
-
-
84879825132
-
A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate
-
Sun, X.X., Lin, Y.H., Huang, Q., Yuan, Q.P., Yan, Y.J., A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate. Appl. Environ. Microbiol. 79:13 (2013), 4024–4030.
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, Issue.13
, pp. 4024-4030
-
-
Sun, X.X.1
Lin, Y.H.2
Huang, Q.3
Yuan, Q.P.4
Yan, Y.J.5
-
278
-
-
84896139366
-
Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli
-
Lin, Y.H., Sun, X.X., Yuan, Q.P., Yan, Y.J., Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metab. Eng. 23 (2014), 62–69.
-
(2014)
Metab. Eng.
, vol.23
, pp. 62-69
-
-
Lin, Y.H.1
Sun, X.X.2
Yuan, Q.P.3
Yan, Y.J.4
-
279
-
-
85048305575
-
Muconic acid production via alternative pathways and a synthetic metabolic funnel
-
Thompson, B., Pugh, S., Machas, M., Nielsen, D.R., Muconic acid production via alternative pathways and a synthetic metabolic funnel. ACS Synth. Biol., 2017.
-
(2017)
ACS Synth. Biol.
-
-
Thompson, B.1
Pugh, S.2
Machas, M.3
Nielsen, D.R.4
-
280
-
-
84936803078
-
Engineering Escherichia coli coculture systems for the production of biochemical products
-
Zhang, H.R., Pereira, B., Li, Z.J., Stephanopoulos, G., Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. USA 112:27 (2015), 8266–8271.
-
(2015)
Proc. Natl. Acad. Sci. USA
, vol.112
, Issue.27
, pp. 8266-8271
-
-
Zhang, H.R.1
Pereira, B.2
Li, Z.J.3
Stephanopoulos, G.4
-
281
-
-
84941558348
-
Engineering E-coli-E-coli cocultures for production of muconic acid from glycerol
-
Zhang, H.R., Li, Z.J., Pereira, B., Stephanopoulos, G., Engineering E-coli-E-coli cocultures for production of muconic acid from glycerol. Microb. Cell Fact., 14, 2015.
-
(2015)
Microb. Cell Fact.
, vol.14
-
-
Zhang, H.R.1
Li, Z.J.2
Pereira, B.3
Stephanopoulos, G.4
-
282
-
-
85017454800
-
Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli
-
Chang, P., Chen, G.S., Chu, H.Y., Lu, K.W., Shen, C.R., Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. J. Biotechnol. 249 (2017), 73–81.
-
(2017)
J. Biotechnol.
, vol.249
, pp. 73-81
-
-
Chang, P.1
Chen, G.S.2
Chu, H.Y.3
Lu, K.W.4
Shen, C.R.5
-
283
-
-
85035036524
-
Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli
-
Harder, B.J., Bettenbrock, K., Klamt, S., Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. Biotechnol. Bioeng. 115:1 (2018), 156–164.
-
(2018)
Biotechnol. Bioeng.
, vol.115
, Issue.1
, pp. 156-164
-
-
Harder, B.J.1
Bettenbrock, K.2
Klamt, S.3
-
284
-
-
85056949443
-
Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W
-
Noh, M.H., Lim, H.G., Woo, S.H., Song, J., Jung, G.Y., Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W. Biotechnol. Bioeng., 2017.
-
(2017)
Biotechnol. Bioeng.
-
-
Noh, M.H.1
Lim, H.G.2
Woo, S.H.3
Song, J.4
Jung, G.Y.5
-
285
-
-
84937028256
-
Production of mesaconate in Escherichia coli by engineered glutamate mutase pathway
-
Wang, J.Y., Zhang, K.C., Production of mesaconate in Escherichia coli by engineered glutamate mutase pathway. Metab. Eng. 30 (2015), 190–196.
-
(2015)
Metab. Eng.
, vol.30
, pp. 190-196
-
-
Wang, J.Y.1
Zhang, K.C.2
-
286
-
-
84992448651
-
Production of citramalate by metabolically engineered Escherichia coli
-
Wu, X.H., Eiteman, M.A., Production of citramalate by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 113:12 (2016), 2670–2675.
-
(2016)
Biotechnol. Bioeng.
, vol.113
, Issue.12
, pp. 2670-2675
-
-
Wu, X.H.1
Eiteman, M.A.2
-
287
-
-
84958250665
-
Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids
-
Jones, J.A., et al. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab. Eng. 35 (2016), 55–63.
-
(2016)
Metab. Eng.
, vol.35
, pp. 55-63
-
-
Jones, J.A.1
-
288
-
-
79958224739
-
High-yield resveratrol production in engineered Escherichia coli
-
Lim, C.G., Fowler, Z.L., Hueller, T., Schaffer, S., Koffas, M.A.G., High-yield resveratrol production in engineered Escherichia coli. Appl. Environ. Microbiol. 77:10 (2011), 3451–3460.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, Issue.10
, pp. 3451-3460
-
-
Lim, C.G.1
Fowler, Z.L.2
Hueller, T.3
Schaffer, S.4
Koffas, M.A.G.5
-
289
-
-
84988955364
-
Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol
-
Camacho-Zaragoza, J.M., et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microb. Cell Fact., 15, 2016.
-
(2016)
Microb. Cell Fact.
, vol.15
-
-
Camacho-Zaragoza, J.M.1
-
290
-
-
32544447552
-
Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli
-
Leonard, E., Chemler, J., Kok, H.L., Koffas, M.A.G., Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Appl. Microbiol. Biotechnol. 70:1 (2006), 85–91.
-
(2006)
Appl. Microbiol. Biotechnol.
, vol.70
, Issue.1
, pp. 85-91
-
-
Leonard, E.1
Chemler, J.2
Kok, H.L.3
Koffas, M.A.G.4
-
291
-
-
34250849659
-
Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli
-
Leonard, E., Lim, K.H., Saw, P.N., Koffas, M. a.G., Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl. Environ. Microbiol. 73:12 (2007), 3877–3886.
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, Issue.12
, pp. 3877-3886
-
-
Leonard, E.1
Lim, K.H.2
Saw, P.N.3
Koffas, M.A.G.4
-
292
-
-
84914129027
-
Production of chondroitin in metabolically engineered E. coli
-
He, W.Q., Fu, L., Li, G.Y., Jones, J.A., Linhardt, R.J., Koffas, M., Production of chondroitin in metabolically engineered E. coli. Metab. Eng. 27 (2015), 92–100.
-
(2015)
Metab. Eng.
, vol.27
, pp. 92-100
-
-
He, W.Q.1
Fu, L.2
Li, G.Y.3
Jones, J.A.4
Linhardt, R.J.5
Koffas, M.6
-
293
-
-
38049001166
-
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
-
(86-U13) (86-U13)
-
Atsumi, S., Hanai, T., Liao, J.C., Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. (86-U13) Nature, 451(7174), 2008 (86-U13).
-
(2008)
Nature
, vol.451
, Issue.7174
-
-
Atsumi, S.1
Hanai, T.2
Liao, J.C.3
-
294
-
-
79958177780
-
High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal
-
Baez, A., Cho, K.-M., Liao, J.C., High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl. Microbiol. Biotechnol. 90:5 (2011), 1681–1690.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.90
, Issue.5
, pp. 1681-1690
-
-
Baez, A.1
Cho, K.-M.2
Liao, J.C.3
-
295
-
-
54349090042
-
Production of 2-methyl-1-butanol in engineered Escherichia coli
-
Cann, A.F., Liao, J.C., Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 81:1 (2008), 89–98.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.81
, Issue.1
, pp. 89-98
-
-
Cann, A.F.1
Liao, J.C.2
-
296
-
-
77950626597
-
3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation
-
Connor, M.R., Cann, A.F., Liao, J.C., 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl. Microbiol. Biotechnol. 86:4 (2010), 1155–1164.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.86
, Issue.4
, pp. 1155-1164
-
-
Connor, M.R.1
Cann, A.F.2
Liao, J.C.3
-
297
-
-
85029353406
-
Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle
-
Chen, G.S., Siao, S.W., Shen, C.R., Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle. Sci. Rep., 7, 2017.
-
(2017)
Sci. Rep.
, vol.7
-
-
Chen, G.S.1
Siao, S.W.2
Shen, C.R.3
-
298
-
-
85037727831
-
Renewable synthesis of n-butyraldehyde from glucose by engineered Escherichia coli
-
Ku, J.T., Simanjuntak, W., Lan, E.I., Renewable synthesis of n-butyraldehyde from glucose by engineered Escherichia coli. Biotechnol. Biofuels, 10, 2017, 291.
-
(2017)
Biotechnol. Biofuels
, vol.10
, pp. 291
-
-
Ku, J.T.1
Simanjuntak, W.2
Lan, E.I.3
-
299
-
-
84862601628
-
Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity
-
Rodriguez, G.M., Atsumi, S., Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microb. Cell Fact., 11, 2012.
-
(2012)
Microb. Cell Fact.
, vol.11
-
-
Rodriguez, G.M.1
Atsumi, S.2
-
300
-
-
84907300434
-
An engineered pathway for the biosynthesis of renewable propane
-
Kallio, P., Pasztor, A., Thiel, K., Akhtar, M.K., Jones, P.R., An engineered pathway for the biosynthesis of renewable propane. Nat. Commun., 5, 2014.
-
(2014)
Nat. Commun.
, vol.5
-
-
Kallio, P.1
Pasztor, A.2
Thiel, K.3
Akhtar, M.K.4
Jones, P.R.5
-
301
-
-
79952582831
-
Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol
-
Clomburg, J.M., Gonzalez, R., Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol. Bioeng. 108:4 (2011), 867–879.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, Issue.4
, pp. 867-879
-
-
Clomburg, J.M.1
Gonzalez, R.2
-
302
-
-
85033390780
-
Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli
-
Liang, K., Shen, C.R., Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli. J. Ind. Microbiol. Biotechnol. 44:12 (2017), 1605–1612.
-
(2017)
J. Ind. Microbiol. Biotechnol.
, vol.44
, Issue.12
, pp. 1605-1612
-
-
Liang, K.1
Shen, C.R.2
-
303
-
-
79959374585
-
Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
-
Yim, H., et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7:7 (2011), 445–452.
-
(2011)
Nat. Chem. Biol.
, vol.7
, Issue.7
, pp. 445-452
-
-
Yim, H.1
-
304
-
-
84957622111
-
Engineering nonphosphorylative metabolism to generate lignocellulose-derived products
-
Tai, Y.S., et al. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat. Chem. Biol., 12(4), 2016, 247.
-
(2016)
Nat. Chem. Biol.
, vol.12
, Issue.4
, pp. 247
-
-
Tai, Y.S.1
-
305
-
-
84940759892
-
Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli
-
Alkim, C., et al. Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli. Microb. Cell Fact., 14, 2015.
-
(2015)
Microb. Cell Fact.
, vol.14
-
-
Alkim, C.1
-
306
-
-
84969858015
-
Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli
-
Yang, C., Gao, X., Jiang, Y., Sun, B.B., Gao, F., Yang, S., Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab. Eng. 37 (2016), 79–91.
-
(2016)
Metab. Eng.
, vol.37
, pp. 79-91
-
-
Yang, C.1
Gao, X.2
Jiang, Y.3
Sun, B.B.4
Gao, F.5
Yang, S.6
-
307
-
-
84857281676
-
Styrene biosynthesis from glucose by engineered E. coli
-
McKenna, R., Nielsen, D.R., Styrene biosynthesis from glucose by engineered E. coli. Metab. Eng. 13:5 (2011), 544–554.
-
(2011)
Metab. Eng.
, vol.13
, Issue.5
, pp. 544-554
-
-
McKenna, R.1
Nielsen, D.R.2
-
308
-
-
34249686497
-
Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene
-
Qi, W.W., et al. Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene. Metab. Eng. 9:3 (2007), 268–276.
-
(2007)
Metab. Eng.
, vol.9
, Issue.3
, pp. 268-276
-
-
Qi, W.W.1
-
309
-
-
85017112778
-
Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams
-
Chae, T.U., Ko, Y.S., Hwang, K.S., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams. Metab. Eng. 41 (2017), 82–91.
-
(2017)
Metab. Eng.
, vol.41
, pp. 82-91
-
-
Chae, T.U.1
Ko, Y.S.2
Hwang, K.S.3
Lee, S.Y.4
-
310
-
-
0038391517
-
Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
-
Martin, V.J.J., Pitera, D.J., Withers, S.T., Newman, J.D., Keasling, J.D., Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21:7 (2003), 796–802.
-
(2003)
Nat. Biotechnol.
, vol.21
, Issue.7
, pp. 796-802
-
-
Martin, V.J.J.1
Pitera, D.J.2
Withers, S.T.3
Newman, J.D.4
Keasling, J.D.5
-
311
-
-
84879142653
-
High-level production of Amorpha-4,11-Diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli
-
Tsuruta, H., et al. High-level production of Amorpha-4,11-Diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One, 4(2), 2009.
-
(2009)
PLoS One
, vol.4
, Issue.2
-
-
Tsuruta, H.1
-
312
-
-
77957329119
-
Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
-
Ajikumar, P.K., et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Sci. (80-.). 330:6000 (2010), 70–74.
-
(2010)
Sci. (80-.).
, vol.330
, Issue.6000
, pp. 70-74
-
-
Ajikumar, P.K.1
-
313
-
-
84957553896
-
Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli
-
Nakagawa, A., et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun., 7, 2016.
-
(2016)
Nat. Commun.
, vol.7
-
-
Nakagawa, A.1
-
314
-
-
85034041674
-
Recent advances in the recombinant biosynthesis of polyphenols
-
(no. NOV)
-
Chouhan, S., Sharma, K., Zha, J., Guleria, S., Koffas, M.A.G., Recent advances in the recombinant biosynthesis of polyphenols. (no. NOV) Front. Microbiol. 8 (2017), 1–16.
-
(2017)
Front. Microbiol.
, vol.8
, pp. 1-16
-
-
Chouhan, S.1
Sharma, K.2
Zha, J.3
Guleria, S.4
Koffas, M.A.G.5
-
315
-
-
84961125909
-
Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology
-
Pandey, R.P., Parajuli, P., Koffas, M.A.G., Sohng, J.K., Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 34:5 (2016), 634–662.
-
(2016)
Biotechnol. Adv.
, vol.34
, Issue.5
, pp. 634-662
-
-
Pandey, R.P.1
Parajuli, P.2
Koffas, M.A.G.3
Sohng, J.K.4
-
316
-
-
84856580515
-
Succinate production in Escherichia coli
-
Thakker, C., Martinez, I., San, K.Y., Bennett, G.N., Succinate production in Escherichia coli. Biotechnol. J. 7:2 (2012), 213–224.
-
(2012)
Biotechnol. J.
, vol.7
, Issue.2
, pp. 213-224
-
-
Thakker, C.1
Martinez, I.2
San, K.Y.3
Bennett, G.N.4
-
317
-
-
84877271686
-
Improved succinate production by metabolic engineering
-
Cheng, K.K., Wang, G.Y., Zeng, J., Zhang, J.A., Improved succinate production by metabolic engineering. Biomed. Res. Int., 2013, 2013, 538790.
-
(2013)
Biomed. Res. Int.
, vol.2013
, pp. 538790
-
-
Cheng, K.K.1
Wang, G.Y.2
Zeng, J.3
Zhang, J.A.4
-
318
-
-
85029771886
-
Current advances of succinate biosynthesis in metabolically engineered Escherichia coli
-
Zhu, L.W., Tang, Y.J., Current advances of succinate biosynthesis in metabolically engineered Escherichia coli. Biotechnol. Adv. 35:8 (2017), 1040–1048.
-
(2017)
Biotechnol. Adv.
, vol.35
, Issue.8
, pp. 1040-1048
-
-
Zhu, L.W.1
Tang, Y.J.2
-
319
-
-
56449105588
-
Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C
-
Jantama, K., Zhang, X., Moore, J.C., Shanmugam, K.T., Svoronos, S.A., Ingram, L.O., Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol. Bioeng. 101:5 (2008), 881–893.
-
(2008)
Biotechnol. Bioeng.
, vol.101
, Issue.5
, pp. 881-893
-
-
Jantama, K.1
Zhang, X.2
Moore, J.C.3
Shanmugam, K.T.4
Svoronos, S.A.5
Ingram, L.O.6
-
320
-
-
0035158424
-
Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli
-
Chatterjee, R., Millard, C.S., Champion, K., Clark, D.P., Donnelly, M.I., Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl. Environ. Microbiol. 67:1 (2001), 148–154.
-
(2001)
Appl. Environ. Microbiol.
, vol.67
, Issue.1
, pp. 148-154
-
-
Chatterjee, R.1
Millard, C.S.2
Champion, K.3
Clark, D.P.4
Donnelly, M.I.5
-
321
-
-
0029930612
-
Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli
-
Millard, C.S., Chao, Y.P., Liao, J.C., Donnelly, M.I., Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl. Environ. Microbiol. 62:5 (1996), 1808–1810.
-
(1996)
Appl. Environ. Microbiol.
, vol.62
, Issue.5
, pp. 1808-1810
-
-
Millard, C.S.1
Chao, Y.P.2
Liao, J.C.3
Donnelly, M.I.4
-
322
-
-
0031085246
-
Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose
-
Stols, L., Kulkarni, G., Harris, B.G., Donnelly, M.I., Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose. Appl. Biochem. Biotechnol. 63–65 (1997), 153–158.
-
(1997)
Appl. Biochem. Biotechnol.
, vol.63-65
, pp. 153-158
-
-
Stols, L.1
Kulkarni, G.2
Harris, B.G.3
Donnelly, M.I.4
-
323
-
-
84876762221
-
Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate
-
Adkins, J., Jordan, J., Nielsen, D.R., Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Biotechnol. Bioeng. 110:6 (2013), 1726–1734.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, Issue.6
, pp. 1726-1734
-
-
Adkins, J.1
Jordan, J.2
Nielsen, D.R.3
-
324
-
-
85022036149
-
A novel synthetic pathway for glutarate production in recombinant Escherichia coli
-
Yu, J.L., Xia, X.X., Zhong, J.J., Qian, Z.G., A novel synthetic pathway for glutarate production in recombinant Escherichia coli. Process Biochem. 59 (2017), 167–171.
-
(2017)
Process Biochem.
, vol.59
, pp. 167-171
-
-
Yu, J.L.1
Xia, X.X.2
Zhong, J.J.3
Qian, Z.G.4
-
325
-
-
85031773710
-
De novo biosynthesis of glutarate via alpha-keto acid carbon chain extension and decarboxylation pathway in Escherichia coli
-
Wang, J., Wu, Y.F., Sun, X.X., Yuan, Q.P., Yan, Y.J., De novo biosynthesis of glutarate via alpha-keto acid carbon chain extension and decarboxylation pathway in Escherichia coli. ACS Synth. Biol. 6:10 (2017), 1922–1930.
-
(2017)
ACS Synth. Biol.
, vol.6
, Issue.10
, pp. 1922-1930
-
-
Wang, J.1
Wu, Y.F.2
Sun, X.X.3
Yuan, Q.P.4
Yan, Y.J.5
-
326
-
-
0028286911
-
Environmentally compatible synthesis of adipic acid from D-Glucose
-
Draths, K.M., Frost, J.W., Environmentally compatible synthesis of adipic acid from D-Glucose. J. Am. Chem. Soc. 116:1 (1994), 399–400.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, Issue.1
, pp. 399-400
-
-
Draths, K.M.1
Frost, J.W.2
-
327
-
-
0036010273
-
Benzene-free synthesis of adipic acid
-
Niu, W., Draths, K.M., Frost, J.W., Benzene-free synthesis of adipic acid. Biotechnol. Prog. 18:2 (2002), 201–211.
-
(2002)
Biotechnol. Prog.
, vol.18
, Issue.2
, pp. 201-211
-
-
Niu, W.1
Draths, K.M.2
Frost, J.W.3
-
328
-
-
84946047532
-
Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli
-
Sengupta, S., Jonnalagadda, S., Goonewardena, L., Juturu, V., Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli. Appl. Environ. Microbiol. 81:23 (2015), 8037–8043.
-
(2015)
Appl. Environ. Microbiol.
, vol.81
, Issue.23
, pp. 8037-8043
-
-
Sengupta, S.1
Jonnalagadda, S.2
Goonewardena, L.3
Juturu, V.4
-
329
-
-
84925183205
-
Production of itaconic acid using metabolically engineered Escherichia coli
-
Okamoto, S., et al. Production of itaconic acid using metabolically engineered Escherichia coli. J. Gen. Appl. Microbiol. 60:5 (2014), 191–197.
-
(2014)
J. Gen. Appl. Microbiol.
, vol.60
, Issue.5
, pp. 191-197
-
-
Okamoto, S.1
-
330
-
-
84924058186
-
Microbial production of short chain diols
-
Jiang, Y.D., Liu, W., Zou, H.B., Cheng, T., Tian, N., Xian, M., Microbial production of short chain diols. Microb. Cell Fact., 13, 2014.
-
(2014)
Microb. Cell Fact.
, vol.13
-
-
Jiang, Y.D.1
Liu, W.2
Zou, H.B.3
Cheng, T.4
Tian, N.5
Xian, M.6
-
331
-
-
0035102216
-
Microbial formation, biotechnological production and applications of 1,2-propanediol
-
Bennett, G.N., San, K.Y., Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl. Microbiol. Biotechnol. 55:1 (2001), 1–9.
-
(2001)
Appl. Microbiol. Biotechnol.
, vol.55
, Issue.1
, pp. 1-9
-
-
Bennett, G.N.1
San, K.Y.2
-
332
-
-
79952582831
-
Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol
-
Clomburg, J.M., Gonzalez, R., Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol. Bioeng. 108:4 (2011), 867–879.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, Issue.4
, pp. 867-879
-
-
Clomburg, J.M.1
Gonzalez, R.2
-
333
-
-
84934999495
-
Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol
-
Jain, R., Sun, X., Yuan, Q., Yan, Y., Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol. ACS Synth. Biol. 4:6 (2015), 746–756.
-
(2015)
ACS Synth. Biol.
, vol.4
, Issue.6
, pp. 746-756
-
-
Jain, R.1
Sun, X.2
Yuan, Q.3
Yan, Y.4
-
334
-
-
0343924603
-
Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol
-
Ui, S., Okajima, Y., Mimura, A., Kanai, H., Kudo, T., Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol. J. Ferment. Bioeng. 84:3 (1997), 185–189.
-
(1997)
J. Ferment. Bioeng.
, vol.84
, Issue.3
, pp. 185-189
-
-
Ui, S.1
Okajima, Y.2
Mimura, A.3
Kanai, H.4
Kudo, T.5
-
335
-
-
70349290656
-
Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases
-
Yan, Y.J., Lee, C.C., Liao, J.C., Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org. Biomol. Chem. 7:19 (2009), 3914–3917.
-
(2009)
Org. Biomol. Chem.
, vol.7
, Issue.19
, pp. 3914-3917
-
-
Yan, Y.J.1
Lee, C.C.2
Liao, J.C.3
-
336
-
-
9644289456
-
Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli
-
Ui, S., et al. Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli. Lett. Appl. Microbiol. 39:6 (2004), 533–537.
-
(2004)
Lett. Appl. Microbiol.
, vol.39
, Issue.6
, pp. 533-537
-
-
Ui, S.1
-
337
-
-
77749245897
-
A novel whole-cell biocatalyst with NAD(+) regeneration for production of chiral chemicals
-
J, Z., et al. A novel whole-cell biocatalyst with NAD(+) regeneration for production of chiral chemicals. PLoS One, 5(1), 2010.
-
(2010)
PLoS One
, vol.5
, Issue.1
-
-
J, Z.1
-
338
-
-
84941564993
-
Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose
-
Chu, H.P., et al. Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose. Biotechnol. Biofuels, 8, 2015.
-
(2015)
Biotechnol. Biofuels
, vol.8
-
-
Chu, H.P.1
-
339
-
-
84896847314
-
Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol
-
Xu, Y., et al. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab. Eng. 23 (2014), 22–33.
-
(2014)
Metab. Eng.
, vol.23
, pp. 22-33
-
-
Xu, Y.1
-
340
-
-
84925452363
-
Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol
-
Ji, X.J., Liu, L.G., Shen, M.Q., Nie, Z.K., Tong, Y.J., Huang, H., Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol. Biotechnol. Bioeng. 112:5 (2015), 1056–1059.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, Issue.5
, pp. 1056-1059
-
-
Ji, X.J.1
Liu, L.G.2
Shen, M.Q.3
Nie, Z.K.4
Tong, Y.J.5
Huang, H.6
-
341
-
-
85008144251
-
Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance
-
Liang, K.M., Shen, C.R., Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance. Metab. Eng. 39 (2017), 181–191.
-
(2017)
Metab. Eng.
, vol.39
, pp. 181-191
-
-
Liang, K.M.1
Shen, C.R.2
-
342
-
-
85012926098
-
Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose
-
Wang, J., et al. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose. Metab. Eng. 40 (2017), 148–156.
-
(2017)
Metab. Eng.
, vol.40
, pp. 148-156
-
-
Wang, J.1
-
343
-
-
84876694741
-
Biosynthesis of ethylene glycol in Escherichia coli
-
Liu, H.W., Ramos, K.R.M., Valdehuesa, K.N.G., Nisola, G.M., Lee, W.K., Chung, W.J., Biosynthesis of ethylene glycol in Escherichia coli. Appl. Microbiol. Biotechnol. 97:8 (2013), 3409–3417.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, Issue.8
, pp. 3409-3417
-
-
Liu, H.W.1
Ramos, K.R.M.2
Valdehuesa, K.N.G.3
Nisola, G.M.4
Lee, W.K.5
Chung, W.J.6
-
344
-
-
84965129137
-
Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol
-
Pereira, B., Zhang, H.R., De Mey, M., Lim, C.G., Li, Z.J., Stephanopoulos, G., Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol. Biotechnol. Bioeng. 113:2 (2016), 376–383.
-
(2016)
Biotechnol. Bioeng.
, vol.113
, Issue.2
, pp. 376-383
-
-
Pereira, B.1
Zhang, H.R.2
De Mey, M.3
Lim, C.G.4
Li, Z.J.5
Stephanopoulos, G.6
-
345
-
-
84954409658
-
Metabolic engineering toward sustainable production of nylon-6
-
Turk, S.C., et al. Metabolic engineering toward sustainable production of nylon-6. ACS Synth. Biol. 5:1 (2016), 65–73.
-
(2016)
ACS Synth. Biol.
, vol.5
, Issue.1
, pp. 65-73
-
-
Turk, S.C.1
-
346
-
-
85019628575
-
Application of an acyl-CoA ligase from streptomyces aizunensis for lactam biosynthesis
-
Zhang, J., Barajas, J.F., Burdu, M., Wang, G., Baidoo, E.E., Keasling, J.D., Application of an acyl-CoA ligase from streptomyces aizunensis for lactam biosynthesis. Acs Synth. Biol. 6:5 (2017), 884–890.
-
(2017)
Acs Synth. Biol.
, vol.6
, Issue.5
, pp. 884-890
-
-
Zhang, J.1
Barajas, J.F.2
Burdu, M.3
Wang, G.4
Baidoo, E.E.5
Keasling, J.D.6
-
347
-
-
84900632425
-
Ethylene-forming enzyme and bioethylene production
-
Eckert, C., et al. Ethylene-forming enzyme and bioethylene production. Biotechnol. Biofuels, 7, 2014.
-
(2014)
Biotechnol. Biofuels
, vol.7
-
-
Eckert, C.1
-
348
-
-
79958232375
-
Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway
-
Zhao, Y.R., et al. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl. Microbiol. Biotechnol. 90:6 (2011), 1915–1922.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.90
, Issue.6
, pp. 1915-1922
-
-
Zhao, Y.R.1
-
349
-
-
84860487970
-
Enhancing production of bio-isoprene using Hybrid MVA pathway and isoprene synthase in E-coli
-
Yang, J.M., et al. Enhancing production of bio-isoprene using Hybrid MVA pathway and isoprene synthase in E-coli. PLoS One, 7(4), 2012.
-
(2012)
PLoS One
, vol.7
, Issue.4
-
-
Yang, J.M.1
-
350
-
-
0037057135
-
Metabolic engineering of Escherichia coli for the production of medium-chain-length polyhydroxyalkanoates rich in specific monomers
-
Park, S.J., Park, J.P., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of medium-chain-length polyhydroxyalkanoates rich in specific monomers. FEMS Microbiol. Lett. 214:2 (2002), 217–222.
-
(2002)
FEMS Microbiol. Lett.
, vol.214
, Issue.2
, pp. 217-222
-
-
Park, S.J.1
Park, J.P.2
Lee, S.Y.3
-
351
-
-
73949094856
-
Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers
-
Jung, Y.K., Kim, T.Y., Park, S.J., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105:1 (2010), 161–171.
-
(2010)
Biotechnol. Bioeng.
, vol.105
, Issue.1
, pp. 161-171
-
-
Jung, Y.K.1
Kim, T.Y.2
Park, S.J.3
Lee, S.Y.4
-
352
-
-
73949105231
-
Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase
-
Yang, T.H., et al. Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol. Bioeng. 105:1 (2010), 150–160.
-
(2010)
Biotechnol. Bioeng.
, vol.105
, Issue.1
, pp. 150-160
-
-
Yang, T.H.1
-
353
-
-
56249093155
-
A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme
-
Taguchi, S., et al. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc. Natl. Acad. Sci. USA. 105:45 (2008), 17323–17327.
-
(2008)
Proc. Natl. Acad. Sci. USA.
, vol.105
, Issue.45
, pp. 17323-17327
-
-
Taguchi, S.1
-
354
-
-
84885806733
-
Microbial production of lactate-containing polyesters
-
Yang, J.E., Choi, S.Y., Shin, J.H., Park, S.J., Lee, S.Y., Microbial production of lactate-containing polyesters. Microb. Biotechnol. 6:6 (2013), 621–636.
-
(2013)
Microb. Biotechnol.
, vol.6
, Issue.6
, pp. 621-636
-
-
Yang, J.E.1
Choi, S.Y.2
Shin, J.H.3
Park, S.J.4
Lee, S.Y.5
-
355
-
-
84963516758
-
One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli
-
(+) (+)
-
Choi, S.Y., et al. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. (+) Nat. Biotechnol., 34(4), 2016, 435 (+).
-
(2016)
Nat. Biotechnol.
, vol.34
, Issue.4
, pp. 435
-
-
Choi, S.Y.1
-
356
-
-
84961922827
-
Fuelling the future: microbial engineering for the production of sustainable biofuels
-
Liao, J.C., Mi, L., Pontrelli, S., Luo, S.S., Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14:5 (2016), 288–304.
-
(2016)
Nat. Rev. Microbiol.
, vol.14
, Issue.5
, pp. 288-304
-
-
Liao, J.C.1
Mi, L.2
Pontrelli, S.3
Luo, S.S.4
-
357
-
-
53049097710
-
Metabolic engineering of Escherichia coli for 1-butanol production
-
Atsumi, S., et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10:6 (2008), 305–311.
-
(2008)
Metab. Eng.
, vol.10
, Issue.6
, pp. 305-311
-
-
Atsumi, S.1
-
358
-
-
38049162218
-
Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli
-
Inui, M., et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77:6 (2008), 1305–1316.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.77
, Issue.6
, pp. 1305-1316
-
-
Inui, M.1
-
359
-
-
79952910616
-
Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
-
Bond-Watts, B.B., Bellerose, R.J., Chang, M.C.Y., Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 7:4 (2011), 222–227.
-
(2011)
Nat. Chem. Biol.
, vol.7
, Issue.4
, pp. 222-227
-
-
Bond-Watts, B.B.1
Bellerose, R.J.2
Chang, M.C.Y.3
-
360
-
-
84913558396
-
Potential production platform of n-butanol in Escherichia coli
-
Saini, M., Chen, M.H., Chung-Jen, C., Chao, Y.P., Potential production platform of n-butanol in Escherichia coli. Metab. Eng. 27 (2015), 76–82.
-
(2015)
Metab. Eng.
, vol.27
, pp. 76-82
-
-
Saini, M.1
Chen, M.H.2
Chung-Jen, C.3
Chao, Y.P.4
-
361
-
-
85006355058
-
Self-regulated 1-butanol production in Escherichia coli based on the endogenous fermentative control
-
Wen, R.C., Shen, C.R., Self-regulated 1-butanol production in Escherichia coli based on the endogenous fermentative control. Biotechnol. Biofuels, 9(1), 2016, 267.
-
(2016)
Biotechnol. Biofuels
, vol.9
, Issue.1
, pp. 267
-
-
Wen, R.C.1
Shen, C.R.2
-
362
-
-
85032981856
-
A systematically chromosomally engineered Escherichia coli efficiently produces butanol
-
Dong, H.J., et al. A systematically chromosomally engineered Escherichia coli efficiently produces butanol. Metab. Eng. 44 (2017), 284–292.
-
(2017)
Metab. Eng.
, vol.44
, pp. 284-292
-
-
Dong, H.J.1
-
363
-
-
85034970175
-
Synthetic consortium of escherichia coli for n-butanol production by fermentation of the glucose-xylose mixture
-
Saini, M., Lin, L.J., Chiang, C.J., Chao, Y.P., Synthetic consortium of escherichia coli for n-butanol production by fermentation of the glucose-xylose mixture. J. Agric. Food Chem. 65:46 (2017), 10040–10047.
-
(2017)
J. Agric. Food Chem.
, vol.65
, Issue.46
, pp. 10040-10047
-
-
Saini, M.1
Lin, L.J.2
Chiang, C.J.3
Chao, Y.P.4
-
364
-
-
84961198010
-
Systematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol
-
Saini, M., Li, S.Y., Wang, Z.W., Chiang, C.J., Chao, Y.P., Systematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol. Biotechnol. Biofuels, 9, 2016, 69.
-
(2016)
Biotechnol. Biofuels
, vol.9
, pp. 69
-
-
Saini, M.1
Li, S.Y.2
Wang, Z.W.3
Chiang, C.J.4
Chao, Y.P.5
-
365
-
-
79960859539
-
Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli
-
Dekishima, Y., Lan, E.I., Shen, C.R., Cho, K.M., Liao, J.C., Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J. Am. Chem. Soc. 133:30 (2011), 11399–11401.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, Issue.30
, pp. 11399-11401
-
-
Dekishima, Y.1
Lan, E.I.2
Shen, C.R.3
Cho, K.M.4
Liao, J.C.5
-
366
-
-
84881663509
-
Metabolic engineering of 2-pentanone synthesis in Escherichia coli
-
Lan, E.I., Dekishima, Y., Chuang, D.S., Liao, J.C., Metabolic engineering of 2-pentanone synthesis in Escherichia coli. AICHE J. 59:9 (2013), 3167–3175.
-
(2013)
AICHE J.
, vol.59
, Issue.9
, pp. 3167-3175
-
-
Lan, E.I.1
Dekishima, Y.2
Chuang, D.S.3
Liao, J.C.4
-
367
-
-
84965161332
-
Engineering Escherichia coli for microbial production of butanone
-
Srirangan, K., Liu, X.J., Akawi, L., Bruder, M., Moo-Young, M., Chou, C.P., Engineering Escherichia coli for microbial production of butanone. Appl. Environ. Microbiol. 82:9 (2016), 2574–2584.
-
(2016)
Appl. Environ. Microbiol.
, vol.82
, Issue.9
, pp. 2574-2584
-
-
Srirangan, K.1
Liu, X.J.2
Akawi, L.3
Bruder, M.4
Moo-Young, M.5
Chou, C.P.6
-
368
-
-
66249112842
-
Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate
-
Tseng, H.C., Martin, C.H., Nielsen, D.R., Prather, K.L.J., Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate. Appl. Environ. Microbiol. 75:10 (2009), 3137–3145.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, Issue.10
, pp. 3137-3145
-
-
Tseng, H.C.1
Martin, C.H.2
Nielsen, D.R.3
Prather, K.L.J.4
-
369
-
-
84896408319
-
Butyrate production in engineered Escherichia coli with synthetic scaffolds,”scaffolds
-
Baek, J.M., et al. Butyrate production in engineered Escherichia coli with synthetic scaffolds,”scaffolds. Biotechnol. Bioeng. 110:10 (2013), 2790–2794.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, Issue.10
, pp. 2790-2794
-
-
Baek, J.M.1
-
370
-
-
80051941601
-
Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
-
Dellomonaco, C., Clomburg, J.M., Miller, E.N., Gonzalez, R., Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:7360 (2011), 355–359.
-
(2011)
Nature
, vol.476
, Issue.7360
, pp. 355-359
-
-
Dellomonaco, C.1
Clomburg, J.M.2
Miller, E.N.3
Gonzalez, R.4
-
371
-
-
84869472029
-
A synthetic biology approach to engineer a functional reversal of the beta-oxidation Cycle
-
Clomburg, J.M., Vick, J.E., Blankschien, M.D., Rodriguez-Moya, M., Gonzalez, R., A synthetic biology approach to engineer a functional reversal of the beta-oxidation Cycle. ACS Synth. Biol. 1:11 (2012), 541–554.
-
(2012)
ACS Synth. Biol.
, vol.1
, Issue.11
, pp. 541-554
-
-
Clomburg, J.M.1
Vick, J.E.2
Blankschien, M.D.3
Rodriguez-Moya, M.4
Gonzalez, R.5
-
372
-
-
84961589031
-
Engineering Escherichia coli for the synthesis of short- and medium-chain alpha,beta-unsaturated carboxylic acids
-
Kim, S., Cheong, S., Gonzalez, R., Engineering Escherichia coli for the synthesis of short- and medium-chain alpha,beta-unsaturated carboxylic acids. Metab. Eng. 36 (2016), 90–98.
-
(2016)
Metab. Eng.
, vol.36
, pp. 90-98
-
-
Kim, S.1
Cheong, S.2
Gonzalez, R.3
-
373
-
-
54349114978
-
Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
-
Shen, C.R., Liao, J.C., Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 10:6 (2008), 312–320.
-
(2008)
Metab. Eng.
, vol.10
, Issue.6
, pp. 312-320
-
-
Shen, C.R.1
Liao, J.C.2
-
374
-
-
77950626597
-
3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation
-
Connor, M.R., Cann, A.F., Liao, J.C., 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl. Microbiol. Biotechnol. 86:4 (2010), 1155–1164.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.86
, Issue.4
, pp. 1155-1164
-
-
Connor, M.R.1
Cann, A.F.2
Liao, J.C.3
-
375
-
-
58549111802
-
Expanding metabolism for biosynthesis of nonnatural alcohols
-
Zhang, K., Sawaya, M.R., Eisenberg, D.S., Liao, J.C., Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl. Acad. Sci. USA. 105:52 (2008), 20653–20658.
-
(2008)
Proc. Natl. Acad. Sci. USA.
, vol.105
, Issue.52
, pp. 20653-20658
-
-
Zhang, K.1
Sawaya, M.R.2
Eisenberg, D.S.3
Liao, J.C.4
-
376
-
-
84860211608
-
A synthetic recursive ‘+1’ pathway for carbon chain elongation
-
Marcheschi, R.J., et al. A synthetic recursive ‘+1’ pathway for carbon chain elongation. ACS Chem. Biol. 7:4 (2012), 689–697.
-
(2012)
ACS Chem. Biol.
, vol.7
, Issue.4
, pp. 689-697
-
-
Marcheschi, R.J.1
-
377
-
-
84907373911
-
Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli
-
Rodriguez, G.M., Atsumi, S., Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab. Eng. 25 (2014), 227–237.
-
(2014)
Metab. Eng.
, vol.25
, pp. 227-237
-
-
Rodriguez, G.M.1
Atsumi, S.2
-
378
-
-
80052003262
-
A synthetic metabolic pathway for production of the platform chemical isobutyric acid
-
Zhang, K.C., Woodruff, A.P., Xiong, M.Y., Zhou, J., Dhande, Y.K., A synthetic metabolic pathway for production of the platform chemical isobutyric acid. ChemSusChem 4:8 (2011), 1068–1070.
-
(2011)
ChemSusChem
, vol.4
, Issue.8
, pp. 1068-1070
-
-
Zhang, K.C.1
Woodruff, A.P.2
Xiong, M.Y.3
Zhou, J.4
Dhande, Y.K.5
-
379
-
-
85056958326
-
Improving engineered Escherichia coli strains for high-level biosynthesis of isobutyrate
-
Xiong, M., Yu, P., Wang, J., Zhang, K., Improving engineered Escherichia coli strains for high-level biosynthesis of isobutyrate. AIMS Bioeng. 2:2 (2015), 60–74.
-
(2015)
AIMS Bioeng.
, vol.2
, Issue.2
, pp. 60-74
-
-
Xiong, M.1
Yu, P.2
Wang, J.3
Zhang, K.4
-
380
-
-
84945268210
-
Synthetic biology for microbial production of lipid-based biofuels
-
d'Espaux, L., Mendez-Perez, D., Li, R., Keasling, J.D., Synthetic biology for microbial production of lipid-based biofuels. Curr. Opin. Chem. Biol. 29 (2015), 58–65.
-
(2015)
Curr. Opin. Chem. Biol.
, vol.29
, pp. 58-65
-
-
d'Espaux, L.1
Mendez-Perez, D.2
Li, R.3
Keasling, J.D.4
-
381
-
-
75749125061
-
Microbial production of fatty-acid-derived fuels and chemicals from plant biomass
-
Steen, E.J., et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:7280 (2010), 559–562.
-
(2010)
Nature
, vol.463
, Issue.7280
, pp. 559-562
-
-
Steen, E.J.1
-
382
-
-
83055180451
-
Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase
-
Nawabi, P., Bauer, S., Kyrpides, N., Lykidis, A., Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase. Appl. Environ. Microbiol. 77:22 (2011), 8052–8061.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, Issue.22
, pp. 8052-8061
-
-
Nawabi, P.1
Bauer, S.2
Kyrpides, N.3
Lykidis, A.4
-
383
-
-
84963705444
-
Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme
-
Sherkhanov, S., Korman, T.P., Clarke, S.G., Bowie, J.U., Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme. Sci. Rep., 6, 2016.
-
(2016)
Sci. Rep.
, vol.6
-
-
Sherkhanov, S.1
Korman, T.P.2
Clarke, S.G.3
Bowie, J.U.4
-
384
-
-
84880511769
-
Fatty alcohol production in engineered E-coli expressing Marinobacter fatty acyl-CoA reductases
-
Liu, A.Q., Tan, X.M., Yao, L., Lu, X.F., Fatty alcohol production in engineered E-coli expressing Marinobacter fatty acyl-CoA reductases. Appl. Microbiol. Biotechnol. 97:15 (2013), 7061–7071.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, Issue.15
, pp. 7061-7071
-
-
Liu, A.Q.1
Tan, X.M.2
Yao, L.3
Lu, X.F.4
-
385
-
-
84979608957
-
High production of fatty alcohols in Escherichia coli with fatty acid starvation
-
Liu, Y.L., et al. High production of fatty alcohols in Escherichia coli with fatty acid starvation. Microb. Cell Fact., 15, 2016.
-
(2016)
Microb. Cell Fact.
, vol.15
-
-
Liu, Y.L.1
-
386
-
-
77955118014
-
Microbial Biosynthesis of Alkanes
-
(no. July)
-
Schirmer, A., Rude, mathew A., Li, X., Popova, E., Cardayre, S.B. Del, Microbial Biosynthesis of Alkanes. (no. July) Sci. (80-.) 329 (2010), 559–562.
-
(2010)
Sci. (80-.)
, vol.329
, pp. 559-562
-
-
Schirmer, A.1
Rude, M.A.2
Li, X.3
Popova, E.4
Cardayre, S.B.D.5
-
387
-
-
85056962123
-
-
Recombinant microorganism for the fermentative production of methionine, U.S. Patent No. 9,506,093. 29 Nov.
-
Dischert, W., Figge, R., 2016a. Recombinant microorganism for the fermentative production of methionine, U.S. Patent No. 9,506,093. 29 Nov.
-
(2016)
-
-
Dischert, W.1
Figge, R.2
-
388
-
-
85056912383
-
-
Microorganism for methionine production with enhanced glucose import, U.S. Patent No. 9,506,092. 29 Nov.
-
Dischert, W., Figge, R., 2016b. Microorganism for methionine production with enhanced glucose import, U.S. Patent No. 9,506,092. 29 Nov.
-
(2016)
-
-
Dischert, W.1
Figge, R.2
-
389
-
-
85056927078
-
-
Increasing methionine production by overexpressing succinate dehydrogenase, U.S. Patent No. 9,267,160. 23 Feb.
-
Figge, R., 2016. Increasing methionine production by overexpressing succinate dehydrogenase, U.S. Patent No. 9,267,160. 23 Feb.
-
(2016)
-
-
Figge, R.1
-
390
-
-
85056980007
-
-
Use of inducible promoters in the production of methionine, U.S. Patent No. 9,732,364. 15 Aug.
-
Figge, R., Vasseur, P., 2017. Use of inducible promoters in the production of methionine, U.S. Patent No. 9,732,364. 15 Aug.
-
(2017)
-
-
Figge, R.1
Vasseur, P.2
-
391
-
-
0035822553
-
Characterization of a new feedback-resistant 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase AroF of Escherichia coli
-
Jossek, R., Bongaerts, J., Sprenger, G.A., Characterization of a new feedback-resistant 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase AroF of Escherichia coli. FEMS Microbiol. Lett. 202:1 (2001), 145–148.
-
(2001)
FEMS Microbiol. Lett.
, vol.202
, Issue.1
, pp. 145-148
-
-
Jossek, R.1
Bongaerts, J.2
Sprenger, G.A.3
-
392
-
-
0028036558
-
Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield
-
Patnaik, R., Liao, J.C., Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl. Environ. Microbiol. 60:11 (1994), 3903–3908.
-
(1994)
Appl. Environ. Microbiol.
, vol.60
, Issue.11
, pp. 3903-3908
-
-
Patnaik, R.1
Liao, J.C.2
-
393
-
-
85056979874
-
-
“DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine,”.
-
M. M. Gusyatiner, M. G. Lunts, Y. I. Kozlov, L. V Ivanovskaya, and E. B. Voroshilova, “DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine,” 2002.
-
(2002)
-
-
Gusyatiner, M.M.1
Lunts, M.G.2
Kozlov, Y.I.3
Ivanovskaya, L.V.4
Voroshilova, E.B.5
-
394
-
-
85056943403
-
-
Lysine decarboxylase gene and method of producing L-lysine, U.S. Patent No. 5,827,698. 27 Oct.
-
Kikuchi, Y., Suzuki, T., Kojima, H., 1998. Lysine decarboxylase gene and method of producing L-lysine, U.S. Patent No. 5,827,698. 27 Oct.
-
(1998)
-
-
Kikuchi, Y.1
Suzuki, T.2
Kojima, H.3
-
395
-
-
85056971171
-
-
L-threonine and L-tryptophan producing bacteria strain and method of making same, U.S. Patent Application No. 15/465,881.
-
Cheong, K.Y., Lee, S.M., Hwang, Y.B., LEE, K.C., Lee, K.H., 2017. L-threonine and L-tryptophan producing bacteria strain and method of making same, U.S. Patent Application No. 15/465,881.
-
(2017)
-
-
Cheong, K.Y.1
Lee, S.M.2
Hwang, Y.B.3
LEE, K.C.4
Lee, K.H.5
-
396
-
-
0029294180
-
Pathway engineering for production of aromatics in Escherichia coli: confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities
-
Patnaik, R., Spitzer, R.G., Liao, J.C., Pathway engineering for production of aromatics in Escherichia coli: confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities. Biotechnol. Bioeng. 46:4 (1995), 361–370.
-
(1995)
Biotechnol. Bioeng.
, vol.46
, Issue.4
, pp. 361-370
-
-
Patnaik, R.1
Spitzer, R.G.2
Liao, J.C.3
-
397
-
-
0038391517
-
Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
-
Martin, V.J.J., Pitera, D.J., Withers, S.T., Newman, J.D., Keasling, J.D., Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21:7 (2003), 796–802.
-
(2003)
Nat. Biotechnol.
, vol.21
, Issue.7
, pp. 796-802
-
-
Martin, V.J.J.1
Pitera, D.J.2
Withers, S.T.3
Newman, J.D.4
Keasling, J.D.5
-
398
-
-
0034838359
-
Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol
-
Huang, Q.L., Roessner, C.A., Croteau, R., Scott, A.I., Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg. Med. Chem. 9:9 (2001), 2237–2242.
-
(2001)
Bioorg. Med. Chem.
, vol.9
, Issue.9
, pp. 2237-2242
-
-
Huang, Q.L.1
Roessner, C.A.2
Croteau, R.3
Scott, A.I.4
-
399
-
-
85039696705
-
The road to animal-free glycosaminoglycan production: current efforts and bottlenecks
-
Badri, A., Williams, A., Linhardt, R.J., Koffas, M.A., The road to animal-free glycosaminoglycan production: current efforts and bottlenecks. Curr. Opin. Biotechnol. 53 (2018), 85–92.
-
(2018)
Curr. Opin. Biotechnol.
, vol.53
, pp. 85-92
-
-
Badri, A.1
Williams, A.2
Linhardt, R.J.3
Koffas, M.A.4
-
400
-
-
84939564232
-
Heparin and related polysaccharides: synthesis using recombinant enzymes and metabolic engineering
-
Suflita, M., Fu, L., He, W., Koffas, M., Linhardt, R.J., Heparin and related polysaccharides: synthesis using recombinant enzymes and metabolic engineering. Appl. Microbiol. Biotechnol. 99:18 (2015), 7465–7479.
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, Issue.18
, pp. 7465-7479
-
-
Suflita, M.1
Fu, L.2
He, W.3
Koffas, M.4
Linhardt, R.J.5
-
401
-
-
85035806689
-
Engineering Escherichia coli co-cultures for production of curcuminoids from glucose
-
1700576
-
Fang, Z., Jones, J.A., Zhou, J., Koffas, M.A.G., Engineering Escherichia coli co-cultures for production of curcuminoids from glucose. Biotecnol. J. 1700576 (2017), 1–8.
-
(2017)
Biotecnol. J.
, pp. 1-8
-
-
Fang, Z.1
Jones, J.A.2
Zhou, J.3
Koffas, M.A.G.4
-
402
-
-
84926646130
-
Distributing a metabolic pathway among a microbial consortium enhances production of natural products
-
(377-U157) (377-U157)
-
Zhou, K., Qiao, K.J., Edgar, S., Stephanopoulos, G., Distributing a metabolic pathway among a microbial consortium enhances production of natural products. (377-U157) Nat. Biotechnol., 33(4), 2015 (377-U157).
-
(2015)
Nat. Biotechnol.
, vol.33
, Issue.4
-
-
Zhou, K.1
Qiao, K.J.2
Edgar, S.3
Stephanopoulos, G.4
-
403
-
-
0030938239
-
Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes
-
Grohmann, K., Bothast, R.J., Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes. Process Biochem. 32:5 (1997), 405–415.
-
(1997)
Process Biochem.
, vol.32
, Issue.5
, pp. 405-415
-
-
Grohmann, K.1
Bothast, R.J.2
-
404
-
-
0034071629
-
Metabolic engineering applications to renewable resource utilization
-
Aristidou, A., Penttilä, M., Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotechnol. 11:2 (2000), 187–198.
-
(2000)
Curr. Opin. Biotechnol.
, vol.11
, Issue.2
, pp. 187-198
-
-
Aristidou, A.1
Penttilä, M.2
-
405
-
-
0023712889
-
Alcohol production from glucose and xylose using Escherichia-Coli containing zymomonas-mobilis genes
-
Neale, A.D., Scopes, R.K., Kelly, J.M., Alcohol production from glucose and xylose using Escherichia-Coli containing zymomonas-mobilis genes. Appl. Microbiol. Biotechnol. 29:2–3 (1988), 162–167.
-
(1988)
Appl. Microbiol. Biotechnol.
, vol.29
, Issue.2-3
, pp. 162-167
-
-
Neale, A.D.1
Scopes, R.K.2
Kelly, J.M.3
-
406
-
-
79955030794
-
Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors
-
Lee, J.W., Jeffries, T.W., Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour. Technol. 102:10 (2011), 5884–5890.
-
(2011)
Bioresour. Technol.
, vol.102
, Issue.10
, pp. 5884-5890
-
-
Lee, J.W.1
Jeffries, T.W.2
-
407
-
-
0942288120
-
Bacteria engineered for fuel ethanol production: current status
-
Dien, B.S., Cotta, M.A., Jeffries, T.W., Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63:3 (2003), 258–266.
-
(2003)
Appl. Microbiol. Biotechnol.
, vol.63
, Issue.3
, pp. 258-266
-
-
Dien, B.S.1
Cotta, M.A.2
Jeffries, T.W.3
-
408
-
-
60349117090
-
A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose
-
Eiteman, M.A., Lee, S.A., Altman, R., Altman, E., A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Biotechnol. Bioeng. 102:3 (2009), 822–827.
-
(2009)
Biotechnol. Bioeng.
, vol.102
, Issue.3
, pp. 822-827
-
-
Eiteman, M.A.1
Lee, S.A.2
Altman, R.3
Altman, E.4
-
409
-
-
84978511515
-
Engineering of a synthetic metabolic pathway for the assimilation of (d)-xylose into value-added chemicals
-
Cam, Y., et al. Engineering of a synthetic metabolic pathway for the assimilation of (d)-xylose into value-added chemicals. ACS Synth. Biol. 5:7 (2016), 607–618.
-
(2016)
ACS Synth. Biol.
, vol.5
, Issue.7
, pp. 607-618
-
-
Cam, Y.1
-
410
-
-
85019214517
-
Metabolic engineering of an E. coli ndh knockout strain for PHB production from mixed glucose–xylose feedstock
-
Huo, G., et al. Metabolic engineering of an E. coli ndh knockout strain for PHB production from mixed glucose–xylose feedstock. J. Chem. Technol. Biotechnol. 92:10 (2017), 2739–2745.
-
(2017)
J. Chem. Technol. Biotechnol.
, vol.92
, Issue.10
, pp. 2739-2745
-
-
Huo, G.1
-
411
-
-
84958532700
-
Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect
-
Lu, H., et al. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect. BMC Biotechnol. 16:1 (2016), 1–10.
-
(2016)
BMC Biotechnol.
, vol.16
, Issue.1
, pp. 1-10
-
-
Lu, H.1
-
412
-
-
85012195222
-
Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose
-
Zhao, A., Hu, X., Wang, X., Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose. Appl. Microbiol. Biotechnol. 101:9 (2017), 3587–3603.
-
(2017)
Appl. Microbiol. Biotechnol.
, vol.101
, Issue.9
, pp. 3587-3603
-
-
Zhao, A.1
Hu, X.2
Wang, X.3
-
413
-
-
77955716950
-
Metabolic engineering of Escherichia coli for the production of succinate from glycerol
-
Blankschien, M.D., Clomburg, J., Gonzalez, R., Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab. Eng. 12:5 (2010), 409–419.
-
(2010)
Metab. Eng.
, vol.12
, Issue.5
, pp. 409-419
-
-
Blankschien, M.D.1
Clomburg, J.2
Gonzalez, R.3
-
414
-
-
77954254857
-
Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol
-
Mazumdar, S., Clomburg, J.M., Gonzalez, R., Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol. Appl. Environ. Microbiol. 76:13 (2010), 4327–4336.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, Issue.13
, pp. 4327-4336
-
-
Mazumdar, S.1
Clomburg, J.M.2
Gonzalez, R.3
-
415
-
-
80555150665
-
Metabolic engineering of Escherichia coli for α-farnesene production
-
Wang, C., et al. Metabolic engineering of Escherichia coli for α-farnesene production. Metab. Eng. 13:6 (2011), 648–655.
-
(2011)
Metab. Eng.
, vol.13
, Issue.6
, pp. 648-655
-
-
Wang, C.1
-
416
-
-
84900808181
-
Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol
-
Tran, K.T., Maeda, T., Wood, T.K., Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl. Microbiol. Biotechnol. 98:10 (2014), 4757–4770.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, Issue.10
, pp. 4757-4770
-
-
Tran, K.T.1
Maeda, T.2
Wood, T.K.3
-
417
-
-
84865590395
-
Metabolic engineering of Escherichia coli for the production of 1-propanol
-
Jun Choi, Y., Hwan Park, J., Yong Kim, T., Yup Lee, S., Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab. Eng. 14:5 (2012), 477–486.
-
(2012)
Metab. Eng.
, vol.14
, Issue.5
, pp. 477-486
-
-
Jun Choi, Y.1
Hwan Park, J.2
Yong Kim, T.3
Yup Lee, S.4
-
418
-
-
84855751916
-
Macroalgae as a Biomass Feedstock : A Preliminary Analysis
-
Department of Energy United States
-
Roesijadi, G., Jones, S.B., Snowden-Swan, L.J., Zhu, Y., Macroalgae as a Biomass Feedstock : A Preliminary Analysis. 2010, Department of Energy, United States.
-
(2010)
-
-
Roesijadi, G.1
Jones, S.B.2
Snowden-Swan, L.J.3
Zhu, Y.4
-
419
-
-
84856074574
-
An engineered microbial platform for direct biofuel production from brown macroalgae
-
(no. January), 230502
-
Wargacki, A.J., et al. An engineered microbial platform for direct biofuel production from brown macroalgae. (no. January) Sci. (80-.) 230502 (2012), 308–314.
-
(2012)
Sci. (80-.)
, pp. 308-314
-
-
Wargacki, A.J.1
-
420
-
-
79953889249
-
Conversion of proteins into biofuels by engineering nitrogen flux
-
Huo, Y.-X., et al. Conversion of proteins into biofuels by engineering nitrogen flux. Nat. Biotechnol. 29:4 (2011), 346–351.
-
(2011)
Nat. Biotechnol.
, vol.29
, Issue.4
, pp. 346-351
-
-
Huo, Y.-X.1
-
421
-
-
84896119130
-
Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis
-
Choi, K.Y., Wernick, D.G., Tat, C. a., Liao, J.C., Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab. Eng. 23 (2014), 53–61.
-
(2014)
Metab. Eng.
, vol.23
, pp. 53-61
-
-
Choi, K.Y.1
Wernick, D.G.2
Tat, C.A.3
Liao, J.C.4
-
422
-
-
33846607693
-
Bacillus methanolicus : a candidate for industrial production of amino acids from methanol at 50 °C
-
Brautaset, T., Jakobsen, Ø.M., Bacillus methanolicus : a candidate for industrial production of amino acids from methanol at 50 °C. Appl. Microbiol. Biotechnol., 2007, 22–34.
-
(2007)
Appl. Microbiol. Biotechnol.
, pp. 22-34
-
-
Brautaset, T.1
Jakobsen, Ø.M.2
-
423
-
-
84922433192
-
Engineering Escherichia coli for methanol conversion
-
Müller, J.E.N., et al. Engineering Escherichia coli for methanol conversion. Metab. Eng. 28 (2015), 190–201.
-
(2015)
Metab. Eng.
, vol.28
, pp. 190-201
-
-
Müller, J.E.N.1
-
424
-
-
0025168744
-
“METHYLOTROPHS: genetics and COlll1nercial applications
-
Lidstrom, M.E., Stirling, D.I., Corporation, C., “METHYLOTROPHS: genetics and COlll1nercial applications. Annu. Rev. Microbiol. 44 (1990), 27–58.
-
(1990)
Annu. Rev. Microbiol.
, vol.44
, pp. 27-58
-
-
Lidstrom, M.E.1
Stirling, D.I.2
Corporation, C.3
-
425
-
-
78049248963
-
Methanol Assimilation in Methylobacterium extorquens AM1: demonstration of All Enzymes and Their Regulation
-
Smejkalova, H., Erb, T.J., Fuchs, G., Methanol Assimilation in Methylobacterium extorquens AM1: demonstration of All Enzymes and Their Regulation. PLoS One, 5(10), 2010.
-
(2010)
PLoS One
, vol.5
, Issue.10
-
-
Smejkalova, H.1
Erb, T.J.2
Fuchs, G.3
-
426
-
-
0036042189
-
Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria
-
Vorholt, J.A., Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch. Microbiol., 2002, 239–249.
-
(2002)
Arch. Microbiol.
, pp. 239-249
-
-
Vorholt, J.A.1
-
427
-
-
0004287189
-
Biochemistry of Methylotrophs
-
Academic Press
-
Anthony, C., Biochemistry of Methylotrophs. 1982, Academic Press.
-
(1982)
-
-
Anthony, C.1
-
428
-
-
0018356970
-
Growth and polysaccharide production by methylocystis parvus OBBP on methanol
-
Hou, C.T., Laskin, A.I., Patel, R.N., Growth and polysaccharide production by methylocystis parvus OBBP on methanol. Appl. Environ. Microbiol. 37:5 (1978), 800–804.
-
(1978)
Appl. Environ. Microbiol.
, vol.37
, Issue.5
, pp. 800-804
-
-
Hou, C.T.1
Laskin, A.I.2
Patel, R.N.3
-
429
-
-
0030266252
-
Efficient L-serine production from methanol and glycine by resting cells of Methylobacterium sp. strainMN43
-
Hagishita, T., Toyokazu, Y., Yoshikazu, I., Toshio, M., Efficient L-serine production from methanol and glycine by resting cells of Methylobacterium sp. strainMN43. Biosci. Biotechnol. Biochem. 60:10 (1996), 1604–1607.
-
(1996)
Biosci. Biotechnol. Biochem.
, vol.60
, Issue.10
, pp. 1604-1607
-
-
Hagishita, T.1
Toyokazu, Y.2
Yoshikazu, I.3
Toshio, M.4
-
430
-
-
0035405620
-
Overproduction of L-lysine from methanol by methylobacillus glycogenes derivatives carrying a plasmid with a mutated dapA gene
-
Motoyama, H., Yano, H., Terasaki, Y., Hakko, K., Co, K., Overproduction of L-lysine from methanol by methylobacillus glycogenes derivatives carrying a plasmid with a mutated dapA gene. Appl. Environ. Microbiol. 67:7 (2001), 3064–3070.
-
(2001)
Appl. Environ. Microbiol.
, vol.67
, Issue.7
, pp. 3064-3070
-
-
Motoyama, H.1
Yano, H.2
Terasaki, Y.3
Hakko, K.4
Co, K.5
-
431
-
-
84992321320
-
Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli
-
(no. June 2016)
-
Whitaker, W.B., et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. (no. June 2016), 39, 2017, 49–59.
-
(2017)
, vol.39
, pp. 49-59
-
-
Whitaker, W.B.1
-
432
-
-
85036471562
-
Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs
-
Bennett, R.K., Steinberg, L.M., Chen, W., Papoutsakis, E.T., Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Curr. Opin. Biotechnol. 50 (2018), 81–93.
-
(2018)
Curr. Opin. Biotechnol.
, vol.50
, pp. 81-93
-
-
Bennett, R.K.1
Steinberg, L.M.2
Chen, W.3
Papoutsakis, E.T.4
-
433
-
-
84994494330
-
Scaffoldless engineered enzyme assembly for enhanced methanol utilization
-
Price, J.V., Chen, L., Whitaker, W.B., Papoutsakis, E., Chen, W., Scaffoldless engineered enzyme assembly for enhanced methanol utilization. Proc. Natl. Acad. Sci. USA 113:45 (2016), 12691–12696.
-
(2016)
Proc. Natl. Acad. Sci. USA
, vol.113
, Issue.45
, pp. 12691-12696
-
-
Price, J.V.1
Chen, L.2
Whitaker, W.B.3
Papoutsakis, E.4
Chen, W.5
-
434
-
-
85036654608
-
Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph
-
(no. July 2017)
-
Bennett, R.K., Gonzalez, J.E., Whitaker, W.B., Antoniewicz, M.R., Papoutsakis, E.T., Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph. (no. July 2017) Metab. Eng. 45 (2018), 75–85.
-
(2018)
Metab. Eng.
, vol.45
, pp. 75-85
-
-
Bennett, R.K.1
Gonzalez, J.E.2
Whitaker, W.B.3
Antoniewicz, M.R.4
Papoutsakis, E.T.5
-
435
-
-
84995622089
-
Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by13C metabolic flux analysis
-
(no. November 2016)
-
Gonzalez, J.E., Long, C.P., Antoniewicz, M.R., Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by13C metabolic flux analysis. (no. November 2016) Metab. Eng. 39 (2017), 9–18.
-
(2017)
Metab. Eng.
, vol.39
, pp. 9-18
-
-
Gonzalez, J.E.1
Long, C.P.2
Antoniewicz, M.R.3
-
436
-
-
84909606329
-
Building carbon–carbon bonds using a biocatalytic methanol condensation cycle
-
Bogorad, I.W., et al. Building carbon–carbon bonds using a biocatalytic methanol condensation cycle. Proc. Natl. Acad. Sci. USA 111:45 (2014), 15928–15933.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, Issue.45
, pp. 15928-15933
-
-
Bogorad, I.W.1
-
437
-
-
84925426233
-
Computational protein design enables a novel one-carbon assimilation pathway
-
(201500545) (201500545)
-
Siegel, J.B., et al. Computational protein design enables a novel one-carbon assimilation pathway. (201500545) Proc. Natl. Acad. Sci. USA, 2015 (201500545).
-
(2015)
Proc. Natl. Acad. Sci. USA
-
-
Siegel, J.B.1
-
438
-
-
84940453195
-
Mechanistic analysis of an engineered enzyme that catalyzes the formose reaction
-
Poust, S., Piety, J., Bar-even, A., Louw, C., Baker, D., Mechanistic analysis of an engineered enzyme that catalyzes the formose reaction. Chembiochemistry, 2015, 1950–1954.
-
(2015)
Chembiochemistry
, pp. 1950-1954
-
-
Poust, S.1
Piety, J.2
Bar-even, A.3
Louw, C.4
Baker, D.5
-
440
-
-
30544444128
-
Immune evasion by staphylococci
-
Foster, T.J., Immune evasion by staphylococci. Nat. Rev. Microbiol. 3:12 (2005), 948–958.
-
(2005)
Nat. Rev. Microbiol.
, vol.3
, Issue.12
, pp. 948-958
-
-
Foster, T.J.1
-
441
-
-
0032213886
-
Inactivation in vitro of the Escherichia coli outer membrane protein FhuA by a phage T5-encoded lipoprotein
-
Pedruzzi, I., Rosenbusch, J.P., Locher, K.P., Inactivation in vitro of the Escherichia coli outer membrane protein FhuA by a phage T5-encoded lipoprotein. FEMS Microbiol. Lett. 168:1 (1998), 119–125.
-
(1998)
FEMS Microbiol. Lett.
, vol.168
, Issue.1
, pp. 119-125
-
-
Pedruzzi, I.1
Rosenbusch, J.P.2
Locher, K.P.3
-
442
-
-
0014339815
-
Escherichia coli K Bacteriophages
-
Stirm, S., Escherichia coli K Bacteriophages. J. Virol. 2:10 (1968), 1107–1114.
-
(1968)
J. Virol.
, vol.2
, Issue.10
, pp. 1107-1114
-
-
Stirm, S.1
-
443
-
-
60349118910
-
Sequence analysis of Escherichia coli O157:H7 bacteriophage ??V10 and identification of a phage-encoded immunity protein that modifies the O157 antigen
-
Perry, L.L., et al. Sequence analysis of Escherichia coli O157:H7 bacteriophage ??V10 and identification of a phage-encoded immunity protein that modifies the O157 antigen. FEMS Microbiol. Lett. 292:2 (2009), 182–186.
-
(2009)
FEMS Microbiol. Lett.
, vol.292
, Issue.2
, pp. 182-186
-
-
Perry, L.L.1
-
444
-
-
23644448769
-
16 β-hairpin region in the recognition mechanism
-
16 β-hairpin region in the recognition mechanism. Biochem. J. 389:3 (2005), 869–876.
-
(2005)
Biochem. J.
, vol.389
, Issue.3
, pp. 869-876
-
-
Destoumieux-Garzón, D.1
-
445
-
-
0027326019
-
Location and unusual membrane topology of the immunity protein of the Escherichia coli phage T4
-
Lu, M.-J., Stierhof, Y.-D., Henning, U., Location and unusual membrane topology of the immunity protein of the Escherichia coli phage T4. J. Virol. 67:8 (1993), 4905–4913.
-
(1993)
J. Virol.
, vol.67
, Issue.8
, pp. 4905-4913
-
-
Lu, M.-J.1
Stierhof, Y.-D.2
Henning, U.3
-
446
-
-
17044403057
-
Type II restriction endonucleases: structure and mechanism
-
Pingoud, A., Fuxreiter, M., Pingoud, V., Wende, W., Type II restriction endonucleases: structure and mechanism. Cell. Mol. Life Sci. 62:6 (2005), 685–707.
-
(2005)
Cell. Mol. Life Sci.
, vol.62
, Issue.6
, pp. 685-707
-
-
Pingoud, A.1
Fuxreiter, M.2
Pingoud, V.3
Wende, W.4
-
447
-
-
0032924950
-
Molecular characterization of a phage-encoded resistance system in lactococcus lactis molecular characterization of a phage-encoded resistance system in Lactococcus lactis
-
Mcgrath, S., Seegers, J.F.M.L., Fitzgerald, G.F., Grath, S.M.C., Seegers, J.O.S.F.M.L., Molecular characterization of a phage-encoded resistance system in lactococcus lactis molecular characterization of a phage-encoded resistance system in Lactococcus lactis. Appl. Environ. Microbiol. 65:5 (1999), 1891–1899.
-
(1999)
Appl. Environ. Microbiol.
, vol.65
, Issue.5
, pp. 1891-1899
-
-
Mcgrath, S.1
Seegers, J.F.M.L.2
Fitzgerald, G.F.3
Grath, S.M.C.4
Seegers, J.O.S.F.M.L.5
-
448
-
-
0022872027
-
Escherichia coli K-12 restricts DNA containing 5-methylcytosine
-
Raleigh, E.A., Wilson, G., Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc. Natl. Acad. Sci. Usa. 83:23 (1986), 9070–9074.
-
(1986)
Proc. Natl. Acad. Sci. Usa.
, vol.83
, Issue.23
, pp. 9070-9074
-
-
Raleigh, E.A.1
Wilson, G.2
-
449
-
-
78149261827
-
The CRISPR/cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau, J.E., et al. The CRISPR/cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:7320 (2010), 67–71.
-
(2010)
Nature
, vol.468
, Issue.7320
, pp. 67-71
-
-
Garneau, J.E.1
-
450
-
-
0020575930
-
Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts
-
Krüger, D.H., Bickle, T. a., Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol. Rev. 47:3 (1983), 345–360.
-
(1983)
Microbiol. Rev.
, vol.47
, Issue.3
, pp. 345-360
-
-
Krüger, D.H.1
Bickle, T.A.2
-
451
-
-
0028953424
-
Phage‐exclusion enzymes: a bonanza of biochemical and cell biology reagents?
-
Snyder, L., Phage‐exclusion enzymes: a bonanza of biochemical and cell biology reagents?. Mol. Microbiol. 15:3 (1995), 415–420.
-
(1995)
Mol. Microbiol.
, vol.15
, Issue.3
, pp. 415-420
-
-
Snyder, L.1
-
452
-
-
77951104433
-
Bacteriophage resistance mechanisms
-
Labrie, S.J., Samson, J.E., Moineau, S., Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8:5 (2010), 317–327.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, Issue.5
, pp. 317-327
-
-
Labrie, S.J.1
Samson, J.E.2
Moineau, S.3
-
453
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
(no. March)
-
Barrangou, R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. (no. March) Science 315 (2007), 1709–1712.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
-
454
-
-
38949123143
-
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
-
Deveau, H., et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:4 (2008), 1390–1400.
-
(2008)
J. Bacteriol.
, vol.190
, Issue.4
, pp. 1390-1400
-
-
Deveau, H.1
-
455
-
-
74249095519
-
CRISPR/Cas, the immune system of bacteria and archaea,”archaea
-
Horvath, P., Barrangou, R., CRISPR/Cas, the immune system of bacteria and archaea,”archaea. Science 327:5962 (2010), 167–170.
-
(2010)
Science
, vol.327
, Issue.5962
, pp. 167-170
-
-
Horvath, P.1
Barrangou, R.2
-
456
-
-
79959963663
-
Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
-
Semenova, E., et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. USA 108:25 (2011), 10098–10103.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, Issue.25
, pp. 10098-10103
-
-
Semenova, E.1
-
457
-
-
77957935381
-
CRISPR/Cas system and its role in phage-bacteria interactions
-
Deveau, H., Garneau, J.E., Moineau, S., CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol. 64:1 (2010), 475–493.
-
(2010)
Annu. Rev. Microbiol.
, vol.64
, Issue.1
, pp. 475-493
-
-
Deveau, H.1
Garneau, J.E.2
Moineau, S.3
-
458
-
-
84884687531
-
Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition
-
Westra, E.R., et al. Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet., 9(9), 2013.
-
(2013)
PLoS Genet.
, vol.9
, Issue.9
-
-
Westra, E.R.1
-
459
-
-
84864864464
-
Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
-
(no. May)
-
Datsenko, K.A., Pougach, K., Tikhonov, A., Wanner, B.L., Severinov, K., Semenova, E., Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. (no. May) Nat. Commun. 3 (2012), 945–947.
-
(2012)
Nat. Commun.
, vol.3
, pp. 945-947
-
-
Datsenko, K.A.1
Pougach, K.2
Tikhonov, A.3
Wanner, B.L.4
Severinov, K.5
Semenova, E.6
-
460
-
-
84860433123
-
CRISPR interference directs strand specific spacer acquisition
-
Swarts, D.C., Mosterd, C., van Passel, M.W.J., Brouns, S.J.J., CRISPR interference directs strand specific spacer acquisition. PLoS One 7:4 (2012), 1–7.
-
(2012)
PLoS One
, vol.7
, Issue.4
, pp. 1-7
-
-
Swarts, D.C.1
Mosterd, C.2
van Passel, M.W.J.3
Brouns, S.J.J.4
-
461
-
-
85030331090
-
The discovery, mechanisms, and evolutionary impact of Anti-CRISPRs
-
(p. annurev-virology-101416-041616) (p. annurev-virology-101416-041616)
-
Borges, A.L., Davidson, A.R., Bondy-Denomy, J., The discovery, mechanisms, and evolutionary impact of Anti-CRISPRs. (p. annurev-virology-101416-041616) Annu. Rev. Virol., 4(1), 2017 (p. annurev-virology-101416-041616).
-
(2017)
Annu. Rev. Virol.
, vol.4
, Issue.1
-
-
Borges, A.L.1
Davidson, A.R.2
Bondy-Denomy, J.3
-
462
-
-
85020305827
-
The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies
-
Strotskaya, A., et al. The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies. Nucleic Acids Res. 45:4 (2017), 1946–1957.
-
(2017)
Nucleic Acids Res.
, vol.45
, Issue.4
, pp. 1946-1957
-
-
Strotskaya, A.1
|