메뉴 건너뛰기




Volumn 50, Issue , 2018, Pages 16-46

Escherichia coli as a host for metabolic engineering

Author keywords

[No Author keywords available]

Indexed keywords

ESCHERICHIA COLI; METABOLISM; PHYSIOLOGY;

EID: 85046649083     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2018.04.008     Document Type: Review
Times cited : (282)

References (462)
  • 1
    • 33749865029 scopus 로고    scopus 로고
    • Bacteriological analytical Manual: enumeration of Escherichia coli and the Coliform bacteria
    • Feng, P., Weagant, S., Grant, M., Burkhardt, W., Bacteriological analytical Manual: enumeration of Escherichia coli and the Coliform bacteria. Bacteriol. Anal. Man(6), 2002, 1–13.
    • (2002) Bacteriol. Anal. Man , Issue.6 , pp. 1-13
    • Feng, P.1    Weagant, S.2    Grant, M.3    Burkhardt, W.4
  • 2
    • 85056979719 scopus 로고    scopus 로고
    • [Online]. Available:
    • NIH, 2016. NIH GUIDELINES FOR RESEARCH INVOLVING RECOMBINANT OR SYNTHETIC NUCLEIC ACID MOLECULES,. [Online]. Available: 〈https://osp.od.nih.gov/wp-content/uploads/NIH_Guidelines.html#_Appendix_C-II-A._Exceptions〉.
    • (2016)
    • NIH1
  • 3
    • 85056967556 scopus 로고    scopus 로고
    • “Method for producing an L-amino acid using a bacterium of the family Enterobacteriaceae having a disrupted putrescine degradation pathway,”.
    • M. M. Gusyatiner, Y. G. Rostova, M. Y. Kiryukhin, and A. Y. Romkina, “Method for producing an L-amino acid using a bacterium of the family Enterobacteriaceae having a disrupted putrescine degradation pathway,” 2017.
    • (2017)
    • Gusyatiner, M.M.1    Rostova, Y.G.2    Kiryukhin, M.Y.3    Romkina, A.Y.4
  • 4
    • 79955611425 scopus 로고    scopus 로고
    • Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
    • Shen, C.R., Lan, E.I., Dekishima, Y., Baez, A., Cho, K.M., Liao, J.C., Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol. 77:9 (2011), 2905–2915.
    • (2011) Appl. Environ. Microbiol. , vol.77 , Issue.9 , pp. 2905-2915
    • Shen, C.R.1    Lan, E.I.2    Dekishima, Y.3    Baez, A.4    Cho, K.M.5    Liao, J.C.6
  • 5
    • 85017430967 scopus 로고    scopus 로고
    • Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli
    • (no. April)
    • Ohtake, T., Pontrelli, S., Laviña, W.A., Liao, J.C., Putri, S.P., Fukusaki, E., Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. (no. April) Metab. Eng. 41 (2017), 135–143.
    • (2017) Metab. Eng. , vol.41 , pp. 135-143
    • Ohtake, T.1    Pontrelli, S.2    Laviña, W.A.3    Liao, J.C.4    Putri, S.P.5    Fukusaki, E.6
  • 6
    • 85056926262 scopus 로고    scopus 로고
    • “Method of producing L-lysine by fermentation,”.
    • H. Kojima, Y. Ogawa, K. Kawamura, and K. Sano, “Method of producing L-lysine by fermentation,” 2000.
    • (2000)
    • Kojima, H.1    Ogawa, Y.2    Kawamura, K.3    Sano, K.4
  • 8
    • 84964509986 scopus 로고    scopus 로고
    • Development of a commercial scale process for production of 1,4-butanediol from sugar
    • Burgard, A., Burk, M.J., Osterhout, R., Van Dien, S., Yim, H., Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr. Opin. Biotechnol. 42 (2016), 118–125.
    • (2016) Curr. Opin. Biotechnol. , vol.42 , pp. 118-125
    • Burgard, A.1    Burk, M.J.2    Osterhout, R.3    Van Dien, S.4    Yim, H.5
  • 10
    • 84878031093 scopus 로고    scopus 로고
    • Microbial expression systems and manufacturing from a market and economic perspective
    • Meyer, H., Schmidhalter, D.R., Microbial expression systems and manufacturing from a market and economic perspective. Innov. Biotechnol., 2012, 211–250.
    • (2012) Innov. Biotechnol. , pp. 211-250
    • Meyer, H.1    Schmidhalter, D.R.2
  • 11
    • 15444350252 scopus 로고    scopus 로고
    • The complete genome sequence of Escherichia coli K-12
    • Blattner, F.R., et al. The complete genome sequence of Escherichia coli K-12. Science (80-.) 277:5331 (1997), 1453–1462.
    • (1997) Science (80-.) , vol.277 , Issue.5331 , pp. 1453-1462
    • Blattner, F.R.1
  • 12
    • 85056954083 scopus 로고    scopus 로고
    • Genome Assembly and Annotation report. [Online]. Available: (accessed 02-Feb-2018).
    • NCBI, Genome Assembly and Annotation report. [Online]. Available: 〈https://www.ncbi.nlm.nih.gov/genome/genomes/167〉. (accessed 02-Feb-2018).
    • NCBI1
  • 13
    • 31544450286 scopus 로고    scopus 로고
    • Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection
    • (2006.0008) (2006.0008)
    • Baba, T., et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. (2006.0008) Mol. Syst. Biol., 2, 2006 (2006.0008).
    • (2006) Mol. Syst. Biol. , vol.2
    • Baba, T.1
  • 14
    • 0023042283 scopus 로고
    • Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes
    • Studier, F.W., Moffatt, B.A., Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189:1 (1986), 113–130.
    • (1986) J. Mol. Biol. , vol.189 , Issue.1 , pp. 113-130
    • Studier, F.W.1    Moffatt, B.A.2
  • 15
    • 55549128624 scopus 로고    scopus 로고
    • Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5$α$)
    • Phue, J.N., Sang, J.L., Trinh, L., Shiloach, J., Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5$α$). Biotechnol. Bioeng. 101:4 (2008), 831–836.
    • (2008) Biotechnol. Bioeng. , vol.101 , Issue.4 , pp. 831-836
    • Phue, J.N.1    Sang, J.L.2    Trinh, L.3    Shiloach, J.4
  • 16
    • 85056923887 scopus 로고    scopus 로고
    • Novagen
    • Novagen, 〈http://www.novagen.com〉.
  • 17
    • 79953162662 scopus 로고    scopus 로고
    • Escherichia coli W as a new platform strain for the enhanced production of L-Valine by systems metabolic engineering
    • Park, J.H., Jang, Y.S., Lee, J.W., Lee, S.Y., Escherichia coli W as a new platform strain for the enhanced production of L-Valine by systems metabolic engineering. Biotechnol. Bioeng. 108:5 (2011), 1140–1147.
    • (2011) Biotechnol. Bioeng. , vol.108 , Issue.5 , pp. 1140-1147
    • Park, J.H.1    Jang, Y.S.2    Lee, J.W.3    Lee, S.Y.4
  • 18
    • 0030029182 scopus 로고    scopus 로고
    • Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster
    • Prieto, M.A., Diaz, E., Garcia, J., Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. Microbiology 178:1 (1996), 111–120.
    • (1996) Microbiology , vol.178 , Issue.1 , pp. 111-120
    • Prieto, M.A.1    Diaz, E.2    Garcia, J.3
  • 19
    • 0025825737 scopus 로고
    • Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II
    • Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T., Ingram, L., Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl. Environ. Microbiol. 57:4 (1991), 893–900.
    • (1991) Appl. Environ. Microbiol. , vol.57 , Issue.4 , pp. 893-900
    • Ohta, K.1    Beall, D.S.2    Mejia, J.P.3    Shanmugam, K.T.4    Ingram, L.5
  • 21
    • 84863467493 scopus 로고    scopus 로고
    • Optical mapping and sequencing of the Escherichia coli KO11 genome reveal extensive chromosomal rearrangements, and multiple tandem copies of the Zymomonas mobilis pdc and adhB genes
    • Turner, P.C., et al. Optical mapping and sequencing of the Escherichia coli KO11 genome reveal extensive chromosomal rearrangements, and multiple tandem copies of the Zymomonas mobilis pdc and adhB genes. J. Ind. Microbiol. Biotechnol. 39:4 (2012), 629–639.
    • (2012) J. Ind. Microbiol. Biotechnol. , vol.39 , Issue.4 , pp. 629-639
    • Turner, P.C.1
  • 22
    • 4444330508 scopus 로고    scopus 로고
    • Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition
    • Tao, F., Miao, J.Y., Shi, G.Y., Zhang, K.C., Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition. Process Biochem. 40:1 (2005), 183–187.
    • (2005) Process Biochem. , vol.40 , Issue.1 , pp. 183-187
    • Tao, F.1    Miao, J.Y.2    Shi, G.Y.3    Zhang, K.C.4
  • 23
    • 84956672842 scopus 로고    scopus 로고
    • Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis
    • Wernick, D.G., Pontrelli, S.P., Pollock, A.W., Liao, J.C., Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis. Sci. Rep., 6, 2016, 20224.
    • (2016) Sci. Rep. , vol.6 , pp. 20224
    • Wernick, D.G.1    Pontrelli, S.P.2    Pollock, A.W.3    Liao, J.C.4
  • 24
    • 84862882871 scopus 로고    scopus 로고
    • Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains
    • Hasunuma, T., Kondo, A., Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem. 47:9 (2012), 1287–1294.
    • (2012) Process Biochem. , vol.47 , Issue.9 , pp. 1287-1294
    • Hasunuma, T.1    Kondo, A.2
  • 25
    • 84873119880 scopus 로고    scopus 로고
    • Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes
    • Bhalla, A., Bansal, N., Kumar, S., Bischoff, K.M., Sani, R.K., Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour. Technol. 128 (2013), 751–759.
    • (2013) Bioresour. Technol. , vol.128 , pp. 751-759
    • Bhalla, A.1    Bansal, N.2    Kumar, S.3    Bischoff, K.M.4    Sani, R.K.5
  • 28
    • 84874853719 scopus 로고    scopus 로고
    • Bacteriophages in food fermentations: new frontiers in a continuous arms race
    • Samson, J.E., Moineau, S., Bacteriophages in food fermentations: new frontiers in a continuous arms race. Annu. Rev. Food Sci. Technol. 4:1 (2013), 347–368.
    • (2013) Annu. Rev. Food Sci. Technol. , vol.4 , Issue.1 , pp. 347-368
    • Samson, J.E.1    Moineau, S.2
  • 29
    • 77952552068 scopus 로고    scopus 로고
    • Regulatory roles of the bacterial nitrogen-related phosphotransferase system
    • Pflüger-Grau, K., Görke, B., Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol. 18:5 (2010), 205–214.
    • (2010) Trends Microbiol. , vol.18 , Issue.5 , pp. 205-214
    • Pflüger-Grau, K.1    Görke, B.2
  • 30
    • 0030571222 scopus 로고    scopus 로고
    • Pathway analysis, engineering, and physiological considerations for redirecting central metabolism
    • Liao, J.C., Hou, S., Chao, Y., Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol. Bioeng. 52:1 (1996), 129–140.
    • (1996) Biotechnol. Bioeng. , vol.52 , Issue.1 , pp. 129-140
    • Liao, J.C.1    Hou, S.2    Chao, Y.3
  • 31
    • 0014413329 scopus 로고
    • Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli
    • Blangy, D., Buc, H., Monod, J., Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J. Mol. Biol. 31:1 (1968), 13–35.
    • (1968) J. Mol. Biol. , vol.31 , Issue.1 , pp. 13-35
    • Blangy, D.1    Buc, H.2    Monod, J.3
  • 32
    • 33845626641 scopus 로고    scopus 로고
    • How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria
    • Deutscher, J., Francke, C., Postma, P.W., How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70:4 (2006), 939–1031.
    • (2006) Microbiol. Mol. Biol. Rev. , vol.70 , Issue.4 , pp. 939-1031
    • Deutscher, J.1    Francke, C.2    Postma, P.W.3
  • 33
    • 0030899266 scopus 로고    scopus 로고
    • Cra-mediated regulation of Escherichia coli adenylate cyclase
    • Crasnier-Mednansky, M., Park, M.C., Studley, W.K., Saier, M.H., Cra-mediated regulation of Escherichia coli adenylate cyclase. Microbiology 143:Pt 3 (1997), 785–792.
    • (1997) Microbiology , vol.143 , pp. 785-792
    • Crasnier-Mednansky, M.1    Park, M.C.2    Studley, W.K.3    Saier, M.H.4
  • 34
    • 85056984109 scopus 로고    scopus 로고
    • The relationship between external glucose concentration and cAMP levels inside
    • Notley-mcrobb, L., Death, A., Ferenci, T., The relationship between external glucose concentration and cAMP levels inside. Biochem. J. 1997 (2006), 1909–1918.
    • (2006) Biochem. J. , vol.1997 , pp. 1909-1918
    • Notley-mcrobb, L.1    Death, A.2    Ferenci, T.3
  • 35
    • 0031912637 scopus 로고    scopus 로고
    • Modulation of Escherichia coli adenylyl cyclase activity by catalytic-site mutants of protein IIA(Glc) of the phosphoenolpyruvate: sugar phosphotransferase system
    • Reddy, P., Kamireddi, M., Modulation of Escherichia coli adenylyl cyclase activity by catalytic-site mutants of protein IIA(Glc) of the phosphoenolpyruvate: sugar phosphotransferase system. J. Bacteriol. 180:3 (1998), 732–736.
    • (1998) J. Bacteriol. , vol.180 , Issue.3 , pp. 732-736
    • Reddy, P.1    Kamireddi, M.2
  • 36
    • 84868620752 scopus 로고    scopus 로고
    • Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems
    • Steinsiek, S., Bettenbrock, K., Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems. J. Bacteriol. 194:21 (2012), 5897–5908.
    • (2012) J. Bacteriol. , vol.194 , Issue.21 , pp. 5897-5908
    • Steinsiek, S.1    Bettenbrock, K.2
  • 37
    • 80955179563 scopus 로고    scopus 로고
    • The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell
    • Gabor, E., Göhler, A.K., Kosfeld, A., Staab, A., Kremling, A., Jahreis, K., The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell. Eur. J. Cell Biol. 90:9 (2011), 711–720.
    • (2011) Eur. J. Cell Biol. , vol.90 , Issue.9 , pp. 711-720
    • Gabor, E.1    Göhler, A.K.2    Kosfeld, A.3    Staab, A.4    Kremling, A.5    Jahreis, K.6
  • 38
    • 77957168526 scopus 로고    scopus 로고
    • Glucose uptake regulation in E. coli by the small RNA SgrS: comparative analysis of E. coli K (JM109 and MG1655) and E. coli B (BL21)
    • Negrete, A., Ng, W.I., Shiloach, J., Glucose uptake regulation in E. coli by the small RNA SgrS: comparative analysis of E. coli K (JM109 and MG1655) and E. coli B (BL21). Microb. Cell Fact., 9(1), 2010, 75.
    • (2010) Microb. Cell Fact. , vol.9 , Issue.1 , pp. 75
    • Negrete, A.1    Ng, W.I.2    Shiloach, J.3
  • 39
    • 84872383524 scopus 로고    scopus 로고
    • Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS
    • Negrete, A., Majdalani, N., Phue, J.N., Shiloach, J., Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS. N. Biotechnol. 30:2 (2013), 269–273.
    • (2013) N. Biotechnol. , vol.30 , Issue.2 , pp. 269-273
    • Negrete, A.1    Majdalani, N.2    Phue, J.N.3    Shiloach, J.4
  • 40
    • 84989166120 scopus 로고    scopus 로고
    • Tn5 transposition in Escherichia coli is repressed by Hfq and activated by over-expression of the small non-coding RNA SgrS
    • Ross, J.A., Trussler, R.S., Black, M.D., McLellan, C.R., Haniford, D.B., Tn5 transposition in Escherichia coli is repressed by Hfq and activated by over-expression of the small non-coding RNA SgrS. Mob. DNA 5:1 (2014), 1–16.
    • (2014) Mob. DNA , vol.5 , Issue.1 , pp. 1-16
    • Ross, J.A.1    Trussler, R.S.2    Black, M.D.3    McLellan, C.R.4    Haniford, D.B.5
  • 41
    • 33947139094 scopus 로고    scopus 로고
    • The novel transcription factor SgrR coordinates the response to glucose-phosphate stress
    • Vanderpool, C.K., Gottesman, S., The novel transcription factor SgrR coordinates the response to glucose-phosphate stress. J. Bacteriol. 189:6 (2007), 2238–2248.
    • (2007) J. Bacteriol. , vol.189 , Issue.6 , pp. 2238-2248
    • Vanderpool, C.K.1    Gottesman, S.2
  • 42
    • 85019088711 scopus 로고    scopus 로고
    • The small protein SgrT controls transport activity of the glucose- specific phosphotransferase system
    • Chelsea, C.K.V., Lloyd, R., Park, Seongjin, Fei, Jingyi, The small protein SgrT controls transport activity of the glucose- specific phosphotransferase system. J. Bacteriol. 199:11 (2017), 1–14.
    • (2017) J. Bacteriol. , vol.199 , Issue.11 , pp. 1-14
    • Chelsea, C.K.V.1    Lloyd, R.2    Park, S.3    Fei, J.4
  • 43
    • 0028036558 scopus 로고
    • Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Engineering of Escherichia coli Central Metabolism for Aromatic Metabolite Production with Near Theoretical Yield
    • Patnaik, R., Liao, J.C., Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Engineering of Escherichia coli Central Metabolism for Aromatic Metabolite Production with Near Theoretical Yield. Appl. Enviromental Microbiol 60:11 (1994), 3903–3908.
    • (1994) Appl. Enviromental Microbiol , vol.60 , Issue.11 , pp. 3903-3908
    • Patnaik, R.1    Liao, J.C.2
  • 44
    • 0043023507 scopus 로고    scopus 로고
    • Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products
    • Hernández-Montalvo, V., Martínez, A., Hernández-Chavez, G., Bolivar, F., Valle, F., Gosset, G., Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol. Bioeng. 83:6 (2003), 687–694.
    • (2003) Biotechnol. Bioeng. , vol.83 , Issue.6 , pp. 687-694
    • Hernández-Montalvo, V.1    Martínez, A.2    Hernández-Chavez, G.3    Bolivar, F.4    Valle, F.5    Gosset, G.6
  • 45
    • 84886947479 scopus 로고    scopus 로고
    • Synthetic non-oxidative glycolysis enables complete carbon conservation
    • Bogorad, I.W., Lin, T.-S., Liao, J.C., Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502:7473 (2013), 693–697.
    • (2013) Nature , vol.502 , Issue.7473 , pp. 693-697
    • Bogorad, I.W.1    Lin, T.-S.2    Liao, J.C.3
  • 46
    • 85056910728 scopus 로고    scopus 로고
    • et al., Construction and evolution of an Escherichia coli strain solely relying on non-oxidative glycolysis for sugar catabolism, Proceedings Natl. Acad. Sci.
    • Lin, P.P. et al., Construction and evolution of an Escherichia coli strain solely relying on non-oxidative glycolysis for sugar catabolism, Proceedings Natl. Acad. Sci.
    • Lin, P.P.1
  • 47
    • 0003742927 scopus 로고
    • Physiology of the Bacterial Cell: A Molecular Approach
    • Sinauer Associates Sunderland, MA
    • Neidhardt, F.C., Ingraham, J.L., Schaechter, M., Physiology of the Bacterial Cell: A Molecular Approach. 1990, Sinauer Associates, Sunderland, MA.
    • (1990)
    • Neidhardt, F.C.1    Ingraham, J.L.2    Schaechter, M.3
  • 48
    • 0026539733 scopus 로고
    • Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes
    • Gunsalus, R.P., Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes. J. Bacteriol. 174:22 (1992), 7069–7074.
    • (1992) J. Bacteriol. , vol.174 , Issue.22 , pp. 7069-7074
    • Gunsalus, R.P.1
  • 49
    • 0030738589 scopus 로고    scopus 로고
    • Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors
    • Unden, G., Bongaerts, J., Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim. Biophys. Acta 1320:3 (1997), 217–234.
    • (1997) Biochim. Biophys. Acta , vol.1320 , Issue.3 , pp. 217-234
    • Unden, G.1    Bongaerts, J.2
  • 50
    • 0030738589 scopus 로고    scopus 로고
    • Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors
    • Unden, G., Bongaerts, J., Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim. Biophys. Acta 1320:3 (1997), 217–234.
    • (1997) Biochim. Biophys. Acta , vol.1320 , Issue.3 , pp. 217-234
    • Unden, G.1    Bongaerts, J.2
  • 51
    • 0001547949 scopus 로고
    • Signal transduction in the Arc system for control of operons encoding aerobic respiratory enzymes
    • Iuchi, S., Lin, E.C.C., Signal transduction in the Arc system for control of operons encoding aerobic respiratory enzymes. Two-Compon. Signal Transduct., 1995, 223–232.
    • (1995) Two-Compon. Signal Transduct. , pp. 223-232
    • Iuchi, S.1    Lin, E.C.C.2
  • 52
    • 17644381300 scopus 로고    scopus 로고
    • Global gene expression profiling in Escherichia coli K12
    • Salmon, K.A., et al. Global gene expression profiling in Escherichia coli K12. J. Biol. Chem. 280:15 (2005), 15084–15096.
    • (2005) J. Biol. Chem. , vol.280 , Issue.15 , pp. 15084-15096
    • Salmon, K.A.1
  • 53
    • 0030447225 scopus 로고    scopus 로고
    • Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments
    • Iuchi, S., Weiner, L., Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. J. Biochem. 120:6 (1996), 1055–1063.
    • (1996) J. Biochem. , vol.120 , Issue.6 , pp. 1055-1063
    • Iuchi, S.1    Weiner, L.2
  • 54
    • 0037216801 scopus 로고    scopus 로고
    • Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions
    • Alexeeva, S., Hellingwerf, K.J., Teixeira de Mattos, M.J., Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J. Bacteriol. 185:1 (2003), 204–209.
    • (2003) J. Bacteriol. , vol.185 , Issue.1 , pp. 204-209
    • Alexeeva, S.1    Hellingwerf, K.J.2    Teixeira de Mattos, M.J.3
  • 55
    • 0038352097 scopus 로고    scopus 로고
    • The role of Fe-S proteins in sensing and regulation in bacteria
    • Kiley, P.J., Beinert, H., The role of Fe-S proteins in sensing and regulation in bacteria. Curr. Opin. Microbiol. 6:2 (2003), 181–185.
    • (2003) Curr. Opin. Microbiol. , vol.6 , Issue.2 , pp. 181-185
    • Kiley, P.J.1    Beinert, H.2
  • 56
    • 13244289800 scopus 로고    scopus 로고
    • Genome-Wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown Function
    • Kang, Y., Weber, K.D., Qiu, Y., Kiley, P.J., Blattner, F.R., Genome-Wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown Function. Society 187:3 (2005), 1135–1160.
    • (2005) Society , vol.187 , Issue.3 , pp. 1135-1160
    • Kang, Y.1    Weber, K.D.2    Qiu, Y.3    Kiley, P.J.4    Blattner, F.R.5
  • 57
    • 0036302723 scopus 로고    scopus 로고
    • The glycolytic flux in Escherichia coli is controlled by the demand for ATP
    • Koebmann, B.J., Westerhoff, H.V., Snoep, J.L., Nilsson, D., Jensen, P.R., The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 184:14 (2002), 3909–3916.
    • (2002) J. Bacteriol. , vol.184 , Issue.14 , pp. 3909-3916
    • Koebmann, B.J.1    Westerhoff, H.V.2    Snoep, J.L.3    Nilsson, D.4    Jensen, P.R.5
  • 58
    • 0032906898 scopus 로고    scopus 로고
    • The steady-state internal redox state (NADH / NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli
    • Mark, R., Amsterdam, B., The steady-state internal redox state (NADH / NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J. Bacteriol. 181:8 (1999), 2351–2357.
    • (1999) J. Bacteriol. , vol.181 , Issue.8 , pp. 2351-2357
    • Mark, R.1    Amsterdam, B.2
  • 59
    • 44349173795 scopus 로고    scopus 로고
    • Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12
    • Kim, Y., Ingram, L.O., Shanmugam, K.T., Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. J. Bacteriol. 190:11 (2008), 3851–3858.
    • (2008) J. Bacteriol. , vol.190 , Issue.11 , pp. 3851-3858
    • Kim, Y.1    Ingram, L.O.2    Shanmugam, K.T.3
  • 60
    • 85021344456 scopus 로고    scopus 로고
    • Orthogonal partial least squares/projections to latent structures regression-based metabolomics approach for identification of gene targets for improvement of 1-butanol production in Escherichia coli
    • Nitta, K., Laviña, W.A., Pontrelli, S., Liao, J.C., Putri, S.P., Fukusaki, E., Orthogonal partial least squares/projections to latent structures regression-based metabolomics approach for identification of gene targets for improvement of 1-butanol production in Escherichia coli. J. Biosci. Bioeng. 124:5 (2017), 498–505.
    • (2017) J. Biosci. Bioeng. , vol.124 , Issue.5 , pp. 498-505
    • Nitta, K.1    Laviña, W.A.2    Pontrelli, S.3    Liao, J.C.4    Putri, S.P.5    Fukusaki, E.6
  • 61
    • 84877892843 scopus 로고    scopus 로고
    • Genome-wide analysis of redox reactions reveals metabolic engineering targets for d-lactate overproduction in Escherichia coli
    • Kim, H.J., Hou, B.K., Lee, S.G., Kim, J.S., Lee, D.W., Lee, S.J., Genome-wide analysis of redox reactions reveals metabolic engineering targets for d-lactate overproduction in Escherichia coli. Metab. Eng. 18 (2013), 44–52.
    • (2013) Metab. Eng. , vol.18 , pp. 44-52
    • Kim, H.J.1    Hou, B.K.2    Lee, S.G.3    Kim, J.S.4    Lee, D.W.5    Lee, S.J.6
  • 62
    • 84896408319 scopus 로고    scopus 로고
    • Butyrate Production in engineered Escherichia coli with synthetic scaffolds
    • Baek, J.M., et al. Butyrate Production in engineered Escherichia coli with synthetic scaffolds. Biotechnol. Bioeng. 110:10 (2013), 2790–2794.
    • (2013) Biotechnol. Bioeng. , vol.110 , Issue.10 , pp. 2790-2794
    • Baek, J.M.1
  • 63
    • 84876471111 scopus 로고    scopus 로고
    • Refactoring redox cofactor regeneration for high-yield biocatalysis of glucose to butyric acid in Escherichia coli
    • Lim, J.H., Seo, S.W., Kim, S.Y., Jung, G.Y., Refactoring redox cofactor regeneration for high-yield biocatalysis of glucose to butyric acid in Escherichia coli. Bioresour. Technol. 135 (2013), 568–573.
    • (2013) Bioresour. Technol. , vol.135 , pp. 568-573
    • Lim, J.H.1    Seo, S.W.2    Kim, S.Y.3    Jung, G.Y.4
  • 64
    • 18944378749 scopus 로고    scopus 로고
    • Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity
    • Sánchez, A.M., Bennett, G.N., San, K.Y., Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab. Eng. 7:3 (2005), 229–239.
    • (2005) Metab. Eng. , vol.7 , Issue.3 , pp. 229-239
    • Sánchez, A.M.1    Bennett, G.N.2    San, K.Y.3
  • 65
    • 84901340681 scopus 로고    scopus 로고
    • Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli
    • (no. July)
    • Zhu, X., Tan, Z., Xu, H., Chen, J., Tang, J., Zhang, X., Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. (no. July) Metab. Eng. 24 (2014), 87–96.
    • (2014) Metab. Eng. , vol.24 , pp. 87-96
    • Zhu, X.1    Tan, Z.2    Xu, H.3    Chen, J.4    Tang, J.5    Zhang, X.6
  • 66
    • 33746868000 scopus 로고    scopus 로고
    • Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering
    • Dharmadi, Y., Murarka, A., Gonzalez, R., Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol. Bioeng. 94:5 (2005), 821–829.
    • (2005) Biotechnol. Bioeng. , vol.94 , Issue.5 , pp. 821-829
    • Dharmadi, Y.1    Murarka, A.2    Gonzalez, R.3
  • 67
    • 82355186005 scopus 로고    scopus 로고
    • Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation
    • Siedler, S., Bringer, S., Bott, M., Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation. Appl. Microbiol. Biotechnol. 92:5 (2011), 929–937.
    • (2011) Appl. Microbiol. Biotechnol. , vol.92 , Issue.5 , pp. 929-937
    • Siedler, S.1    Bringer, S.2    Bott, M.3
  • 68
    • 57049150799 scopus 로고    scopus 로고
    • Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways
    • Martínez, I., Zhu, J., Lin, H., Bennett, G.N., San, K.Y., Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab. Eng. 10:6 (2008), 352–359.
    • (2008) Metab. Eng. , vol.10 , Issue.6 , pp. 352-359
    • Martínez, I.1    Zhu, J.2    Lin, H.3    Bennett, G.N.4    San, K.Y.5
  • 69
    • 0036663710 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase
    • Berríos-Rivera, S.J., Bennett, G.N., San, K.Y., Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase. Metab. Eng. 4:3 (2002), 217–229.
    • (2002) Metab. Eng. , vol.4 , Issue.3 , pp. 217-229
    • Berríos-Rivera, S.J.1    Bennett, G.N.2    San, K.Y.3
  • 70
    • 33947357776 scopus 로고    scopus 로고
    • Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes
    • Kim, Y., Ingram, L.O., Shanmugam, K.T., Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl. Environ. Microbiol. 73: 6 (2007), 1766–1771.
    • (2007) Appl. Environ. Microbiol. , vol.73 , Issue.6 , pp. 1766-1771
    • Kim, Y.1    Ingram, L.O.2    Shanmugam, K.T.3
  • 71
    • 57049188930 scopus 로고    scopus 로고
    • Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products
    • Yazdani, S. Shams, Gonzalez, R., Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab. Eng. 10:6 (2008), 340–351.
    • (2008) Metab. Eng. , vol.10 , Issue.6 , pp. 340-351
    • Yazdani, S.S.1    Gonzalez, R.2
  • 72
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Atsumi, S., Hanai, T., Liao, J.C., Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:7174 (2008), 86–89.
    • (2008) Nature , vol.451 , Issue.7174 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 73
    • 84879706316 scopus 로고    scopus 로고
    • General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH
    • Brinkmann-Chen, S., et al. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. Proc. Natl. Acad. Sci. 110:27 (2013), 10946–10951.
    • (2013) Proc. Natl. Acad. Sci. , vol.110 , Issue.27 , pp. 10946-10951
    • Brinkmann-Chen, S.1
  • 74
    • 85002523976 scopus 로고    scopus 로고
    • 13C-metabolic flux analysis for mevalonate-producing strain of Escherichia coli
    • Wada, K., Toya, Y., Banno, S., Yoshikawa, K., Matsuda, F., Shimizu, H., 13C-metabolic flux analysis for mevalonate-producing strain of Escherichia coli. J. Biosci. Bioeng. 123:2 (2017), 177–182.
    • (2017) J. Biosci. Bioeng. , vol.123 , Issue.2 , pp. 177-182
    • Wada, K.1    Toya, Y.2    Banno, S.3    Yoshikawa, K.4    Matsuda, F.5    Shimizu, H.6
  • 75
    • 77955429093 scopus 로고    scopus 로고
    • High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain
    • Lee, H.C., Kim, J.S., Jang, W., Kim, S.Y., High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J. Biotechnol. 149:1–2 (2010), 24–32.
    • (2010) J. Biotechnol. , vol.149 , Issue.1-2 , pp. 24-32
    • Lee, H.C.1    Kim, J.S.2    Jang, W.3    Kim, S.Y.4
  • 76
    • 84857449564 scopus 로고    scopus 로고
    • Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains
    • Rathnasingh, C., Raj, S.M., Lee, Y., Catherine, C., Ashok, S., Park, S., Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J. Biotechnol. 157:4 (2012), 633–640.
    • (2012) J. Biotechnol. , vol.157 , Issue.4 , pp. 633-640
    • Rathnasingh, C.1    Raj, S.M.2    Lee, Y.3    Catherine, C.4    Ashok, S.5    Park, S.6
  • 77
    • 76749151341 scopus 로고    scopus 로고
    • Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering
    • Chemler, J.A., Fowler, Z.L., McHugh, K.P., Koffas, M.A.G., Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab. Eng. 12:2 (2010), 96–104.
    • (2010) Metab. Eng. , vol.12 , Issue.2 , pp. 96-104
    • Chemler, J.A.1    Fowler, Z.L.2    McHugh, K.P.3    Koffas, M.A.G.4
  • 78
    • 84907504864 scopus 로고    scopus 로고
    • Bacterial sigma factors: aa historical, structural, and genomic perspective
    • Feklístov, A., Sharon, B.D., Darst, S.A., Gross, C.A., Bacterial sigma factors: aa historical, structural, and genomic perspective. Annu. Rev. Microbiol. 68:1 (2014), 357–376.
    • (2014) Annu. Rev. Microbiol. , vol.68 , Issue.1 , pp. 357-376
    • Feklístov, A.1    Sharon, B.D.2    Darst, S.A.3    Gross, C.A.4
  • 79
    • 11144228250 scopus 로고    scopus 로고
    • Association of RNA polymerase with transcribed regions in Escherichia coli
    • Wade, J.T., Struhl, K., Association of RNA polymerase with transcribed regions in Escherichia coli. Proc. Natl. Acad. Sci. USA, 2004, 2004.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.2004
    • Wade, J.T.1    Struhl, K.2
  • 80
    • 0029810991 scopus 로고    scopus 로고
    • Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli : intracellular levels of four species of sigma subunit under various growth conditions
    • Jishage, M., Iwata, A., Ueda, S., Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli : intracellular levels of four species of sigma subunit under various growth conditions. J. Bacteriol. 178:18 (1996), 5447–5451.
    • (1996) J. Bacteriol. , vol.178 , Issue.18 , pp. 5447-5451
    • Jishage, M.1    Iwata, A.2    Ueda, S.3
  • 81
    • 85056928037 scopus 로고    scopus 로고
    • Effect of rpoS gene knockout on the metabolism of escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations Mahbuba
    • Rahman, M., Hasan, M.R., Oba, T., Shimizu, K., Effect of rpoS gene knockout on the metabolism of escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations Mahbuba. Appl. Environ. Microbiol. 94:3 (2009), 2705–2711.
    • (2009) Appl. Environ. Microbiol. , vol.94 , Issue.3 , pp. 2705-2711
    • Rahman, M.1    Hasan, M.R.2    Oba, T.3    Shimizu, K.4
  • 82
    • 84885943611 scopus 로고    scopus 로고
    • Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress
    • Gaida, S.M., Al-Hinai, M.A., Indurthi, D.C., Nicolaou, S.A., Papoutsakis, E.T., Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Res. 41:18 (2013), 8726–8737.
    • (2013) Nucleic Acids Res. , vol.41 , Issue.18 , pp. 8726-8737
    • Gaida, S.M.1    Al-Hinai, M.A.2    Indurthi, D.C.3    Nicolaou, S.A.4    Papoutsakis, E.T.5
  • 83
    • 85018327220 scopus 로고    scopus 로고
    • Switching between nitrogen and glucose limitation: unraveling transcriptional dynamics in Escherichia coli
    • (no. January)
    • Löffler, M., et al. Switching between nitrogen and glucose limitation: unraveling transcriptional dynamics in Escherichia coli. (no. January) J. Biotechnol. 258 (2017), 2–12.
    • (2017) J. Biotechnol. , vol.258 , pp. 2-12
    • Löffler, M.1
  • 84
    • 33845442201 scopus 로고    scopus 로고
    • Engineering yeast transcription machinery for improved ethanol tolerance and Production
    • Alper, H., Moxley, J., Nevoigt, E., Fink, G.R., Stephanopoulos, G., Engineering yeast transcription machinery for improved ethanol tolerance and Production. Science (80-) 314:2006 (2006), 1565–1568.
    • (2006) Science (80-) , vol.314 , Issue.2006 , pp. 1565-1568
    • Alper, H.1    Moxley, J.2    Nevoigt, E.3    Fink, G.R.4    Stephanopoulos, G.5
  • 85
    • 33847083318 scopus 로고    scopus 로고
    • Global transcription machinery engineering: a new approach for improving cellular phenotype
    • Alper, H., Stephanopoulos, G., Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab. Eng. 9:3 (2007), 258–267.
    • (2007) Metab. Eng. , vol.9 , Issue.3 , pp. 258-267
    • Alper, H.1    Stephanopoulos, G.2
  • 86
    • 18844392599 scopus 로고    scopus 로고
    • Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli
    • Alper, H., Jin, Y.S., Moxley, J.F., Stephanopoulos, G., Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7:3 (2005), 155–164.
    • (2005) Metab. Eng. , vol.7 , Issue.3 , pp. 155-164
    • Alper, H.1    Jin, Y.S.2    Moxley, J.F.3    Stephanopoulos, G.4
  • 87
    • 84946415752 scopus 로고    scopus 로고
    • Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering
    • Zhang, F., Qian, X., Si, H., Xu, G., Han, R., Ni, Y., Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering. Microb. Cell Fact. 14:1 (2015), 1–11.
    • (2015) Microb. Cell Fact. , vol.14 , Issue.1 , pp. 1-11
    • Zhang, F.1    Qian, X.2    Si, H.3    Xu, G.4    Han, R.5    Ni, Y.6
  • 88
    • 84921283583 scopus 로고    scopus 로고
    • BREX is a novel phage resistance system widespread in microbial genomes
    • Goldfarb, T., et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 34:2 (2015), 169–183.
    • (2015) EMBO J. , vol.34 , Issue.2 , pp. 169-183
    • Goldfarb, T.1
  • 89
    • 34948909644 scopus 로고    scopus 로고
    • Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12
    • Bettenbrock, K., Sauter, T., Jahreis, K., Kremling, A., Lengeler, J.W., Gilles, E.D., Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. J. Bacteriol. 189:19 (2007), 6891–6900.
    • (2007) J. Bacteriol. , vol.189 , Issue.19 , pp. 6891-6900
    • Bettenbrock, K.1    Sauter, T.2    Jahreis, K.3    Kremling, A.4    Lengeler, J.W.5    Gilles, E.D.6
  • 90
    • 70350508288 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine
    • Qian, Z.G., Xia, X.X., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol. Bioeng. 104:4 (2009), 651–662.
    • (2009) Biotechnol. Bioeng. , vol.104 , Issue.4 , pp. 651-662
    • Qian, Z.G.1    Xia, X.X.2    Lee, S.Y.3
  • 91
    • 80555150662 scopus 로고    scopus 로고
    • An evolutionary strategy for isobutanol production strain development in Escherichia coli
    • Smith, K.M., Liao, J.C., An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab. Eng. 13:6 (2011), 674–681.
    • (2011) Metab. Eng. , vol.13 , Issue.6 , pp. 674-681
    • Smith, K.M.1    Liao, J.C.2
  • 92
    • 84865281539 scopus 로고    scopus 로고
    • Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli
    • Santos, C.N.S., Xiao, W., Stephanopoulos, G., Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proc. Natl. Acad. Sci. USA 109:34 (2012), 13538–13543.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , Issue.34 , pp. 13538-13543
    • Santos, C.N.S.1    Xiao, W.2    Stephanopoulos, G.3
  • 93
    • 77149120797 scopus 로고    scopus 로고
    • Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux and metabolic flux
    • (no. May)
    • Wang, Q., Zhang, Y., Yang, C., Xiong, H., Lin, Y., Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux and metabolic flux. (no. May) Science (80) 327 (2010), 1004–1007.
    • (2010) Science (80) , vol.327 , pp. 1004-1007
    • Wang, Q.1    Zhang, Y.2    Yang, C.3    Xiong, H.4    Lin, Y.5
  • 94
    • 85018466567 scopus 로고    scopus 로고
    • Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions
    • Brown, C.W., et al. Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions. BMC Genom., 18(1), 2017, 301.
    • (2017) BMC Genom. , vol.18 , Issue.1 , pp. 301
    • Brown, C.W.1
  • 95
    • 84879401680 scopus 로고    scopus 로고
    • Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium
    • Soares, N.C., Spat, P., Krug, K., Macek, B., Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium. J. Proteome Res. 12:6 (2013), 2611–2621.
    • (2013) J. Proteome Res. , vol.12 , Issue.6 , pp. 2611-2621
    • Soares, N.C.1    Spat, P.2    Krug, K.3    Macek, B.4
  • 96
    • 61649089277 scopus 로고    scopus 로고
    • Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli
    • Zhang, J., et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol. Cell. Proteom. 8:2 (2009), 215–225.
    • (2009) Mol. Cell. Proteom. , vol.8 , Issue.2 , pp. 215-225
    • Zhang, J.1
  • 97
    • 84953737483 scopus 로고    scopus 로고
    • The quantitative and condition-dependent Escherichia coli proteome
    • Schmidt, A., et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34:1 (2016), 104–110.
    • (2016) Nat. Biotechnol. , vol.34 , Issue.1 , pp. 104-110
    • Schmidt, A.1
  • 98
    • 84940476302 scopus 로고    scopus 로고
    • Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic Stress
    • Hentchel, K.L., Escalante-Semerena, J.C., Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic Stress. Microbiol. Mol. Biol. Rev. 79:3 (2015), 321–346.
    • (2015) Microbiol. Mol. Biol. Rev. , vol.79 , Issue.3 , pp. 321-346
    • Hentchel, K.L.1    Escalante-Semerena, J.C.2
  • 99
    • 84880426255 scopus 로고    scopus 로고
    • Acetyl-phosphate is a critical determinant of lysine acetylation in E.coli
    • Weinert, B.T., et al. Acetyl-phosphate is a critical determinant of lysine acetylation in E.coli. Mol. Cell 51:2 (2013), 265–272.
    • (2013) Mol. Cell , vol.51 , Issue.2 , pp. 265-272
    • Weinert, B.T.1
  • 100
    • 77954013335 scopus 로고    scopus 로고
    • Bacterial protein acetylation: the dawning of a new age
    • Linda I, H., Bruno P, L., Alan J, W., Bacterial protein acetylation: the dawning of a new age. Mol. Microbiol. 77:1 (2010), 15–21.
    • (2010) Mol. Microbiol. , vol.77 , Issue.1 , pp. 15-21
    • Linda I, H.1    Bruno P, L.2    Alan J, W.3
  • 101
    • 79954582107 scopus 로고    scopus 로고
    • Control of protein function by reversible N-lysine acetylation in bacteria
    • Thao, S., Escalante-Semerena, J.C., Control of protein function by reversible N-lysine acetylation in bacteria. Curr. Opin. Microbiol. 14:2 (2011), 200–204.
    • (2011) Curr. Opin. Microbiol. , vol.14 , Issue.2 , pp. 200-204
    • Thao, S.1    Escalante-Semerena, J.C.2
  • 102
    • 84922810755 scopus 로고    scopus 로고
    • The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites
    • Abouelfetouh, A., et al. The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. Microbiologyopen 4:1 (2015), 66–83.
    • (2015) Microbiologyopen , vol.4 , Issue.1 , pp. 66-83
    • Abouelfetouh, A.1
  • 103
    • 82155175630 scopus 로고    scopus 로고
    • cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli
    • Castaño-Cerezo, S., Bernal, V., Blanco-Catalá, J., Iborra, J.L., Cánovas, M., cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli. Mol. Microbiol 82:5 (2011), 1110–1128.
    • (2011) Mol. Microbiol , vol.82 , Issue.5 , pp. 1110-1128
    • Castaño-Cerezo, S.1    Bernal, V.2    Blanco-Catalá, J.3    Iborra, J.L.4    Cánovas, M.5
  • 104
    • 84983188006 scopus 로고    scopus 로고
    • Protein acetylation dynamics in response to carbon overflow in Escherichia coli
    • Schilling, B., et al. Protein acetylation dynamics in response to carbon overflow in Escherichia coli. Mol. Microbiol. 98:5 (2015), 847–863.
    • (2015) Mol. Microbiol. , vol.98 , Issue.5 , pp. 847-863
    • Schilling, B.1
  • 105
    • 0019275308 scopus 로고
    • Structural, enzymatic, and genetic studies of ??-ketoacyl-acyl carrier protein synthases I and II of Escherichia coli
    • Garwin, J.L., Klages, a.L., Cronan, J.E., Structural, enzymatic, and genetic studies of ??-ketoacyl-acyl carrier protein synthases I and II of Escherichia coli. J. Biol. Chem. 255:24 (1980), 11949–11956.
    • (1980) J. Biol. Chem. , vol.255 , Issue.24 , pp. 11949-11956
    • Garwin, J.L.1    Klages, A.L.2    Cronan, J.E.3
  • 106
    • 84921498354 scopus 로고    scopus 로고
    • Ser/Thr phosphorylation as a regulatory mechanism in bacteria
    • Dworkin, J., Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr. Opin. Microbiol. 24 (2015), 47–52.
    • (2015) Curr. Opin. Microbiol. , vol.24 , pp. 47-52
    • Dworkin, J.1
  • 107
    • 0033038516 scopus 로고    scopus 로고
    • Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb
    • Vincent, C., Doublet, P., Grangeasse, C., Vaganay, E., Cozzone, A.J., Duclos, B., Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J. Bacteriol. 181:11 (1999), 3472–3477.
    • (1999) J. Bacteriol. , vol.181 , Issue.11 , pp. 3472-3477
    • Vincent, C.1    Doublet, P.2    Grangeasse, C.3    Vaganay, E.4    Cozzone, A.J.5    Duclos, B.6
  • 108
    • 85000842795 scopus 로고    scopus 로고
    • Characterization of protein lysine propionylation in Escherichia coli: global profiling, dynamic change, and enzymatic regulation
    • Sun, M., et al. Characterization of protein lysine propionylation in Escherichia coli: global profiling, dynamic change, and enzymatic regulation. J. Proteome Res. 15:12 (2016), 4696–4708.
    • (2016) J. Proteome Res. , vol.15 , Issue.12 , pp. 4696-4708
    • Sun, M.1
  • 109
    • 84890673317 scopus 로고    scopus 로고
    • Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli
    • Colak, G., et al. Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol. Cell. Proteom. 12:12 (2013), 3509–3520.
    • (2013) Mol. Cell. Proteom. , vol.12 , Issue.12 , pp. 3509-3520
    • Colak, G.1
  • 110
    • 0033546122 scopus 로고    scopus 로고
    • High-throughput mass spectrometric discovery of protein post-translational modifications
    • Wilkins, M.R., et al. High-throughput mass spectrometric discovery of protein post-translational modifications. J. Mol. Biol. 289:3 (1999), 645–657.
    • (1999) J. Mol. Biol. , vol.289 , Issue.3 , pp. 645-657
    • Wilkins, M.R.1
  • 111
    • 81855227262 scopus 로고    scopus 로고
    • Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals
    • Jarboe, L.R., Liu, P., Royce, L.A., Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Curr. Opin. Chem. Eng. 1:1 (2011), 38–42.
    • (2011) Curr. Opin. Chem. Eng. , vol.1 , Issue.1 , pp. 38-42
    • Jarboe, L.R.1    Liu, P.2    Royce, L.A.3
  • 112
    • 77953022341 scopus 로고    scopus 로고
    • A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation
    • Nicolaou, S.A., Gaida, S.M., E. T. P. Ã, A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab. Eng. 12:4 (2010), 307–331.
    • (2010) Metab. Eng. , vol.12 , Issue.4 , pp. 307-331
    • Nicolaou, S.A.1    Gaida, S.M.2    E.T.P. Ã3
  • 113
    • 78650647970 scopus 로고    scopus 로고
    • Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli
    • Atsumi, S., et al. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol. Syst. Biol., 6(449), 2010, 449.
    • (2010) Mol. Syst. Biol. , vol.6 , Issue.449 , pp. 449
    • Atsumi, S.1
  • 114
    • 80053172430 scopus 로고    scopus 로고
    • Engineering microbes for tolerance to next-generation biofuels
    • Dunlop, M.J., Engineering microbes for tolerance to next-generation biofuels. Biotechnol. Biofuels 4 (2011), 1–9.
    • (2011) Biotechnol. Biofuels , vol.4 , pp. 1-9
    • Dunlop, M.J.1
  • 116
    • 84955264971 scopus 로고    scopus 로고
    • Production of biorenewable styrene: utilization of biomass ‑ derived sugars and insights into toxicity
    • Lian, J., Mckenna, R., Rover, M.R., Nielsen, D.R., Wen, Z., Jarboe, L.R., Production of biorenewable styrene: utilization of biomass ‑ derived sugars and insights into toxicity. J. Ind. Microbiol. Biotechnol. 43:5 (2016), 595–604.
    • (2016) J. Ind. Microbiol. Biotechnol. , vol.43 , Issue.5 , pp. 595-604
    • Lian, J.1    Mckenna, R.2    Rover, M.R.3    Nielsen, D.R.4    Wen, Z.5    Jarboe, L.R.6
  • 117
    • 85056965176 scopus 로고    scopus 로고
    • Engineering microbial biofuel tolerance and export using efflux pumps
    • Dunlop, M.J., et al. Engineering microbial biofuel tolerance and export using efflux pumps. Mol. Syst. Biol. 7:487 (2011), 1–7.
    • (2011) Mol. Syst. Biol. , vol.7 , Issue.487 , pp. 1-7
    • Dunlop, M.J.1
  • 118
    • 77951074736 scopus 로고    scopus 로고
    • Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli
    • Takatsuka, Y., Chen, C., Nikaido, H., Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc. Natl. Acad. Sci. USA 107:15 (2010), 6559–6565.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , Issue.15 , pp. 6559-6565
    • Takatsuka, Y.1    Chen, C.2    Nikaido, H.3
  • 119
    • 77749245785 scopus 로고    scopus 로고
    • Functional genomic study of exogenous n-butanol stress in Escherichia coli
    • Rutherford, B.J., et al. Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl. Environ. Microbiol. 76:6 (2010), 1935–1945.
    • (2010) Appl. Environ. Microbiol. , vol.76 , Issue.6 , pp. 1935-1945
    • Rutherford, B.J.1
  • 120
    • 84959482163 scopus 로고    scopus 로고
    • Engineering of high yield production of L-serine in Escherichia coli
    • Mundhada, H., Schneider, K., Christensen, H.B., Nielsen, A.T., Engineering of high yield production of L-serine in Escherichia coli. Biotechnol. Bioeng. 113:4 (2016), 807–816.
    • (2016) Biotechnol. Bioeng. , vol.113 , Issue.4 , pp. 807-816
    • Mundhada, H.1    Schneider, K.2    Christensen, H.B.3    Nielsen, A.T.4
  • 121
    • 85008192136 scopus 로고    scopus 로고
    • Increased production of L-serine in Escherichia coli through adaptive laboratory evolution
    • (no. May 2016)
    • Mundhada, H., et al. Increased production of L-serine in Escherichia coli through adaptive laboratory evolution. (no. May 2016) Metab. Eng. 39 (2017), 141–150.
    • (2017) Metab. Eng. , vol.39 , pp. 141-150
    • Mundhada, H.1
  • 122
    • 84927514444 scopus 로고    scopus 로고
    • Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity
    • Royce, L.A., Yoon, J.M., Chen, Y., Rickenbach, E., Shanks, J.V., Jarboe, L.R., Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab. Eng. 29 (2015), 180–188.
    • (2015) Metab. Eng. , vol.29 , pp. 180-188
    • Royce, L.A.1    Yoon, J.M.2    Chen, Y.3    Rickenbach, E.4    Shanks, J.V.5    Jarboe, L.R.6
  • 123
    • 85019708894 scopus 로고    scopus 로고
    • Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance
    • Jin, T., et al. Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance. J. Ind. Microbiol. Biotechnol. 44:9 (2017), 1279–1292.
    • (2017) J. Ind. Microbiol. Biotechnol. , vol.44 , Issue.9 , pp. 1279-1292
    • Jin, T.1
  • 124
    • 85028962913 scopus 로고    scopus 로고
    • Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables
    • (no. August)
    • Tana, Z., et al. Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables. (no. August) Metab. Eng. 44 (2017), 1–12.
    • (2017) Metab. Eng. , vol.44 , pp. 1-12
    • Tana, Z.1
  • 125
    • 84959318102 scopus 로고    scopus 로고
    • Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of bioren
    • (no. February)
    • Tan, Z., Shanks, J.V., Jarboe, L.R., Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of bioren. (no. February) Metab. Eng. 35 (2016), 105–113.
    • (2016) Metab. Eng. , vol.35 , pp. 105-113
    • Tan, Z.1    Shanks, J.V.2    Jarboe, L.R.3
  • 127
    • 13444262374 scopus 로고    scopus 로고
    • EcoCyc: a comprehensive database resource for Escherichia coli
    • (no. Database issue)
    • Keseler, I.M., et al. EcoCyc: a comprehensive database resource for Escherichia coli. (no. Database issue) Nucleic Acids Res 33 (2005), 334–337.
    • (2005) Nucleic Acids Res , vol.33 , pp. 334-337
    • Keseler, I.M.1
  • 129
    • 85027715197 scopus 로고    scopus 로고
    • Underground metabolism: network-level perspective and biotechnological potential
    • Notebaart, R.A., Kintses, B., Feist, A.M., Papp, B., Underground metabolism: network-level perspective and biotechnological potential. Curr. Opin. Biotechnol. 49 (2018), 108–114.
    • (2018) Curr. Opin. Biotechnol. , vol.49 , pp. 108-114
    • Notebaart, R.A.1    Kintses, B.2    Feist, A.M.3    Papp, B.4
  • 131
    • 0021471746 scopus 로고
    • Acid-Base catalysis of the elimination and isomerization reactions of triose phosphates
    • Richard, J.P., Acid-Base catalysis of the elimination and isomerization reactions of triose phosphates. J. Am. Chem. Soc. 106:17 (1984), 4926–4936.
    • (1984) J. Am. Chem. Soc. , vol.106 , Issue.17 , pp. 4926-4936
    • Richard, J.P.1
  • 132
    • 0027286747 scopus 로고
    • Mechanism for the formation of methylglyoxal from triosephosphates
    • Richard, J.P., Mechanism for the formation of methylglyoxal from triosephosphates. Biochem. Soc. Trans. 21:2 (1993), 171–174.
    • (1993) Biochem. Soc. Trans. , vol.21 , Issue.2 , pp. 171-174
    • Richard, J.P.1
  • 133
    • 84922264295 scopus 로고    scopus 로고
    • Parkinsonism-associated protein DJ-1/park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues
    • Richarme, G., Mihoub, M., Dairou, J., Chi Bui, L., Leger, T., Lamouri, A., Parkinsonism-associated protein DJ-1/park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues. J. Biol. Chem. 290:3 (2015), 1885–1897.
    • (2015) J. Biol. Chem. , vol.290 , Issue.3 , pp. 1885-1897
    • Richarme, G.1    Mihoub, M.2    Dairou, J.3    Chi Bui, L.4    Leger, T.5    Lamouri, A.6
  • 135
    • 84968735652 scopus 로고    scopus 로고
    • The costs of photorespiration to food production now and in the Future
    • Walker, B.J., VanLoocke, A., Bernacchi, C.J., Ort, D.R., The costs of photorespiration to food production now and in the Future. Annu. Rev. Plant Biol. 67:1 (2016), 107–129.
    • (2016) Annu. Rev. Plant Biol. , vol.67 , Issue.1 , pp. 107-129
    • Walker, B.J.1    VanLoocke, A.2    Bernacchi, C.J.3    Ort, D.R.4
  • 136
    • 85031774799 scopus 로고    scopus 로고
    • Metabolite damage and repair in metabolic engineering design
    • (no. October)
    • Sun, J., Jeffryes, J.G., Henry, C.S., Bruner, S.D., Hanson, A.D., Metabolite damage and repair in metabolic engineering design. (no. October) Metab. Eng. 44 (2017), 150–159.
    • (2017) Metab. Eng. , vol.44 , pp. 150-159
    • Sun, J.1    Jeffryes, J.G.2    Henry, C.S.3    Bruner, S.D.4    Hanson, A.D.5
  • 137
    • 84956575857 scopus 로고    scopus 로고
    • The DJ-1 superfamily members YhbO and YajL from Escherichia coli repair proteins from glycation by methylglyoxal and glyoxal
    • Abdallah, J., Mihoub, M., Gautier, V., Richarme, G., The DJ-1 superfamily members YhbO and YajL from Escherichia coli repair proteins from glycation by methylglyoxal and glyoxal. Biochem. Biophys. Res. Commun. 470:2 (2016), 282–286.
    • (2016) Biochem. Biophys. Res. Commun. , vol.470 , Issue.2 , pp. 282-286
    • Abdallah, J.1    Mihoub, M.2    Gautier, V.3    Richarme, G.4
  • 138
    • 0016302743 scopus 로고
    • Glyceraldehyde-3-phosphate dehydrogenase catalyzed hydration of the 5-6 double bond of reduced β-nicotinamide adenine dinucleotide (βNADH). Formation of β-6-hydroxy-1, 4, 5, 6-tetrahydronicotinamide adenine dinucleotide
    • Oppenheimer, N.J., Kaplan, N.O., Glyceraldehyde-3-phosphate dehydrogenase catalyzed hydration of the 5-6 double bond of reduced β-nicotinamide adenine dinucleotide (βNADH). Formation of β-6-hydroxy-1, 4, 5, 6-tetrahydronicotinamide adenine dinucleotide. Biochemistry 13:23 (1974), 4685–4694.
    • (1974) Biochemistry , vol.13 , Issue.23 , pp. 4685-4694
    • Oppenheimer, N.J.1    Kaplan, N.O.2
  • 139
  • 140
    • 85017594637 scopus 로고    scopus 로고
    • Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione
    • Peracchi, A., et al. Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione. Proc. Natl. Acad. Sci. USA 114:16 (2017), E3233–E3242.
    • (2017) Proc. Natl. Acad. Sci. USA , vol.114 , Issue.16 , pp. E3233-E3242
    • Peracchi, A.1
  • 141
    • 0025160752 scopus 로고
    • Serine hydroxymethyltransferase catalyzes the hydrolysis to 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate
    • Stover, P., Schirchs, V., Serine hydroxymethyltransferase catalyzes the hydrolysis to 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. J. Biol. Chem. 265:24 (1990), 14227–14233.
    • (1990) J. Biol. Chem. , vol.265 , Issue.24 , pp. 14227-14233
    • Stover, P.1    Schirchs, V.2
  • 142
    • 0035433143 scopus 로고    scopus 로고
    • L-pyroglutamate spontaneously formed from L -glutamate inhibits growth of the hyperthermophilic archaeon sulfolobus solfataricus
    • Park, C.B., Lee, S.B., Ryu, D.D.Y., L-pyroglutamate spontaneously formed from L -glutamate inhibits growth of the hyperthermophilic archaeon sulfolobus solfataricus. Appl. Environ. Microbiol. 67:8 (2001), 3650–3654.
    • (2001) Appl. Environ. Microbiol. , vol.67 , Issue.8 , pp. 3650-3654
    • Park, C.B.1    Lee, S.B.2    Ryu, D.D.Y.3
  • 143
    • 84991740197 scopus 로고    scopus 로고
    • Multi-omics Quantification of species variation of Escherichia coli links molecular features with strain phenotypes
    • (238–251.e12) (238–251.e12)
    • Monk, J.M., et al. Multi-omics Quantification of species variation of Escherichia coli links molecular features with strain phenotypes. (238–251.e12) Cell Syst., 3(3), 2016 (238–251.e12).
    • (2016) Cell Syst. , vol.3 , Issue.3
    • Monk, J.M.1
  • 145
    • 78650475398 scopus 로고    scopus 로고
    • Phenotypic landscape of a bacterial cell
    • Nichols, R.J., et al. Phenotypic landscape of a bacterial cell. Cell 144:1 (2011), 143–156.
    • (2011) Cell , vol.144 , Issue.1 , pp. 143-156
    • Nichols, R.J.1
  • 147
    • 84906861310 scopus 로고    scopus 로고
    • High-throughput discovery metabolomics
    • Fuhrer, T., Zamboni, N., High-throughput discovery metabolomics. Curr. Opin. Biotechnol. 31 (2015), 73–78.
    • (2015) Curr. Opin. Biotechnol. , vol.31 , pp. 73-78
    • Fuhrer, T.1    Zamboni, N.2
  • 148
  • 149
    • 85004191344 scopus 로고    scopus 로고
    • Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli
    • Sévin, D.C., Fuhrer, T., Zamboni, N., Sauer, U., Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. Nat. Methods 14:2 (2017), 187–194.
    • (2017) Nat. Methods , vol.14 , Issue.2 , pp. 187-194
    • Sévin, D.C.1    Fuhrer, T.2    Zamboni, N.3    Sauer, U.4
  • 150
    • 84903144112 scopus 로고    scopus 로고
    • Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production
    • George, K.W., et al. Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. Biotechnol. Bioeng. 111:8 (2014), 1648–1658.
    • (2014) Biotechnol. Bioeng. , vol.111 , Issue.8 , pp. 1648-1658
    • George, K.W.1
  • 151
    • 85044223832 scopus 로고    scopus 로고
    • Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology
    • (no. September)
    • Haas, R., Zelezniak, A., Iacovacci, J., Kamrad, S., Townsend, S., Ralser, M., Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology. (no. September) Curr. Opin. Syst. Biol. 6 (2017), 37–45.
    • (2017) Curr. Opin. Syst. Biol. , vol.6 , pp. 37-45
    • Haas, R.1    Zelezniak, A.2    Iacovacci, J.3    Kamrad, S.4    Townsend, S.5    Ralser, M.6
  • 152
    • 0029828233 scopus 로고    scopus 로고
    • Strategies for achieving high-level expression of genes in Escherichia coli
    • Makrides, S.C., Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Mol. Biol. Rev. 60:3 (1996), 512–538.
    • (1996) Microbiol. Mol. Biol. Rev. , vol.60 , Issue.3 , pp. 512-538
    • Makrides, S.C.1
  • 153
    • 33847073370 scopus 로고    scopus 로고
    • Expanding the metabolic engineering toolbox: more options to engineer cells
    • Tyo, K.E., Alper, H.S., Stephanopoulos, G.N., Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol. 25:3 (2007), 132–137.
    • (2007) Trends Biotechnol. , vol.25 , Issue.3 , pp. 132-137
    • Tyo, K.E.1    Alper, H.S.2    Stephanopoulos, G.N.3
  • 154
    • 0035337803 scopus 로고    scopus 로고
    • Techniques: recombinogenic engineering - new options for cloning and manipulating DNA
    • Muyrers, J.P.P., Zhang, Y., Stewart, A.F., Techniques: recombinogenic engineering - new options for cloning and manipulating DNA. Trends Biochem. Sci. 26:5 (2001), 325–331.
    • (2001) Trends Biochem. Sci. , vol.26 , Issue.5 , pp. 325-331
    • Muyrers, J.P.P.1    Zhang, Y.2    Stewart, A.F.3
  • 155
    • 33745454125 scopus 로고    scopus 로고
    • Synthetic biology: new engineering rules for an emerging discipline
    • Andrianantoandro, E., Basu, S., Karig, D.K., Weiss, R., Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2 (2006), 1–14.
    • (2006) Mol. Syst. Biol. , vol.2 , pp. 1-14
    • Andrianantoandro, E.1    Basu, S.2    Karig, D.K.3    Weiss, R.4
  • 156
    • 0034612342 scopus 로고    scopus 로고
    • One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    • Datsenko, K. a., Wanner, B.L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97:12 (2000), 6640–6645.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , Issue.12 , pp. 6640-6645
    • Datsenko, K.A.1    Wanner, B.L.2
  • 157
    • 43149090031 scopus 로고    scopus 로고
    • Simple generation of site-directed point mutations in the Escherichia coli chromosome using Red(R)/ET(R) Recombination
    • Heermann, R., Zeppenfeld, T., Jung, K., Simple generation of site-directed point mutations in the Escherichia coli chromosome using Red(R)/ET(R) Recombination. Microb. Cell Fact., 7, 2008, 14.
    • (2008) Microb. Cell Fact. , vol.7 , pp. 14
    • Heermann, R.1    Zeppenfeld, T.2    Jung, K.3
  • 158
    • 77951278557 scopus 로고    scopus 로고
    • Site-specific chromosomal integration of large synthetic constructs
    • Kuhlman, T.E., Cox, E.C., Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res., 38(6), 2010.
    • (2010) Nucleic Acids Res. , vol.38 , Issue.6
    • Kuhlman, T.E.1    Cox, E.C.2
  • 160
    • 84925355124 scopus 로고    scopus 로고
    • Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
    • Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., Yang, S., Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 81:7 (2015), 2506–2514.
    • (2015) Appl. Environ. Microbiol. , vol.81 , Issue.7 , pp. 2506-2514
    • Jiang, Y.1    Chen, B.2    Duan, C.3    Sun, B.4    Yang, J.5    Yang, S.6
  • 161
    • 68949161807 scopus 로고    scopus 로고
    • Programming cells by multiplex genome engineering and accelerated evolution
    • Wang, H.H., et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:7257 (2009), 894–898.
    • (2009) Nature , vol.460 , Issue.7257 , pp. 894-898
    • Wang, H.H.1
  • 162
    • 0035810938 scopus 로고    scopus 로고
    • High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides
    • Ellis, H.M., Yu, D., DiTizio, T., Court, D.L., High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. USA 98:12 (2001), 6742–6746.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , Issue.12 , pp. 6742-6746
    • Ellis, H.M.1    Yu, D.2    DiTizio, T.3    Court, D.L.4
  • 163
    • 67651164996 scopus 로고    scopus 로고
    • Conformational adaptability of Redβ during DNa annealing and implications for its structural relationship with Rad52
    • Erler, A., et al. Conformational adaptability of Redβ during DNa annealing and implications for its structural relationship with Rad52. J. Mol. Biol. 391:3 (2009), 586–598.
    • (2009) J. Mol. Biol. , vol.391 , Issue.3 , pp. 586-598
    • Erler, A.1
  • 164
    • 0026355962 scopus 로고
    • Mechanisms and biological effects of mismatch repair
    • Modrich, P., Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet., 25, 1991.
    • (1991) Annu. Rev. Genet. , vol.25
    • Modrich, P.1
  • 165
    • 79957439984 scopus 로고    scopus 로고
    • Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion
    • Wang, H.H., Xu, G., Vonner, A.J., Church, G., Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion. Nucleic Acids Res. 39:16 (2011), 7336–7347.
    • (2011) Nucleic Acids Res. , vol.39 , Issue.16 , pp. 7336-7347
    • Wang, H.H.1    Xu, G.2    Vonner, A.J.3    Church, G.4
  • 166
    • 79960502359 scopus 로고    scopus 로고
    • Precise manipulation of chromosomes in vivo enables genome-wide codon replacement
    • (no. July)
    • Isaacs, F.J., et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. (no. July) Science 333 (2011), 348–353.
    • (2011) Science , vol.333 , pp. 348-353
    • Isaacs, F.J.1
  • 167
    • 84861963767 scopus 로고    scopus 로고
    • Genome-scale promoter engineering by coselection MAGE
    • Wang, H.H., Kim, H., Cong, L., Jeong, J., Bang, D., Church, G.M., Genome-scale promoter engineering by coselection MAGE. Nat. Methods 9:6 (2012), 591–593.
    • (2012) Nat. Methods , vol.9 , Issue.6 , pp. 591-593
    • Wang, H.H.1    Kim, H.2    Cong, L.3    Jeong, J.4    Bang, D.5    Church, G.M.6
  • 168
    • 84994391729 scopus 로고    scopus 로고
    • CRISPR technologies for bacterial systems: current achievements and future directions
    • Choi, K.R., Lee, S.Y., CRISPR technologies for bacterial systems: current achievements and future directions. Biotechnol. Adv. 34:7 (2016), 1180–1209.
    • (2016) Biotechnol. Adv. , vol.34 , Issue.7 , pp. 1180-1209
    • Choi, K.R.1    Lee, S.Y.2
  • 169
    • 23844505202 scopus 로고    scopus 로고
    • Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
    • Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S. Dusko, Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:8 (2005), 2551–2561.
    • (2005) Microbiology , vol.151 , Issue.8 , pp. 2551-2561
    • Bolotin, A.1    Quinquis, B.2    Sorokin, A.3    Ehrlich, S.D.4
  • 170
    • 16444385662 scopus 로고    scopus 로고
    • Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
    • Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J., Soria, E., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60:2 (2005), 174–182.
    • (2005) J. Mol. Evol. , vol.60 , Issue.2 , pp. 174-182
    • Mojica, F.J.M.1    Díez-Villaseñor, C.2    García-Martínez, J.3    Soria, E.4
  • 171
    • 85056958387 scopus 로고    scopus 로고
    • Small CRISPR RNAs guide antiviral defense in prokaryotes stan
    • (no. May)
    • Brouns, S.J.J., et al. Small CRISPR RNAs guide antiviral defense in prokaryotes stan. (no. May) Science 311 (2006), 518–522.
    • (2006) Science , vol.311 , pp. 518-522
    • Brouns, S.J.J.1
  • 172
    • 84865070369 scopus 로고    scopus 로고
    • A programmable Dual-RNA – guided DNA endonuclease in adaptice bacterial immunity
    • (no. August)
    • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., A programmable Dual-RNA – guided DNA endonuclease in adaptice bacterial immunity. (no. August) Science 337 (2012), 816–822.
    • (2012) Science , vol.337 , pp. 816-822
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3    Hauer, M.4    Doudna, J.A.5    Charpentier, E.6
  • 174
    • 85026534475 scopus 로고    scopus 로고
    • Advances in industrial biotechnology using CRISPR-Cas systems
    • Donohoue, P.D., Barrangou, R., May, A.P., Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol., 36(2), 2017.
    • (2017) Trends Biotechnol. , vol.36 , Issue.2
    • Donohoue, P.D.1    Barrangou, R.2    May, A.P.3
  • 175
    • 79956157571 scopus 로고    scopus 로고
    • Evolution and classification of the CRISPR-Cas systems
    • Makarova, K.S., et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9:6 (2011), 467–477.
    • (2011) Nat. Rev. Microbiol. , vol.9 , Issue.6 , pp. 467-477
    • Makarova, K.S.1
  • 176
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    • Jiang, W., Bikard, D., Cox, D., Zhang, F., Marraffini, L.A., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31:3 (2013), 233–239.
    • (2013) Nat. Biotechnol. , vol.31 , Issue.3 , pp. 233-239
    • Jiang, W.1    Bikard, D.2    Cox, D.3    Zhang, F.4    Marraffini, L.A.5
  • 177
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • Deltcheva, E., et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:7340 (2011), 602–607.
    • (2011) Nature , vol.471 , Issue.7340 , pp. 602-607
    • Deltcheva, E.1
  • 178
    • 84895871173 scopus 로고    scopus 로고
    • DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
    • Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C., Doudna, J.A., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:7490 (2014), 62–67.
    • (2014) Nature , vol.507 , Issue.7490 , pp. 62-67
    • Sternberg, S.H.1    Redding, S.2    Jinek, M.3    Greene, E.C.4    Doudna, J.A.5
  • 179
    • 84970046200 scopus 로고    scopus 로고
    • Consequences of Cas9 cleavage in the chromosome of Escherichia coli
    • Cui, L., Bikard, D., Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. 44:9 (2016), 4243–4251.
    • (2016) Nucleic Acids Res. , vol.44 , Issue.9 , pp. 4243-4251
    • Cui, L.1    Bikard, D.2
  • 180
    • 35348890199 scopus 로고    scopus 로고
    • Bacterial DNA repair by non-homologous end joining
    • Shuman, S., Glickman, M.S., Bacterial DNA repair by non-homologous end joining. Nat. Rev. Microbiol. 5:11 (2007), 852–861.
    • (2007) Nat. Rev. Microbiol. , vol.5 , Issue.11 , pp. 852-861
    • Shuman, S.1    Glickman, M.S.2
  • 181
    • 84936967101 scopus 로고    scopus 로고
    • Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli
    • Pyne, M.E., Moo-Young, M., Chung, D.A., Chou, C.P., Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. 81:15 (2015), 5103–5114.
    • (2015) Appl. Environ. Microbiol. , vol.81 , Issue.15 , pp. 5103-5114
    • Pyne, M.E.1    Moo-Young, M.2    Chung, D.A.3    Chou, C.P.4
  • 182
    • 84937538704 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing
    • Li, Y., et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab. Eng. 31 (2015), 13–21.
    • (2015) Metab. Eng. , vol.31 , pp. 13-21
    • Li, Y.1
  • 183
    • 84944320385 scopus 로고    scopus 로고
    • The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli
    • (no. September)
    • Reisch, C.R., Prather, K.L.J., The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli. (no. September) Sci. Rep. 5 (2015), 1–12.
    • (2015) Sci. Rep. , vol.5 , pp. 1-12
    • Reisch, C.R.1    Prather, K.L.J.2
  • 184
    • 85032981856 scopus 로고    scopus 로고
    • A systematically chromosomally engineered Escherichia coli efficiently produces butanol
    • (no. November)
    • Dong, H., et al. A systematically chromosomally engineered Escherichia coli efficiently produces butanol. (no. November) Metab. Eng. 44 (2017), 284–292.
    • (2017) Metab. Eng. , vol.44 , pp. 284-292
    • Dong, H.1
  • 185
    • 85038608824 scopus 로고    scopus 로고
    • Combining CRISPR and CRISPRi systems for metabolic engineering of E. coli and 1,4-BDO biosynthesis
    • Wu, M.Y., Sung, L.Y., Li, H., Huang, C.H., Hu, Y.C., Combining CRISPR and CRISPRi systems for metabolic engineering of E. coli and 1,4-BDO biosynthesis. ACS Synth. Biol. 6:12 (2017), 2350–2361.
    • (2017) ACS Synth. Biol. , vol.6 , Issue.12 , pp. 2350-2361
    • Wu, M.Y.1    Sung, L.Y.2    Li, H.3    Huang, C.H.4    Hu, Y.C.5
  • 186
    • 84980351609 scopus 로고    scopus 로고
    • Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9
    • Chung, M.E., et al. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnol. Bioeng. 114:1 (2017), 172–183.
    • (2017) Biotechnol. Bioeng. , vol.114 , Issue.1 , pp. 172-183
    • Chung, M.E.1
  • 187
    • 85056949988 scopus 로고    scopus 로고
    • Towards industrial production of isoprenoids in Escherichia coli: lessons learned from CRISPR-Cas9 based optimization of a chromosomally integrated mevalonate pathway
    • Alonso-Gutierrez, J., et al. Towards industrial production of isoprenoids in Escherichia coli: lessons learned from CRISPR-Cas9 based optimization of a chromosomally integrated mevalonate pathway. Biotechnol. Bioeng., 2017.
    • (2017) Biotechnol. Bioeng.
    • Alonso-Gutierrez, J.1
  • 188
    • 85029106382 scopus 로고    scopus 로고
    • The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway
    • (no. March)
    • Zhu, X., et al. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. (no. March) Metab. Eng. 43 (2017), 37–45.
    • (2017) Metab. Eng. , vol.43 , pp. 37-45
    • Zhu, X.1
  • 189
    • 85014750171 scopus 로고    scopus 로고
    • CRISPR Enabled trackable genome engineering for isopropanol production in Escherichia coli
    • Liang, L., et al. CRISPR Enabled trackable genome engineering for isopropanol production in Escherichia coli. Metab. Eng. 41 (2017), 1–10.
    • (2017) Metab. Eng. , vol.41 , pp. 1-10
    • Liang, L.1
  • 190
    • 84930197469 scopus 로고    scopus 로고
    • Targeted DNA degradation using a CRISPR device stably carried in the host genome
    • (no. May)
    • Caliando, B.J., Voigt, C.A., Targeted DNA degradation using a CRISPR device stably carried in the host genome. (no. May) Nat. Commun. 6 (2015), 1–10.
    • (2015) Nat. Commun. , vol.6 , pp. 1-10
    • Caliando, B.J.1    Voigt, C.A.2
  • 191
    • 0034783686 scopus 로고    scopus 로고
    • Using inactivated microbial biomass as fertilizer: the fate of antibiotic resistance genes in the environment
    • Andersen, J.T., Schäfer, T., Jørgensen, P.L., Møller, S., Using inactivated microbial biomass as fertilizer: the fate of antibiotic resistance genes in the environment. Res. Microbiol. 152:9 (2001), 823–833.
    • (2001) Res. Microbiol. , vol.152 , Issue.9 , pp. 823-833
    • Andersen, J.T.1    Schäfer, T.2    Jørgensen, P.L.3    Møller, S.4
  • 192
    • 37249047440 scopus 로고    scopus 로고
    • Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides
    • Parisien, A., Allain, B., Zhang, J., Mandeville, R., Lan, C.Q., Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J. Appl. Microbiol. 104:1 (2008), 1–13.
    • (2008) J. Appl. Microbiol. , vol.104 , Issue.1 , pp. 1-13
    • Parisien, A.1    Allain, B.2    Zhang, J.3    Mandeville, R.4    Lan, C.Q.5
  • 193
    • 84903362877 scopus 로고    scopus 로고
    • Programmable removal of bacterial strains by use of genome-targeting CRISPR/Cas systems
    • Gomaa, A. a., Klumpe, H.E., Luo, M.L., Selle, K., Barrangou, R., Beisel, L., Programmable removal of bacterial strains by use of genome-targeting CRISPR/Cas systems. MBio 5:1 (2014), e00928–13.
    • (2014) MBio , vol.5 , Issue.1 , pp. e00928-13
    • Gomaa, A.A.1    Klumpe, H.E.2    Luo, M.L.3    Selle, K.4    Barrangou, R.5    Beisel, L.6
  • 194
    • 84882986957 scopus 로고    scopus 로고
    • Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
    • Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., Marraffini, L.A., Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41:15 (2013), 7429–7437.
    • (2013) Nucleic Acids Res. , vol.41 , Issue.15 , pp. 7429-7437
    • Bikard, D.1    Jiang, W.2    Samai, P.3    Hochschild, A.4    Zhang, F.5    Marraffini, L.A.6
  • 195
    • 84899052707 scopus 로고    scopus 로고
    • Engineering synergy in biotechnology
    • Nielsen, J., et al. Engineering synergy in biotechnology. Nat. Chem. Biol. 10:5 (2014), 319–322.
    • (2014) Nat. Chem. Biol. , vol.10 , Issue.5 , pp. 319-322
    • Nielsen, J.1
  • 196
    • 84887855994 scopus 로고    scopus 로고
    • Genomic impact of CRISPR immunization against bacteriophages
    • Barrangou, R., et al. Genomic impact of CRISPR immunization against bacteriophages. Biochem. Soc. Trans. 41:6 (2013), 1383–1391.
    • (2013) Biochem. Soc. Trans. , vol.41 , Issue.6 , pp. 1383-1391
    • Barrangou, R.1
  • 197
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression
    • Qi, L.S., et al. Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression. Cell 152:5 (2013), 1173–1183.
    • (2013) Cell , vol.152 , Issue.5 , pp. 1173-1183
    • Qi, L.S.1
  • 198
    • 84865144676 scopus 로고    scopus 로고
    • CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection
    • Bikard, D., Hatoum-Aslan, A., Mucida, D., Marraffini, L.A., CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12:2 (2012), 177–186.
    • (2012) Cell Host Microbe , vol.12 , Issue.2 , pp. 177-186
    • Bikard, D.1    Hatoum-Aslan, A.2    Mucida, D.3    Marraffini, L.A.4
  • 200
    • 78651397316 scopus 로고    scopus 로고
    • Robust multicellular computing using genetically encoded NOR gates and chemical ‘wiresg,’
    • Tamsir, A., Tabor, J.J., Voigt, C.A., Robust multicellular computing using genetically encoded NOR gates and chemical ‘wiresg,’. Nature 469:7329 (2011), 212–215.
    • (2011) Nature , vol.469 , Issue.7329 , pp. 212-215
    • Tamsir, A.1    Tabor, J.J.2    Voigt, C.A.3
  • 202
    • 84868619337 scopus 로고    scopus 로고
    • Genetic programs constructed from layered logic gates in single cells
    • Moon, T.S., Lou, C., Tamsir, A., Stanton, B.C., Voigt, C.A., Genetic programs constructed from layered logic gates in single cells. Nature 491:7423 (2012), 249–253.
    • (2012) Nature , vol.491 , Issue.7423 , pp. 249-253
    • Moon, T.S.1    Lou, C.2    Tamsir, A.3    Stanton, B.C.4    Voigt, C.A.5
  • 203
    • 0036168937 scopus 로고    scopus 로고
    • Engineering polydactyl zinc-finger transcription factors
    • Beerli, R.R., Barbas, C.F., Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20:2 (2002), 135–141.
    • (2002) Nat. Biotechnol. , vol.20 , Issue.2 , pp. 135-141
    • Beerli, R.R.1    Barbas, C.F.2
  • 204
    • 34447319080 scopus 로고    scopus 로고
    • An improved zinc-finger nuclease architecture for highly specific genome editing
    • Miller, J.C., et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25:7 (2007), 778–785.
    • (2007) Nat. Biotechnol. , vol.25 , Issue.7 , pp. 778-785
    • Miller, J.C.1
  • 205
    • 78650739853 scopus 로고    scopus 로고
    • Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors
    • Morbitzer, R., Romer, P., Boch, J., Lahaye, T., Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc. Natl. Acad. Sci. USA 107:50 (2010), 21617–21622.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , Issue.50 , pp. 21617-21622
    • Morbitzer, R.1    Romer, P.2    Boch, J.3    Lahaye, T.4
  • 206
    • 84970002343 scopus 로고    scopus 로고
    • Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli
    • Cress, B.F., et al. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli. Nucleic Acids Res. 44:9 (2016), 4472–4485.
    • (2016) Nucleic Acids Res. , vol.44 , Issue.9 , pp. 4472-4485
    • Cress, B.F.1
  • 207
    • 84934936070 scopus 로고    scopus 로고
    • Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks
    • Nielsen, A.A., Voigt, C.A., Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Syst. Biol., 10(11), 2014, 763.
    • (2014) Mol. Syst. Biol. , vol.10 , Issue.11 , pp. 763
    • Nielsen, A.A.1    Voigt, C.A.2
  • 208
    • 84954421331 scopus 로고    scopus 로고
    • Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9
    • Didovyk, A., Borek, B., Hasty, J., Tsimring, L., Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9. ACS Synth. Biol. 5:1 (2016), 81–88.
    • (2016) ACS Synth. Biol. , vol.5 , Issue.1 , pp. 81-88
    • Didovyk, A.1    Borek, B.2    Hasty, J.3    Tsimring, L.4
  • 209
    • 84886488970 scopus 로고    scopus 로고
    • Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas
    • Farzadfard, F., Perli, S.D., Lu, T.K., Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2:10 (2013), 604–613.
    • (2013) ACS Synth. Biol. , vol.2 , Issue.10 , pp. 604-613
    • Farzadfard, F.1    Perli, S.D.2    Lu, T.K.3
  • 210
    • 33748537078 scopus 로고    scopus 로고
    • The evolving story of the omega subunit of bacterial RNA polymerase
    • Mathew, R., Chatterji, D., The evolving story of the omega subunit of bacterial RNA polymerase. Trends Microbiol. 14:10 (2006), 450–455.
    • (2006) Trends Microbiol. , vol.14 , Issue.10 , pp. 450-455
    • Mathew, R.1    Chatterji, D.2
  • 211
    • 85032740297 scopus 로고    scopus 로고
    • CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli
    • Kim, S.K., Seong, W., Han, G.H., Lee, D.H., Lee, S.G., CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli. Microb. Cell Fact. 16:1 (2017), 1–15.
    • (2017) Microb. Cell Fact. , vol.16 , Issue.1 , pp. 1-15
    • Kim, S.K.1    Seong, W.2    Han, G.H.3    Lee, D.H.4    Lee, S.G.5
  • 212
    • 85011320204 scopus 로고    scopus 로고
    • CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production
    • Cress, B.F., et al. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb. Cell Fact. 16:1 (2017), 1–14.
    • (2017) Microb. Cell Fact. , vol.16 , Issue.1 , pp. 1-14
    • Cress, B.F.1
  • 213
    • 84869097100 scopus 로고    scopus 로고
    • An adaptor from translational to transcriptional control enables predictable assembly of complex regulation
    • Liu, C.C., et al. An adaptor from translational to transcriptional control enables predictable assembly of complex regulation. Nat. Methods 9:11 (2012), 1088–1094.
    • (2012) Nat. Methods , vol.9 , Issue.11 , pp. 1088-1094
    • Liu, C.C.1
  • 214
    • 84866559567 scopus 로고    scopus 로고
    • De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells
    • Rodrigo, G., Landrain, T.E., Jaramillo, A., De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proc. Natl. Acad. Sci. USA 109:38 (2012), 15271–15276.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , Issue.38 , pp. 15271-15276
    • Rodrigo, G.1    Landrain, T.E.2    Jaramillo, A.3
  • 215
    • 84859842558 scopus 로고    scopus 로고
    • Rationally designed families of orthogonal RNA regulators of translation
    • Mutalik, V.K., Qi, L., Guimaraes, J.C., Lucks, J.B., Arkin, A.P., Rationally designed families of orthogonal RNA regulators of translation. Nat. Chem. Biol. 8:5 (2012), 447–454.
    • (2012) Nat. Chem. Biol. , vol.8 , Issue.5 , pp. 447-454
    • Mutalik, V.K.1    Qi, L.2    Guimaraes, J.C.3    Lucks, J.B.4    Arkin, A.P.5
  • 216
    • 79957700542 scopus 로고    scopus 로고
    • Versatile RNA-sensing transcriptional regulators for engineering genetic networks
    • Lucks, J.B., Qi, L., Mutalik, V.K., Wang, D., Arkin, A.P., Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc. Natl. Acad. Sci. 108:21 (2011), 8617–8622.
    • (2011) Proc. Natl. Acad. Sci. , vol.108 , Issue.21 , pp. 8617-8622
    • Lucks, J.B.1    Qi, L.2    Mutalik, V.K.3    Wang, D.4    Arkin, A.P.5
  • 217
    • 85031911259 scopus 로고    scopus 로고
    • Computational design of small transcription activating RNAs for versatile and dynamic gene regulation
    • Chappell, J., Westbrook, A., Verosloff, M., Lucks, J.B., Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nat. Commun. 8:1051 (2017), 1–11.
    • (2017) Nat. Commun. , vol.8 , Issue.1051 , pp. 1-11
    • Chappell, J.1    Westbrook, A.2    Verosloff, M.3    Lucks, J.B.4
  • 218
    • 84909963314 scopus 로고    scopus 로고
    • Toehold switches: de-novo-designed regulators of gene expression
    • Green, A.A., Silver, P.A., Collins, J.J., Yin, P., Toehold switches: de-novo-designed regulators of gene expression. Cell 159:4 (2014), 925–939.
    • (2014) Cell , vol.159 , Issue.4 , pp. 925-939
    • Green, A.A.1    Silver, P.A.2    Collins, J.J.3    Yin, P.4
  • 219
    • 84873596341 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs
    • Na, D., Yoo, S.M., Chung, H., Park, H., Park, J.H., Lee, S.Y., Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31:2 (2013), 170–174.
    • (2013) Nat. Biotechnol. , vol.31 , Issue.2 , pp. 170-174
    • Na, D.1    Yoo, S.M.2    Chung, H.3    Park, H.4    Park, J.H.5    Lee, S.Y.6
  • 220
    • 85040128169 scopus 로고    scopus 로고
    • Design rules of synthetic non-coding RNAs in bacteria, Methods, 2018 Jan 5.
    • Lee, Y.J., Moon, T.S., 2018. Design rules of synthetic non-coding RNAs in bacteria, Methods, 2018 Jan 5.
    • (2018)
    • Lee, Y.J.1    Moon, T.S.2
  • 221
    • 85016061428 scopus 로고    scopus 로고
    • Engineering bacterial translation initiation — do we have all the tools we need?
    • Vigar, J.R.J., Wieden, H.J., Engineering bacterial translation initiation — do we have all the tools we need?. Biochim. Biophys. Acta - Gen. Subj. 1861:11 (2017), 3060–3069.
    • (2017) Biochim. Biophys. Acta - Gen. Subj. , vol.1861 , Issue.11 , pp. 3060-3069
    • Vigar, J.R.J.1    Wieden, H.J.2
  • 222
    • 84991063112 scopus 로고    scopus 로고
    • Tools and applications in synthetic biology
    • MacDonald, I.C., Deans, T.L., Tools and applications in synthetic biology. Adv. Drug Deliv. Rev. 105 (2016), 20–34.
    • (2016) Adv. Drug Deliv. Rev. , vol.105 , pp. 20-34
    • MacDonald, I.C.1    Deans, T.L.2
  • 223
    • 84947614984 scopus 로고    scopus 로고
    • Modularization of genetic elements promotes synthetic metabolic engineering
    • Qi, H., Li, B.Z., Zhang, W.Q., Liu, D., Yuan, Y.J., Modularization of genetic elements promotes synthetic metabolic engineering. Biotechnol. Adv. 33:7 (2015), 1412–1419.
    • (2015) Biotechnol. Adv. , vol.33 , Issue.7 , pp. 1412-1419
    • Qi, H.1    Li, B.Z.2    Zhang, W.Q.3    Liu, D.4    Yuan, Y.J.5
  • 224
    • 84886948663 scopus 로고    scopus 로고
    • Microbial production of short-chain alkanes
    • Choi, Y.J., Lee, S.Y., Microbial production of short-chain alkanes. Nature 502:7472 (2013), 571–574.
    • (2013) Nature , vol.502 , Issue.7472 , pp. 571-574
    • Choi, Y.J.1    Lee, S.Y.2
  • 225
    • 84939207951 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine
    • (no. March)
    • Chae, T.U., Kim, W.J., Choi, S., Park, S.J., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. (no. March) Sci. Rep, 5, 2015, 1–13.
    • (2015) Sci. Rep , vol.5 , pp. 1-13
    • Chae, T.U.1    Kim, W.J.2    Choi, S.3    Park, S.J.4    Lee, S.Y.5
  • 226
    • 84899747343 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of phenol from glucose
    • Kim, B., Park, H., Na, D., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnol. J. 9:5 (2014), 621–629.
    • (2014) Biotechnol. J. , vol.9 , Issue.5 , pp. 621-629
    • Kim, B.1    Park, H.2    Na, D.3    Lee, S.Y.4
  • 227
    • 84917705874 scopus 로고    scopus 로고
    • Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium
    • LaCroix, R.A., et al. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. Appl. Environ. Microbiol. 81:1 (2015), 17–30.
    • (2015) Appl. Environ. Microbiol. , vol.81 , Issue.1 , pp. 17-30
    • LaCroix, R.A.1
  • 228
    • 0030952877 scopus 로고    scopus 로고
    • Negative effects of chemical mutagenesis on the adaptive behavior of vesicular stomatitis virus
    • Lee, C.H., Gilbertson, D.L., Novella, I.S., Huerta, R., Domingo, E., Holland, J.J., Negative effects of chemical mutagenesis on the adaptive behavior of vesicular stomatitis virus. J. Virol. 71:5 (1997), 3636–3640.
    • (1997) J. Virol. , vol.71 , Issue.5 , pp. 3636-3640
    • Lee, C.H.1    Gilbertson, D.L.2    Novella, I.S.3    Huerta, R.4    Domingo, E.5    Holland, J.J.6
  • 229
    • 84976892364 scopus 로고    scopus 로고
    • 2 in Escherichia coli
    • 2 in Escherichia coli. Cell 166:1 (2016), 115–125.
    • (2016) Cell , vol.166 , Issue.1 , pp. 115-125
    • Antonovsky, N.1
  • 230
    • 84886022252 scopus 로고    scopus 로고
    • Programming adaptive control to evolve increased metabolite production
    • Chou, H.H., Keasling, J.D., Programming adaptive control to evolve increased metabolite production. Nat. Commun., 4, 2013, 2595.
    • (2013) Nat. Commun. , vol.4 , pp. 2595
    • Chou, H.H.1    Keasling, J.D.2
  • 231
    • 84856258903 scopus 로고    scopus 로고
    • The molecular diversity of adaptive convergence
    • Tenaillon, O., et al. The molecular diversity of adaptive convergence. Science 335:6067 (2012), 457–462.
    • (2012) Science , vol.335 , Issue.6067 , pp. 457-462
    • Tenaillon, O.1
  • 232
    • 34250848992 scopus 로고    scopus 로고
    • Evolutionary adaptation to environmental ph in experimental lineages of Escherichia coli
    • Hughes, B.S., Cullum, A.J., Bennett, A.F., Evolutionary adaptation to environmental ph in experimental lineages of Escherichia coli. Evolution 61:7 (2007), 1725–1734.
    • (2007) Evolution , vol.61 , Issue.7 , pp. 1725-1734
    • Hughes, B.S.1    Cullum, A.J.2    Bennett, A.F.3
  • 233
    • 79955027266 scopus 로고    scopus 로고
    • Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution
    • Dhar, R., Sägesser, R., Weikert, C., Yuan, J., Wagner, A., Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J. Evol. Biol. 24:5 (2011), 1135–1153.
    • (2011) J. Evol. Biol. , vol.24 , Issue.5 , pp. 1135-1153
    • Dhar, R.1    Sägesser, R.2    Weikert, C.3    Yuan, J.4    Wagner, A.5
  • 234
    • 84896419256 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass
    • Almario, M.P., Reyes, L.H., Kao, K.C., Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol. Bioeng. 110:10 (2013), 2616–2623.
    • (2013) Biotechnol. Bioeng. , vol.110 , Issue.10 , pp. 2616-2623
    • Almario, M.P.1    Reyes, L.H.2    Kao, K.C.3
  • 235
    • 85020503243 scopus 로고    scopus 로고
    • Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies
    • Sandberg, T., Lloyd, C., Palsson, B., Feist, A., Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies. Appl. Environ. Microbiol. 83:13 (2017), 1–15.
    • (2017) Appl. Environ. Microbiol. , vol.83 , Issue.13 , pp. 1-15
    • Sandberg, T.1    Lloyd, C.2    Palsson, B.3    Feist, A.4
  • 236
    • 83255174918 scopus 로고    scopus 로고
    • High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes
    • Argyros, D.A., et al. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl. Environ. Microbiol. 77:23 (2011), 8288–8294.
    • (2011) Appl. Environ. Microbiol. , vol.77 , Issue.23 , pp. 8288-8294
    • Argyros, D.A.1
  • 237
    • 0242487787 scopus 로고    scopus 로고
    • OptKnock : A Bilevel Programming Framework for Identifying Gene Knockout Strategies for Microbial Strain Optimization
    • Burgard, A.P., Pharkya, P., Maranas, C.D., OptKnock : A Bilevel Programming Framework for Identifying Gene Knockout Strategies for Microbial Strain Optimization. Biotechnol Bioeng, 2003.
    • (2003) Biotechnol Bioeng
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 238
    • 25144505718 scopus 로고    scopus 로고
    • In silico design and adaptive evolution of Escherichia coli for production of lactic acid
    • Fong, S.S., et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91:5 (2005), 643–648.
    • (2005) Biotechnol. Bioeng. , vol.91 , Issue.5 , pp. 643-648
    • Fong, S.S.1
  • 239
    • 84888771270 scopus 로고    scopus 로고
    • Improving carotenoids production in yeast via adaptive laboratory evolution
    • Reyes, L.H., Gomez, J.M., Kao, K.C., Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21 (2014), 26–33.
    • (2014) Metab. Eng. , vol.21 , pp. 26-33
    • Reyes, L.H.1    Gomez, J.M.2    Kao, K.C.3
  • 240
    • 85038608921 scopus 로고    scopus 로고
    • Maltose utilization as a novel selection strategy for continuous evolution of microbes with enhanced metabolite Production
    • Liu, S.-D., Wu, Y.-N., Wang, T.-M., Zhang, C., Xing, X.-H., Maltose utilization as a novel selection strategy for continuous evolution of microbes with enhanced metabolite Production. ACS Synth. Biol., p. acssynbio, 7b00247, 2017.
    • (2017) ACS Synth. Biol., p. acssynbio , vol.7b00247
    • Liu, S.-D.1    Wu, Y.-N.2    Wang, T.-M.3    Zhang, C.4    Xing, X.-H.5
  • 241
    • 73949115238 scopus 로고    scopus 로고
    • Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli
    • Zhang, X., Jantama, K., Moore, J.C., Jarboe, L.R., Shanmugam, K.T., Ingram, L.O., Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc. Natl. Acad. Sci. USA 106:48 (2009), 20180–20185.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , Issue.48 , pp. 20180-20185
    • Zhang, X.1    Jantama, K.2    Moore, J.C.3    Jarboe, L.R.4    Shanmugam, K.T.5    Ingram, L.O.6
  • 243
    • 78650546051 scopus 로고    scopus 로고
    • RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media
    • Conrad, T.M., et al. RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc. Natl. Acad. Sci. USA 107:47 (2010), 20500–20505.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , Issue.47 , pp. 20500-20505
    • Conrad, T.M.1
  • 244
    • 85030212667 scopus 로고    scopus 로고
    • Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring
    • Long, C.P., Gonzalez, J.E., Feist, A.M., Palsson, B.O., Antoniewicz, M.R., Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring. Metab. Eng. 44:August (2017), 100–107.
    • (2017) Metab. Eng. , vol.44 , Issue.August , pp. 100-107
    • Long, C.P.1    Gonzalez, J.E.2    Feist, A.M.3    Palsson, B.O.4    Antoniewicz, M.R.5
  • 245
    • 84962602150 scopus 로고    scopus 로고
    • Evolution of E. coli on [U-13C]glucose reveals a negligible isotopic influence on metabolism and physiology
    • Sandberg, T.E., Long, C.P., Gonzalez, J.E., Feist, A.M., Antoniewicz, M.R., Palsson, B.O., Evolution of E. coli on [U-13C]glucose reveals a negligible isotopic influence on metabolism and physiology. PLoS One 11:3 (2016), 1–14.
    • (2016) PLoS One , vol.11 , Issue.3 , pp. 1-14
    • Sandberg, T.E.1    Long, C.P.2    Gonzalez, J.E.3    Feist, A.M.4    Antoniewicz, M.R.5    Palsson, B.O.6
  • 246
    • 85040197882 scopus 로고    scopus 로고
    • Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli
    • Long, C.P., Gonzalez, J.E., Feist, A.M., Palsson, B.O., Antoniewicz, M.R., Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli. Proc. Natl. Acad. Sci. 115:1 (2018), 222–227.
    • (2018) Proc. Natl. Acad. Sci. , vol.115 , Issue.1 , pp. 222-227
    • Long, C.P.1    Gonzalez, J.E.2    Feist, A.M.3    Palsson, B.O.4    Antoniewicz, M.R.5
  • 247
    • 84956858047 scopus 로고    scopus 로고
    • Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli
    • Mirza, N., Crocoll, C., Olsen, C.E., Halkier, B.A., Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli. Metab. Eng. 35 (2016), 31–37.
    • (2016) Metab. Eng. , vol.35 , pp. 31-37
    • Mirza, N.1    Crocoll, C.2    Olsen, C.E.3    Halkier, B.A.4
  • 248
    • 84946831928 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone
    • (no. Supplement C)
    • Zhang, J., Kao, E., Wang, G., Baidoo, E.E.K., Chen, M., Keasling, J.D., Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone. (no. Supplement C) Metab. Eng. Commun. 3 (2016), 1–7.
    • (2016) Metab. Eng. Commun. , vol.3 , pp. 1-7
    • Zhang, J.1    Kao, E.2    Wang, G.3    Baidoo, E.E.K.4    Chen, M.5    Keasling, J.D.6
  • 249
    • 85021929291 scopus 로고    scopus 로고
    • Complete Biosynthesis of Anthocyanins Using E. coli Polycultures
    • Jones, J.A., et al. Complete Biosynthesis of Anthocyanins Using E. coli Polycultures. MBio, 8(3), 2017.
    • (2017) MBio , vol.8 , Issue.3
    • Jones, J.A.1
  • 250
    • 84933074087 scopus 로고    scopus 로고
    • Engineering Escherichia coli for renewable benzyl alcohol production
    • (no. Supplement C)
    • Pugh, S., McKenna, R., Halloum, I., Nielsen, D.R., Engineering Escherichia coli for renewable benzyl alcohol production. (no. Supplement C) Metab. Eng. Commun. 2 (2015), 39–45.
    • (2015) Metab. Eng. Commun. , vol.2 , pp. 39-45
    • Pugh, S.1    McKenna, R.2    Halloum, I.3    Nielsen, D.R.4
  • 251
    • 85030783766 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for production of valerenadiene
    • Nybo, S.E., Saunders, J., McCormick, S.P., Metabolic engineering of Escherichia coli for production of valerenadiene. J. Biotechnol. 262 (2017), 60–66.
    • (2017) J. Biotechnol. , vol.262 , pp. 60-66
    • Nybo, S.E.1    Saunders, J.2    McCormick, S.P.3
  • 252
    • 84906330621 scopus 로고    scopus 로고
    • Synthesis and Accumulation of Aromatic Aldehydes in an Engineered Strain of Escherichia coli
    • Kunjapur, A.M., Tarasova, Y., Prather, K.L.J., Synthesis and Accumulation of Aromatic Aldehydes in an Engineered Strain of Escherichia coli. J. Am. Chem. Soc. 136:33 (2014), 11644–11654.
    • (2014) J. Am. Chem. Soc. , vol.136 , Issue.33 , pp. 11644-11654
    • Kunjapur, A.M.1    Tarasova, Y.2    Prather, K.L.J.3
  • 253
    • 84955267195 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of cinnamaldehyde
    • Bang, H.B., Lee, Y.H., Kim, S.C., Sung, C.K., Jeong, K.J., Metabolic engineering of Escherichia coli for the production of cinnamaldehyde. Microb. Cell Fact., 15, 2016.
    • (2016) Microb. Cell Fact. , vol.15
    • Bang, H.B.1    Lee, Y.H.2    Kim, S.C.3    Sung, C.K.4    Jeong, K.J.5
  • 254
    • 84909619164 scopus 로고    scopus 로고
    • Engineered biosynthesis of medium-chain esters in Escherichia coli
    • Tai, Y.S., Xiong, M.Y., Zhang, K.C., Engineered biosynthesis of medium-chain esters in Escherichia coli. Metab. Eng. 27 (2015), 20–28.
    • (2015) Metab. Eng. , vol.27 , pp. 20-28
    • Tai, Y.S.1    Xiong, M.Y.2    Zhang, K.C.3
  • 255
    • 84933073492 scopus 로고    scopus 로고
    • Two-dimensional isobutyl acetate production pathways to improve carbon yield
    • Tashiro, Y., Desai, S.H., Atsumi, S., Two-dimensional isobutyl acetate production pathways to improve carbon yield. Nat. Commun., 6, 2015.
    • (2015) Nat. Commun. , vol.6
    • Tashiro, Y.1    Desai, S.H.2    Atsumi, S.3
  • 256
    • 84897025067 scopus 로고    scopus 로고
    • Expanding ester biosynthesis in Escherichia coli
    • Rodriguez, G.M., Tashiro, Y., Atsumi, S., Expanding ester biosynthesis in Escherichia coli. Nat. Chem. Biol., 10(4), 2014, 259.
    • (2014) Nat. Chem. Biol. , vol.10 , Issue.4 , pp. 259
    • Rodriguez, G.M.1    Tashiro, Y.2    Atsumi, S.3
  • 257
    • 85018875501 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for production of 2-Phenylethylacetate from L-phenylalanine
    • Guo, D., Zhang, L., Pan, H., Li, X., Metabolic engineering of Escherichia coli for production of 2-Phenylethylacetate from L-phenylalanine. Microbiologyopen, 6(4), 2017.
    • (2017) Microbiologyopen , vol.6 , Issue.4
    • Guo, D.1    Zhang, L.2    Pan, H.3    Li, X.4
  • 258
    • 85042682755 scopus 로고    scopus 로고
    • Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol
    • Wang, P., Yang, X., Lin, B., Huang, J., Tao, Y., Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol. Metab. Eng. 44 (2017), 143–149.
    • (2017) Metab. Eng. , vol.44 , pp. 143-149
    • Wang, P.1    Yang, X.2    Lin, B.3    Huang, J.4    Tao, Y.5
  • 259
    • 84896314132 scopus 로고    scopus 로고
    • Metabolic engineering of escherichia coli for production of 2-phenylethanol from renewable Glucose
    • Kang, Z., Zhang, C.Z., Du, G.C., Chen, J., Metabolic engineering of escherichia coli for production of 2-phenylethanol from renewable Glucose. Appl. Biochem. Biotechnol. 172:4 (2014), 2012–2021.
    • (2014) Appl. Biochem. Biotechnol. , vol.172 , Issue.4 , pp. 2012-2021
    • Kang, Z.1    Zhang, C.Z.2    Du, G.C.3    Chen, J.4
  • 260
    • 84866285573 scopus 로고    scopus 로고
    • Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway
    • Koma, D., Yamanaka, H., Moriyoshi, K., Ohmoto, T., Sakai, K., Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl. Environ. Microbiol. 78:17 (2012), 6203–6216.
    • (2012) Appl. Environ. Microbiol. , vol.78 , Issue.17 , pp. 6203-6216
    • Koma, D.1    Yamanaka, H.2    Moriyoshi, K.3    Ohmoto, T.4    Sakai, K.5
  • 261
    • 84879829307 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production
    • Alonso-Gutierrez, J., et al. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab. Eng. 19 (2013), 33–41.
    • (2013) Metab. Eng. , vol.19 , pp. 33-41
    • Alonso-Gutierrez, J.1
  • 262
    • 84929376563 scopus 로고    scopus 로고
    • Microbial synthesis of myrcene by metabolically engineered Escherichia coli
    • Kim, E.M., Eom, J.H., Um, Y., Kim, Y., Woo, H.M., Microbial synthesis of myrcene by metabolically engineered Escherichia coli. J. Agric. Food Chem. 63:18 (2015), 4606–4612.
    • (2015) J. Agric. Food Chem. , vol.63 , Issue.18 , pp. 4606-4612
    • Kim, E.M.1    Eom, J.H.2    Um, Y.3    Kim, Y.4    Woo, H.M.5
  • 263
    • 85056936080 scopus 로고    scopus 로고
    • Engineering Escherichia coli for Production of Mixtures of Caryophyllene, Caryophyllene Alcohol, and their Stereoisomers as Potential Aviation Fuel Compounds, Metab. Eng. Commun.
    • Wu, W., Liu, F., Davis, R.W., Engineering Escherichia coli for Production of Mixtures of Caryophyllene, Caryophyllene Alcohol, and their Stereoisomers as Potential Aviation Fuel Compounds, Metab. Eng. Commun.
    • Wu, W.1    Liu, F.2    Davis, R.W.3
  • 264
    • 85021239673 scopus 로고    scopus 로고
    • Production of jet fuel precursor monoterpenoids from engineered Escherichia coli
    • Mendez-Perez, D., et al. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli. Biotechnol. Bioeng. 114:8 (2017), 1703–1712.
    • (2017) Biotechnol. Bioeng. , vol.114 , Issue.8 , pp. 1703-1712
    • Mendez-Perez, D.1
  • 265
    • 84960844069 scopus 로고    scopus 로고
    • Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture
    • Liu, W., et al. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture. Biotechnol. Biofuels, 9, 2016.
    • (2016) Biotechnol. Biofuels , vol.9
    • Liu, W.1
  • 266
    • 84876799409 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene
    • Yang, J.M., et al. Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol. Biofuels, 6, 2013.
    • (2013) Biotechnol. Biofuels , vol.6
    • Yang, J.M.1
  • 267
    • 84931292024 scopus 로고    scopus 로고
    • EPathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways
    • Jones, J.A., et al. EPathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways. Sci. Rep. 5 (2015), 1–10.
    • (2015) Sci. Rep. , vol.5 , pp. 1-10
    • Jones, J.A.1
  • 268
    • 84994806228 scopus 로고    scopus 로고
    • E-coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent
    • Ahmadi, M.K., Fang, L., Moscatello, N., Pfeifer, B.A., E-coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent. Metab. Eng. 38 (2016), 382–388.
    • (2016) Metab. Eng. , vol.38 , pp. 382-388
    • Ahmadi, M.K.1    Fang, L.2    Moscatello, N.3    Pfeifer, B.A.4
  • 269
    • 41249084917 scopus 로고    scopus 로고
    • Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate
    • Jantama, K., et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol. Bioeng. 99:5 (2008), 1140–1153.
    • (2008) Biotechnol. Bioeng. , vol.99 , Issue.5 , pp. 1140-1153
    • Jantama, K.1
  • 270
    • 84955497406 scopus 로고    scopus 로고
    • A novel MVA-mediated pathway for isoprene production in engineered E-coli
    • Yang, J.M., Nie, Q.J., Liu, H., Xian, M., Liu, H.Z., A novel MVA-mediated pathway for isoprene production in engineered E-coli. BMC Biotechnol., 16, 2016.
    • (2016) BMC Biotechnol. , vol.16
    • Yang, J.M.1    Nie, Q.J.2    Liu, H.3    Xian, M.4    Liu, H.Z.5
  • 271
    • 85012034095 scopus 로고    scopus 로고
    • Efficient anaerobic production of succinate from glycerol in engineered Escherichia coli by using dual carbon sources and limiting oxygen supply in preceding aerobic culture
    • Li, Q., Huang, B., Wu, H., Li, Z.M., Ye, Q., Efficient anaerobic production of succinate from glycerol in engineered Escherichia coli by using dual carbon sources and limiting oxygen supply in preceding aerobic culture. Bioresour. Technol. 231 (2017), 75–84.
    • (2017) Bioresour. Technol. , vol.231 , pp. 75-84
    • Li, Q.1    Huang, B.2    Wu, H.3    Li, Z.M.4    Ye, Q.5
  • 272
    • 84872156620 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals
    • Park, S.J., et al. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab. Eng. 16 (2013), 42–47.
    • (2013) Metab. Eng. , vol.16 , pp. 42-47
    • Park, S.J.1
  • 273
    • 84966269203 scopus 로고    scopus 로고
    • Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions
    • Cheong, S., Clomburg, J.M., Gonzalez, R., Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nat. Biotechnol. 34:5 (2016), 556–561.
    • (2016) Nat. Biotechnol. , vol.34 , Issue.5 , pp. 556-561
    • Cheong, S.1    Clomburg, J.M.2    Gonzalez, R.3
  • 274
    • 85016013618 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through beta-alanine route
    • Song, C.W., Kim, J.W., Cho, I.J., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through beta-alanine route. ACS Synth. Biol. 5:11 (2016), 1256–1263.
    • (2016) ACS Synth. Biol. , vol.5 , Issue.11 , pp. 1256-1263
    • Song, C.W.1    Kim, J.W.2    Cho, I.J.3    Lee, S.Y.4
  • 275
    • 79551490770 scopus 로고    scopus 로고
    • L-Malate Production by metabolically engineered Escherichia coli
    • Zhang, X., Wang, X., Shanmugam, K.T., Ingram, L.O., L-Malate Production by metabolically engineered Escherichia coli. Appl. Environ. Microbiol. 77:2 (2011), 427–434.
    • (2011) Appl. Environ. Microbiol. , vol.77 , Issue.2 , pp. 427-434
    • Zhang, X.1    Wang, X.2    Shanmugam, K.T.3    Ingram, L.O.4
  • 276
    • 84878409603 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of fumaric acid
    • Song, C.W., Kim, D.I., Choi, S., Jang, J.W., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol. Bioeng. 110:7 (2013), 2025–2034.
    • (2013) Biotechnol. Bioeng. , vol.110 , Issue.7 , pp. 2025-2034
    • Song, C.W.1    Kim, D.I.2    Choi, S.3    Jang, J.W.4    Lee, S.Y.5
  • 277
    • 84879825132 scopus 로고    scopus 로고
    • A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate
    • Sun, X.X., Lin, Y.H., Huang, Q., Yuan, Q.P., Yan, Y.J., A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate. Appl. Environ. Microbiol. 79:13 (2013), 4024–4030.
    • (2013) Appl. Environ. Microbiol. , vol.79 , Issue.13 , pp. 4024-4030
    • Sun, X.X.1    Lin, Y.H.2    Huang, Q.3    Yuan, Q.P.4    Yan, Y.J.5
  • 278
    • 84896139366 scopus 로고    scopus 로고
    • Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli
    • Lin, Y.H., Sun, X.X., Yuan, Q.P., Yan, Y.J., Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metab. Eng. 23 (2014), 62–69.
    • (2014) Metab. Eng. , vol.23 , pp. 62-69
    • Lin, Y.H.1    Sun, X.X.2    Yuan, Q.P.3    Yan, Y.J.4
  • 279
    • 85048305575 scopus 로고    scopus 로고
    • Muconic acid production via alternative pathways and a synthetic metabolic funnel
    • Thompson, B., Pugh, S., Machas, M., Nielsen, D.R., Muconic acid production via alternative pathways and a synthetic metabolic funnel. ACS Synth. Biol., 2017.
    • (2017) ACS Synth. Biol.
    • Thompson, B.1    Pugh, S.2    Machas, M.3    Nielsen, D.R.4
  • 280
    • 84936803078 scopus 로고    scopus 로고
    • Engineering Escherichia coli coculture systems for the production of biochemical products
    • Zhang, H.R., Pereira, B., Li, Z.J., Stephanopoulos, G., Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. USA 112:27 (2015), 8266–8271.
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , Issue.27 , pp. 8266-8271
    • Zhang, H.R.1    Pereira, B.2    Li, Z.J.3    Stephanopoulos, G.4
  • 281
    • 84941558348 scopus 로고    scopus 로고
    • Engineering E-coli-E-coli cocultures for production of muconic acid from glycerol
    • Zhang, H.R., Li, Z.J., Pereira, B., Stephanopoulos, G., Engineering E-coli-E-coli cocultures for production of muconic acid from glycerol. Microb. Cell Fact., 14, 2015.
    • (2015) Microb. Cell Fact. , vol.14
    • Zhang, H.R.1    Li, Z.J.2    Pereira, B.3    Stephanopoulos, G.4
  • 282
    • 85017454800 scopus 로고    scopus 로고
    • Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli
    • Chang, P., Chen, G.S., Chu, H.Y., Lu, K.W., Shen, C.R., Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. J. Biotechnol. 249 (2017), 73–81.
    • (2017) J. Biotechnol. , vol.249 , pp. 73-81
    • Chang, P.1    Chen, G.S.2    Chu, H.Y.3    Lu, K.W.4    Shen, C.R.5
  • 283
    • 85035036524 scopus 로고    scopus 로고
    • Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli
    • Harder, B.J., Bettenbrock, K., Klamt, S., Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. Biotechnol. Bioeng. 115:1 (2018), 156–164.
    • (2018) Biotechnol. Bioeng. , vol.115 , Issue.1 , pp. 156-164
    • Harder, B.J.1    Bettenbrock, K.2    Klamt, S.3
  • 284
    • 85056949443 scopus 로고    scopus 로고
    • Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W
    • Noh, M.H., Lim, H.G., Woo, S.H., Song, J., Jung, G.Y., Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W. Biotechnol. Bioeng., 2017.
    • (2017) Biotechnol. Bioeng.
    • Noh, M.H.1    Lim, H.G.2    Woo, S.H.3    Song, J.4    Jung, G.Y.5
  • 285
    • 84937028256 scopus 로고    scopus 로고
    • Production of mesaconate in Escherichia coli by engineered glutamate mutase pathway
    • Wang, J.Y., Zhang, K.C., Production of mesaconate in Escherichia coli by engineered glutamate mutase pathway. Metab. Eng. 30 (2015), 190–196.
    • (2015) Metab. Eng. , vol.30 , pp. 190-196
    • Wang, J.Y.1    Zhang, K.C.2
  • 286
    • 84992448651 scopus 로고    scopus 로고
    • Production of citramalate by metabolically engineered Escherichia coli
    • Wu, X.H., Eiteman, M.A., Production of citramalate by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 113:12 (2016), 2670–2675.
    • (2016) Biotechnol. Bioeng. , vol.113 , Issue.12 , pp. 2670-2675
    • Wu, X.H.1    Eiteman, M.A.2
  • 287
    • 84958250665 scopus 로고    scopus 로고
    • Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids
    • Jones, J.A., et al. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab. Eng. 35 (2016), 55–63.
    • (2016) Metab. Eng. , vol.35 , pp. 55-63
    • Jones, J.A.1
  • 289
    • 84988955364 scopus 로고    scopus 로고
    • Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol
    • Camacho-Zaragoza, J.M., et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microb. Cell Fact., 15, 2016.
    • (2016) Microb. Cell Fact. , vol.15
    • Camacho-Zaragoza, J.M.1
  • 290
    • 32544447552 scopus 로고    scopus 로고
    • Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli
    • Leonard, E., Chemler, J., Kok, H.L., Koffas, M.A.G., Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Appl. Microbiol. Biotechnol. 70:1 (2006), 85–91.
    • (2006) Appl. Microbiol. Biotechnol. , vol.70 , Issue.1 , pp. 85-91
    • Leonard, E.1    Chemler, J.2    Kok, H.L.3    Koffas, M.A.G.4
  • 291
    • 34250849659 scopus 로고    scopus 로고
    • Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli
    • Leonard, E., Lim, K.H., Saw, P.N., Koffas, M. a.G., Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl. Environ. Microbiol. 73:12 (2007), 3877–3886.
    • (2007) Appl. Environ. Microbiol. , vol.73 , Issue.12 , pp. 3877-3886
    • Leonard, E.1    Lim, K.H.2    Saw, P.N.3    Koffas, M.A.G.4
  • 292
    • 84914129027 scopus 로고    scopus 로고
    • Production of chondroitin in metabolically engineered E. coli
    • He, W.Q., Fu, L., Li, G.Y., Jones, J.A., Linhardt, R.J., Koffas, M., Production of chondroitin in metabolically engineered E. coli. Metab. Eng. 27 (2015), 92–100.
    • (2015) Metab. Eng. , vol.27 , pp. 92-100
    • He, W.Q.1    Fu, L.2    Li, G.Y.3    Jones, J.A.4    Linhardt, R.J.5    Koffas, M.6
  • 293
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • (86-U13) (86-U13)
    • Atsumi, S., Hanai, T., Liao, J.C., Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. (86-U13) Nature, 451(7174), 2008 (86-U13).
    • (2008) Nature , vol.451 , Issue.7174
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 294
    • 79958177780 scopus 로고    scopus 로고
    • High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal
    • Baez, A., Cho, K.-M., Liao, J.C., High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl. Microbiol. Biotechnol. 90:5 (2011), 1681–1690.
    • (2011) Appl. Microbiol. Biotechnol. , vol.90 , Issue.5 , pp. 1681-1690
    • Baez, A.1    Cho, K.-M.2    Liao, J.C.3
  • 295
    • 54349090042 scopus 로고    scopus 로고
    • Production of 2-methyl-1-butanol in engineered Escherichia coli
    • Cann, A.F., Liao, J.C., Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 81:1 (2008), 89–98.
    • (2008) Appl. Microbiol. Biotechnol. , vol.81 , Issue.1 , pp. 89-98
    • Cann, A.F.1    Liao, J.C.2
  • 296
    • 77950626597 scopus 로고    scopus 로고
    • 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation
    • Connor, M.R., Cann, A.F., Liao, J.C., 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl. Microbiol. Biotechnol. 86:4 (2010), 1155–1164.
    • (2010) Appl. Microbiol. Biotechnol. , vol.86 , Issue.4 , pp. 1155-1164
    • Connor, M.R.1    Cann, A.F.2    Liao, J.C.3
  • 297
    • 85029353406 scopus 로고    scopus 로고
    • Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle
    • Chen, G.S., Siao, S.W., Shen, C.R., Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle. Sci. Rep., 7, 2017.
    • (2017) Sci. Rep. , vol.7
    • Chen, G.S.1    Siao, S.W.2    Shen, C.R.3
  • 298
    • 85037727831 scopus 로고    scopus 로고
    • Renewable synthesis of n-butyraldehyde from glucose by engineered Escherichia coli
    • Ku, J.T., Simanjuntak, W., Lan, E.I., Renewable synthesis of n-butyraldehyde from glucose by engineered Escherichia coli. Biotechnol. Biofuels, 10, 2017, 291.
    • (2017) Biotechnol. Biofuels , vol.10 , pp. 291
    • Ku, J.T.1    Simanjuntak, W.2    Lan, E.I.3
  • 299
    • 84862601628 scopus 로고    scopus 로고
    • Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity
    • Rodriguez, G.M., Atsumi, S., Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microb. Cell Fact., 11, 2012.
    • (2012) Microb. Cell Fact. , vol.11
    • Rodriguez, G.M.1    Atsumi, S.2
  • 301
    • 79952582831 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol
    • Clomburg, J.M., Gonzalez, R., Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol. Bioeng. 108:4 (2011), 867–879.
    • (2011) Biotechnol. Bioeng. , vol.108 , Issue.4 , pp. 867-879
    • Clomburg, J.M.1    Gonzalez, R.2
  • 302
    • 85033390780 scopus 로고    scopus 로고
    • Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli
    • Liang, K., Shen, C.R., Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli. J. Ind. Microbiol. Biotechnol. 44:12 (2017), 1605–1612.
    • (2017) J. Ind. Microbiol. Biotechnol. , vol.44 , Issue.12 , pp. 1605-1612
    • Liang, K.1    Shen, C.R.2
  • 303
    • 79959374585 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
    • Yim, H., et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7:7 (2011), 445–452.
    • (2011) Nat. Chem. Biol. , vol.7 , Issue.7 , pp. 445-452
    • Yim, H.1
  • 304
    • 84957622111 scopus 로고    scopus 로고
    • Engineering nonphosphorylative metabolism to generate lignocellulose-derived products
    • Tai, Y.S., et al. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat. Chem. Biol., 12(4), 2016, 247.
    • (2016) Nat. Chem. Biol. , vol.12 , Issue.4 , pp. 247
    • Tai, Y.S.1
  • 305
    • 84940759892 scopus 로고    scopus 로고
    • Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli
    • Alkim, C., et al. Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli. Microb. Cell Fact., 14, 2015.
    • (2015) Microb. Cell Fact. , vol.14
    • Alkim, C.1
  • 306
    • 84969858015 scopus 로고    scopus 로고
    • Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli
    • Yang, C., Gao, X., Jiang, Y., Sun, B.B., Gao, F., Yang, S., Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab. Eng. 37 (2016), 79–91.
    • (2016) Metab. Eng. , vol.37 , pp. 79-91
    • Yang, C.1    Gao, X.2    Jiang, Y.3    Sun, B.B.4    Gao, F.5    Yang, S.6
  • 307
    • 84857281676 scopus 로고    scopus 로고
    • Styrene biosynthesis from glucose by engineered E. coli
    • McKenna, R., Nielsen, D.R., Styrene biosynthesis from glucose by engineered E. coli. Metab. Eng. 13:5 (2011), 544–554.
    • (2011) Metab. Eng. , vol.13 , Issue.5 , pp. 544-554
    • McKenna, R.1    Nielsen, D.R.2
  • 308
    • 34249686497 scopus 로고    scopus 로고
    • Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene
    • Qi, W.W., et al. Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene. Metab. Eng. 9:3 (2007), 268–276.
    • (2007) Metab. Eng. , vol.9 , Issue.3 , pp. 268-276
    • Qi, W.W.1
  • 309
    • 85017112778 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams
    • Chae, T.U., Ko, Y.S., Hwang, K.S., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams. Metab. Eng. 41 (2017), 82–91.
    • (2017) Metab. Eng. , vol.41 , pp. 82-91
    • Chae, T.U.1    Ko, Y.S.2    Hwang, K.S.3    Lee, S.Y.4
  • 310
    • 0038391517 scopus 로고    scopus 로고
    • Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
    • Martin, V.J.J., Pitera, D.J., Withers, S.T., Newman, J.D., Keasling, J.D., Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21:7 (2003), 796–802.
    • (2003) Nat. Biotechnol. , vol.21 , Issue.7 , pp. 796-802
    • Martin, V.J.J.1    Pitera, D.J.2    Withers, S.T.3    Newman, J.D.4    Keasling, J.D.5
  • 311
    • 84879142653 scopus 로고    scopus 로고
    • High-level production of Amorpha-4,11-Diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli
    • Tsuruta, H., et al. High-level production of Amorpha-4,11-Diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One, 4(2), 2009.
    • (2009) PLoS One , vol.4 , Issue.2
    • Tsuruta, H.1
  • 312
    • 77957329119 scopus 로고    scopus 로고
    • Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
    • Ajikumar, P.K., et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Sci. (80-.). 330:6000 (2010), 70–74.
    • (2010) Sci. (80-.). , vol.330 , Issue.6000 , pp. 70-74
    • Ajikumar, P.K.1
  • 313
    • 84957553896 scopus 로고    scopus 로고
    • Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli
    • Nakagawa, A., et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun., 7, 2016.
    • (2016) Nat. Commun. , vol.7
    • Nakagawa, A.1
  • 314
    • 85034041674 scopus 로고    scopus 로고
    • Recent advances in the recombinant biosynthesis of polyphenols
    • (no. NOV)
    • Chouhan, S., Sharma, K., Zha, J., Guleria, S., Koffas, M.A.G., Recent advances in the recombinant biosynthesis of polyphenols. (no. NOV) Front. Microbiol. 8 (2017), 1–16.
    • (2017) Front. Microbiol. , vol.8 , pp. 1-16
    • Chouhan, S.1    Sharma, K.2    Zha, J.3    Guleria, S.4    Koffas, M.A.G.5
  • 315
    • 84961125909 scopus 로고    scopus 로고
    • Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology
    • Pandey, R.P., Parajuli, P., Koffas, M.A.G., Sohng, J.K., Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 34:5 (2016), 634–662.
    • (2016) Biotechnol. Adv. , vol.34 , Issue.5 , pp. 634-662
    • Pandey, R.P.1    Parajuli, P.2    Koffas, M.A.G.3    Sohng, J.K.4
  • 317
    • 84877271686 scopus 로고    scopus 로고
    • Improved succinate production by metabolic engineering
    • Cheng, K.K., Wang, G.Y., Zeng, J., Zhang, J.A., Improved succinate production by metabolic engineering. Biomed. Res. Int., 2013, 2013, 538790.
    • (2013) Biomed. Res. Int. , vol.2013 , pp. 538790
    • Cheng, K.K.1    Wang, G.Y.2    Zeng, J.3    Zhang, J.A.4
  • 318
    • 85029771886 scopus 로고    scopus 로고
    • Current advances of succinate biosynthesis in metabolically engineered Escherichia coli
    • Zhu, L.W., Tang, Y.J., Current advances of succinate biosynthesis in metabolically engineered Escherichia coli. Biotechnol. Adv. 35:8 (2017), 1040–1048.
    • (2017) Biotechnol. Adv. , vol.35 , Issue.8 , pp. 1040-1048
    • Zhu, L.W.1    Tang, Y.J.2
  • 319
    • 56449105588 scopus 로고    scopus 로고
    • Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C
    • Jantama, K., Zhang, X., Moore, J.C., Shanmugam, K.T., Svoronos, S.A., Ingram, L.O., Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol. Bioeng. 101:5 (2008), 881–893.
    • (2008) Biotechnol. Bioeng. , vol.101 , Issue.5 , pp. 881-893
    • Jantama, K.1    Zhang, X.2    Moore, J.C.3    Shanmugam, K.T.4    Svoronos, S.A.5    Ingram, L.O.6
  • 320
    • 0035158424 scopus 로고    scopus 로고
    • Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli
    • Chatterjee, R., Millard, C.S., Champion, K., Clark, D.P., Donnelly, M.I., Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl. Environ. Microbiol. 67:1 (2001), 148–154.
    • (2001) Appl. Environ. Microbiol. , vol.67 , Issue.1 , pp. 148-154
    • Chatterjee, R.1    Millard, C.S.2    Champion, K.3    Clark, D.P.4    Donnelly, M.I.5
  • 321
    • 0029930612 scopus 로고    scopus 로고
    • Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli
    • Millard, C.S., Chao, Y.P., Liao, J.C., Donnelly, M.I., Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl. Environ. Microbiol. 62:5 (1996), 1808–1810.
    • (1996) Appl. Environ. Microbiol. , vol.62 , Issue.5 , pp. 1808-1810
    • Millard, C.S.1    Chao, Y.P.2    Liao, J.C.3    Donnelly, M.I.4
  • 322
    • 0031085246 scopus 로고    scopus 로고
    • Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose
    • Stols, L., Kulkarni, G., Harris, B.G., Donnelly, M.I., Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose. Appl. Biochem. Biotechnol. 63–65 (1997), 153–158.
    • (1997) Appl. Biochem. Biotechnol. , vol.63-65 , pp. 153-158
    • Stols, L.1    Kulkarni, G.2    Harris, B.G.3    Donnelly, M.I.4
  • 323
    • 84876762221 scopus 로고    scopus 로고
    • Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate
    • Adkins, J., Jordan, J., Nielsen, D.R., Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Biotechnol. Bioeng. 110:6 (2013), 1726–1734.
    • (2013) Biotechnol. Bioeng. , vol.110 , Issue.6 , pp. 1726-1734
    • Adkins, J.1    Jordan, J.2    Nielsen, D.R.3
  • 324
    • 85022036149 scopus 로고    scopus 로고
    • A novel synthetic pathway for glutarate production in recombinant Escherichia coli
    • Yu, J.L., Xia, X.X., Zhong, J.J., Qian, Z.G., A novel synthetic pathway for glutarate production in recombinant Escherichia coli. Process Biochem. 59 (2017), 167–171.
    • (2017) Process Biochem. , vol.59 , pp. 167-171
    • Yu, J.L.1    Xia, X.X.2    Zhong, J.J.3    Qian, Z.G.4
  • 325
    • 85031773710 scopus 로고    scopus 로고
    • De novo biosynthesis of glutarate via alpha-keto acid carbon chain extension and decarboxylation pathway in Escherichia coli
    • Wang, J., Wu, Y.F., Sun, X.X., Yuan, Q.P., Yan, Y.J., De novo biosynthesis of glutarate via alpha-keto acid carbon chain extension and decarboxylation pathway in Escherichia coli. ACS Synth. Biol. 6:10 (2017), 1922–1930.
    • (2017) ACS Synth. Biol. , vol.6 , Issue.10 , pp. 1922-1930
    • Wang, J.1    Wu, Y.F.2    Sun, X.X.3    Yuan, Q.P.4    Yan, Y.J.5
  • 326
    • 0028286911 scopus 로고
    • Environmentally compatible synthesis of adipic acid from D-Glucose
    • Draths, K.M., Frost, J.W., Environmentally compatible synthesis of adipic acid from D-Glucose. J. Am. Chem. Soc. 116:1 (1994), 399–400.
    • (1994) J. Am. Chem. Soc. , vol.116 , Issue.1 , pp. 399-400
    • Draths, K.M.1    Frost, J.W.2
  • 327
    • 0036010273 scopus 로고    scopus 로고
    • Benzene-free synthesis of adipic acid
    • Niu, W., Draths, K.M., Frost, J.W., Benzene-free synthesis of adipic acid. Biotechnol. Prog. 18:2 (2002), 201–211.
    • (2002) Biotechnol. Prog. , vol.18 , Issue.2 , pp. 201-211
    • Niu, W.1    Draths, K.M.2    Frost, J.W.3
  • 328
    • 84946047532 scopus 로고    scopus 로고
    • Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli
    • Sengupta, S., Jonnalagadda, S., Goonewardena, L., Juturu, V., Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli. Appl. Environ. Microbiol. 81:23 (2015), 8037–8043.
    • (2015) Appl. Environ. Microbiol. , vol.81 , Issue.23 , pp. 8037-8043
    • Sengupta, S.1    Jonnalagadda, S.2    Goonewardena, L.3    Juturu, V.4
  • 329
    • 84925183205 scopus 로고    scopus 로고
    • Production of itaconic acid using metabolically engineered Escherichia coli
    • Okamoto, S., et al. Production of itaconic acid using metabolically engineered Escherichia coli. J. Gen. Appl. Microbiol. 60:5 (2014), 191–197.
    • (2014) J. Gen. Appl. Microbiol. , vol.60 , Issue.5 , pp. 191-197
    • Okamoto, S.1
  • 331
    • 0035102216 scopus 로고    scopus 로고
    • Microbial formation, biotechnological production and applications of 1,2-propanediol
    • Bennett, G.N., San, K.Y., Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl. Microbiol. Biotechnol. 55:1 (2001), 1–9.
    • (2001) Appl. Microbiol. Biotechnol. , vol.55 , Issue.1 , pp. 1-9
    • Bennett, G.N.1    San, K.Y.2
  • 332
    • 79952582831 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol
    • Clomburg, J.M., Gonzalez, R., Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol. Bioeng. 108:4 (2011), 867–879.
    • (2011) Biotechnol. Bioeng. , vol.108 , Issue.4 , pp. 867-879
    • Clomburg, J.M.1    Gonzalez, R.2
  • 333
    • 84934999495 scopus 로고    scopus 로고
    • Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol
    • Jain, R., Sun, X., Yuan, Q., Yan, Y., Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol. ACS Synth. Biol. 4:6 (2015), 746–756.
    • (2015) ACS Synth. Biol. , vol.4 , Issue.6 , pp. 746-756
    • Jain, R.1    Sun, X.2    Yuan, Q.3    Yan, Y.4
  • 334
    • 0343924603 scopus 로고    scopus 로고
    • Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol
    • Ui, S., Okajima, Y., Mimura, A., Kanai, H., Kudo, T., Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol. J. Ferment. Bioeng. 84:3 (1997), 185–189.
    • (1997) J. Ferment. Bioeng. , vol.84 , Issue.3 , pp. 185-189
    • Ui, S.1    Okajima, Y.2    Mimura, A.3    Kanai, H.4    Kudo, T.5
  • 335
    • 70349290656 scopus 로고    scopus 로고
    • Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases
    • Yan, Y.J., Lee, C.C., Liao, J.C., Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org. Biomol. Chem. 7:19 (2009), 3914–3917.
    • (2009) Org. Biomol. Chem. , vol.7 , Issue.19 , pp. 3914-3917
    • Yan, Y.J.1    Lee, C.C.2    Liao, J.C.3
  • 336
    • 9644289456 scopus 로고    scopus 로고
    • Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli
    • Ui, S., et al. Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli. Lett. Appl. Microbiol. 39:6 (2004), 533–537.
    • (2004) Lett. Appl. Microbiol. , vol.39 , Issue.6 , pp. 533-537
    • Ui, S.1
  • 337
    • 77749245897 scopus 로고    scopus 로고
    • A novel whole-cell biocatalyst with NAD(+) regeneration for production of chiral chemicals
    • J, Z., et al. A novel whole-cell biocatalyst with NAD(+) regeneration for production of chiral chemicals. PLoS One, 5(1), 2010.
    • (2010) PLoS One , vol.5 , Issue.1
    • J, Z.1
  • 338
    • 84941564993 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose
    • Chu, H.P., et al. Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose. Biotechnol. Biofuels, 8, 2015.
    • (2015) Biotechnol. Biofuels , vol.8
    • Chu, H.P.1
  • 339
    • 84896847314 scopus 로고    scopus 로고
    • Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol
    • Xu, Y., et al. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab. Eng. 23 (2014), 22–33.
    • (2014) Metab. Eng. , vol.23 , pp. 22-33
    • Xu, Y.1
  • 340
    • 84925452363 scopus 로고    scopus 로고
    • Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol
    • Ji, X.J., Liu, L.G., Shen, M.Q., Nie, Z.K., Tong, Y.J., Huang, H., Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol. Biotechnol. Bioeng. 112:5 (2015), 1056–1059.
    • (2015) Biotechnol. Bioeng. , vol.112 , Issue.5 , pp. 1056-1059
    • Ji, X.J.1    Liu, L.G.2    Shen, M.Q.3    Nie, Z.K.4    Tong, Y.J.5    Huang, H.6
  • 341
    • 85008144251 scopus 로고    scopus 로고
    • Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance
    • Liang, K.M., Shen, C.R., Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance. Metab. Eng. 39 (2017), 181–191.
    • (2017) Metab. Eng. , vol.39 , pp. 181-191
    • Liang, K.M.1    Shen, C.R.2
  • 342
    • 85012926098 scopus 로고    scopus 로고
    • Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose
    • Wang, J., et al. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose. Metab. Eng. 40 (2017), 148–156.
    • (2017) Metab. Eng. , vol.40 , pp. 148-156
    • Wang, J.1
  • 344
    • 84965129137 scopus 로고    scopus 로고
    • Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol
    • Pereira, B., Zhang, H.R., De Mey, M., Lim, C.G., Li, Z.J., Stephanopoulos, G., Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol. Biotechnol. Bioeng. 113:2 (2016), 376–383.
    • (2016) Biotechnol. Bioeng. , vol.113 , Issue.2 , pp. 376-383
    • Pereira, B.1    Zhang, H.R.2    De Mey, M.3    Lim, C.G.4    Li, Z.J.5    Stephanopoulos, G.6
  • 345
    • 84954409658 scopus 로고    scopus 로고
    • Metabolic engineering toward sustainable production of nylon-6
    • Turk, S.C., et al. Metabolic engineering toward sustainable production of nylon-6. ACS Synth. Biol. 5:1 (2016), 65–73.
    • (2016) ACS Synth. Biol. , vol.5 , Issue.1 , pp. 65-73
    • Turk, S.C.1
  • 346
    • 85019628575 scopus 로고    scopus 로고
    • Application of an acyl-CoA ligase from streptomyces aizunensis for lactam biosynthesis
    • Zhang, J., Barajas, J.F., Burdu, M., Wang, G., Baidoo, E.E., Keasling, J.D., Application of an acyl-CoA ligase from streptomyces aizunensis for lactam biosynthesis. Acs Synth. Biol. 6:5 (2017), 884–890.
    • (2017) Acs Synth. Biol. , vol.6 , Issue.5 , pp. 884-890
    • Zhang, J.1    Barajas, J.F.2    Burdu, M.3    Wang, G.4    Baidoo, E.E.5    Keasling, J.D.6
  • 347
    • 84900632425 scopus 로고    scopus 로고
    • Ethylene-forming enzyme and bioethylene production
    • Eckert, C., et al. Ethylene-forming enzyme and bioethylene production. Biotechnol. Biofuels, 7, 2014.
    • (2014) Biotechnol. Biofuels , vol.7
    • Eckert, C.1
  • 348
    • 79958232375 scopus 로고    scopus 로고
    • Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway
    • Zhao, Y.R., et al. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl. Microbiol. Biotechnol. 90:6 (2011), 1915–1922.
    • (2011) Appl. Microbiol. Biotechnol. , vol.90 , Issue.6 , pp. 1915-1922
    • Zhao, Y.R.1
  • 349
    • 84860487970 scopus 로고    scopus 로고
    • Enhancing production of bio-isoprene using Hybrid MVA pathway and isoprene synthase in E-coli
    • Yang, J.M., et al. Enhancing production of bio-isoprene using Hybrid MVA pathway and isoprene synthase in E-coli. PLoS One, 7(4), 2012.
    • (2012) PLoS One , vol.7 , Issue.4
    • Yang, J.M.1
  • 350
    • 0037057135 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of medium-chain-length polyhydroxyalkanoates rich in specific monomers
    • Park, S.J., Park, J.P., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of medium-chain-length polyhydroxyalkanoates rich in specific monomers. FEMS Microbiol. Lett. 214:2 (2002), 217–222.
    • (2002) FEMS Microbiol. Lett. , vol.214 , Issue.2 , pp. 217-222
    • Park, S.J.1    Park, J.P.2    Lee, S.Y.3
  • 351
    • 73949094856 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers
    • Jung, Y.K., Kim, T.Y., Park, S.J., Lee, S.Y., Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105:1 (2010), 161–171.
    • (2010) Biotechnol. Bioeng. , vol.105 , Issue.1 , pp. 161-171
    • Jung, Y.K.1    Kim, T.Y.2    Park, S.J.3    Lee, S.Y.4
  • 352
    • 73949105231 scopus 로고    scopus 로고
    • Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase
    • Yang, T.H., et al. Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol. Bioeng. 105:1 (2010), 150–160.
    • (2010) Biotechnol. Bioeng. , vol.105 , Issue.1 , pp. 150-160
    • Yang, T.H.1
  • 353
    • 56249093155 scopus 로고    scopus 로고
    • A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme
    • Taguchi, S., et al. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc. Natl. Acad. Sci. USA. 105:45 (2008), 17323–17327.
    • (2008) Proc. Natl. Acad. Sci. USA. , vol.105 , Issue.45 , pp. 17323-17327
    • Taguchi, S.1
  • 355
    • 84963516758 scopus 로고    scopus 로고
    • One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli
    • (+) (+)
    • Choi, S.Y., et al. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. (+) Nat. Biotechnol., 34(4), 2016, 435 (+).
    • (2016) Nat. Biotechnol. , vol.34 , Issue.4 , pp. 435
    • Choi, S.Y.1
  • 356
    • 84961922827 scopus 로고    scopus 로고
    • Fuelling the future: microbial engineering for the production of sustainable biofuels
    • Liao, J.C., Mi, L., Pontrelli, S., Luo, S.S., Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14:5 (2016), 288–304.
    • (2016) Nat. Rev. Microbiol. , vol.14 , Issue.5 , pp. 288-304
    • Liao, J.C.1    Mi, L.2    Pontrelli, S.3    Luo, S.S.4
  • 357
    • 53049097710 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol production
    • Atsumi, S., et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10:6 (2008), 305–311.
    • (2008) Metab. Eng. , vol.10 , Issue.6 , pp. 305-311
    • Atsumi, S.1
  • 358
    • 38049162218 scopus 로고    scopus 로고
    • Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli
    • Inui, M., et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77:6 (2008), 1305–1316.
    • (2008) Appl. Microbiol. Biotechnol. , vol.77 , Issue.6 , pp. 1305-1316
    • Inui, M.1
  • 359
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • Bond-Watts, B.B., Bellerose, R.J., Chang, M.C.Y., Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 7:4 (2011), 222–227.
    • (2011) Nat. Chem. Biol. , vol.7 , Issue.4 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.Y.3
  • 360
    • 84913558396 scopus 로고    scopus 로고
    • Potential production platform of n-butanol in Escherichia coli
    • Saini, M., Chen, M.H., Chung-Jen, C., Chao, Y.P., Potential production platform of n-butanol in Escherichia coli. Metab. Eng. 27 (2015), 76–82.
    • (2015) Metab. Eng. , vol.27 , pp. 76-82
    • Saini, M.1    Chen, M.H.2    Chung-Jen, C.3    Chao, Y.P.4
  • 361
    • 85006355058 scopus 로고    scopus 로고
    • Self-regulated 1-butanol production in Escherichia coli based on the endogenous fermentative control
    • Wen, R.C., Shen, C.R., Self-regulated 1-butanol production in Escherichia coli based on the endogenous fermentative control. Biotechnol. Biofuels, 9(1), 2016, 267.
    • (2016) Biotechnol. Biofuels , vol.9 , Issue.1 , pp. 267
    • Wen, R.C.1    Shen, C.R.2
  • 362
    • 85032981856 scopus 로고    scopus 로고
    • A systematically chromosomally engineered Escherichia coli efficiently produces butanol
    • Dong, H.J., et al. A systematically chromosomally engineered Escherichia coli efficiently produces butanol. Metab. Eng. 44 (2017), 284–292.
    • (2017) Metab. Eng. , vol.44 , pp. 284-292
    • Dong, H.J.1
  • 363
    • 85034970175 scopus 로고    scopus 로고
    • Synthetic consortium of escherichia coli for n-butanol production by fermentation of the glucose-xylose mixture
    • Saini, M., Lin, L.J., Chiang, C.J., Chao, Y.P., Synthetic consortium of escherichia coli for n-butanol production by fermentation of the glucose-xylose mixture. J. Agric. Food Chem. 65:46 (2017), 10040–10047.
    • (2017) J. Agric. Food Chem. , vol.65 , Issue.46 , pp. 10040-10047
    • Saini, M.1    Lin, L.J.2    Chiang, C.J.3    Chao, Y.P.4
  • 364
    • 84961198010 scopus 로고    scopus 로고
    • Systematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol
    • Saini, M., Li, S.Y., Wang, Z.W., Chiang, C.J., Chao, Y.P., Systematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol. Biotechnol. Biofuels, 9, 2016, 69.
    • (2016) Biotechnol. Biofuels , vol.9 , pp. 69
    • Saini, M.1    Li, S.Y.2    Wang, Z.W.3    Chiang, C.J.4    Chao, Y.P.5
  • 365
    • 79960859539 scopus 로고    scopus 로고
    • Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli
    • Dekishima, Y., Lan, E.I., Shen, C.R., Cho, K.M., Liao, J.C., Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J. Am. Chem. Soc. 133:30 (2011), 11399–11401.
    • (2011) J. Am. Chem. Soc. , vol.133 , Issue.30 , pp. 11399-11401
    • Dekishima, Y.1    Lan, E.I.2    Shen, C.R.3    Cho, K.M.4    Liao, J.C.5
  • 366
    • 84881663509 scopus 로고    scopus 로고
    • Metabolic engineering of 2-pentanone synthesis in Escherichia coli
    • Lan, E.I., Dekishima, Y., Chuang, D.S., Liao, J.C., Metabolic engineering of 2-pentanone synthesis in Escherichia coli. AICHE J. 59:9 (2013), 3167–3175.
    • (2013) AICHE J. , vol.59 , Issue.9 , pp. 3167-3175
    • Lan, E.I.1    Dekishima, Y.2    Chuang, D.S.3    Liao, J.C.4
  • 368
    • 66249112842 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate
    • Tseng, H.C., Martin, C.H., Nielsen, D.R., Prather, K.L.J., Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate. Appl. Environ. Microbiol. 75:10 (2009), 3137–3145.
    • (2009) Appl. Environ. Microbiol. , vol.75 , Issue.10 , pp. 3137-3145
    • Tseng, H.C.1    Martin, C.H.2    Nielsen, D.R.3    Prather, K.L.J.4
  • 369
    • 84896408319 scopus 로고    scopus 로고
    • Butyrate production in engineered Escherichia coli with synthetic scaffolds,”scaffolds
    • Baek, J.M., et al. Butyrate production in engineered Escherichia coli with synthetic scaffolds,”scaffolds. Biotechnol. Bioeng. 110:10 (2013), 2790–2794.
    • (2013) Biotechnol. Bioeng. , vol.110 , Issue.10 , pp. 2790-2794
    • Baek, J.M.1
  • 370
    • 80051941601 scopus 로고    scopus 로고
    • Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
    • Dellomonaco, C., Clomburg, J.M., Miller, E.N., Gonzalez, R., Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:7360 (2011), 355–359.
    • (2011) Nature , vol.476 , Issue.7360 , pp. 355-359
    • Dellomonaco, C.1    Clomburg, J.M.2    Miller, E.N.3    Gonzalez, R.4
  • 371
    • 84869472029 scopus 로고    scopus 로고
    • A synthetic biology approach to engineer a functional reversal of the beta-oxidation Cycle
    • Clomburg, J.M., Vick, J.E., Blankschien, M.D., Rodriguez-Moya, M., Gonzalez, R., A synthetic biology approach to engineer a functional reversal of the beta-oxidation Cycle. ACS Synth. Biol. 1:11 (2012), 541–554.
    • (2012) ACS Synth. Biol. , vol.1 , Issue.11 , pp. 541-554
    • Clomburg, J.M.1    Vick, J.E.2    Blankschien, M.D.3    Rodriguez-Moya, M.4    Gonzalez, R.5
  • 372
    • 84961589031 scopus 로고    scopus 로고
    • Engineering Escherichia coli for the synthesis of short- and medium-chain alpha,beta-unsaturated carboxylic acids
    • Kim, S., Cheong, S., Gonzalez, R., Engineering Escherichia coli for the synthesis of short- and medium-chain alpha,beta-unsaturated carboxylic acids. Metab. Eng. 36 (2016), 90–98.
    • (2016) Metab. Eng. , vol.36 , pp. 90-98
    • Kim, S.1    Cheong, S.2    Gonzalez, R.3
  • 373
    • 54349114978 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
    • Shen, C.R., Liao, J.C., Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 10:6 (2008), 312–320.
    • (2008) Metab. Eng. , vol.10 , Issue.6 , pp. 312-320
    • Shen, C.R.1    Liao, J.C.2
  • 374
    • 77950626597 scopus 로고    scopus 로고
    • 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation
    • Connor, M.R., Cann, A.F., Liao, J.C., 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl. Microbiol. Biotechnol. 86:4 (2010), 1155–1164.
    • (2010) Appl. Microbiol. Biotechnol. , vol.86 , Issue.4 , pp. 1155-1164
    • Connor, M.R.1    Cann, A.F.2    Liao, J.C.3
  • 375
    • 58549111802 scopus 로고    scopus 로고
    • Expanding metabolism for biosynthesis of nonnatural alcohols
    • Zhang, K., Sawaya, M.R., Eisenberg, D.S., Liao, J.C., Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl. Acad. Sci. USA. 105:52 (2008), 20653–20658.
    • (2008) Proc. Natl. Acad. Sci. USA. , vol.105 , Issue.52 , pp. 20653-20658
    • Zhang, K.1    Sawaya, M.R.2    Eisenberg, D.S.3    Liao, J.C.4
  • 376
    • 84860211608 scopus 로고    scopus 로고
    • A synthetic recursive ‘+1’ pathway for carbon chain elongation
    • Marcheschi, R.J., et al. A synthetic recursive ‘+1’ pathway for carbon chain elongation. ACS Chem. Biol. 7:4 (2012), 689–697.
    • (2012) ACS Chem. Biol. , vol.7 , Issue.4 , pp. 689-697
    • Marcheschi, R.J.1
  • 377
    • 84907373911 scopus 로고    scopus 로고
    • Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli
    • Rodriguez, G.M., Atsumi, S., Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab. Eng. 25 (2014), 227–237.
    • (2014) Metab. Eng. , vol.25 , pp. 227-237
    • Rodriguez, G.M.1    Atsumi, S.2
  • 378
    • 80052003262 scopus 로고    scopus 로고
    • A synthetic metabolic pathway for production of the platform chemical isobutyric acid
    • Zhang, K.C., Woodruff, A.P., Xiong, M.Y., Zhou, J., Dhande, Y.K., A synthetic metabolic pathway for production of the platform chemical isobutyric acid. ChemSusChem 4:8 (2011), 1068–1070.
    • (2011) ChemSusChem , vol.4 , Issue.8 , pp. 1068-1070
    • Zhang, K.C.1    Woodruff, A.P.2    Xiong, M.Y.3    Zhou, J.4    Dhande, Y.K.5
  • 379
    • 85056958326 scopus 로고    scopus 로고
    • Improving engineered Escherichia coli strains for high-level biosynthesis of isobutyrate
    • Xiong, M., Yu, P., Wang, J., Zhang, K., Improving engineered Escherichia coli strains for high-level biosynthesis of isobutyrate. AIMS Bioeng. 2:2 (2015), 60–74.
    • (2015) AIMS Bioeng. , vol.2 , Issue.2 , pp. 60-74
    • Xiong, M.1    Yu, P.2    Wang, J.3    Zhang, K.4
  • 381
    • 75749125061 scopus 로고    scopus 로고
    • Microbial production of fatty-acid-derived fuels and chemicals from plant biomass
    • Steen, E.J., et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:7280 (2010), 559–562.
    • (2010) Nature , vol.463 , Issue.7280 , pp. 559-562
    • Steen, E.J.1
  • 382
    • 83055180451 scopus 로고    scopus 로고
    • Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase
    • Nawabi, P., Bauer, S., Kyrpides, N., Lykidis, A., Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase. Appl. Environ. Microbiol. 77:22 (2011), 8052–8061.
    • (2011) Appl. Environ. Microbiol. , vol.77 , Issue.22 , pp. 8052-8061
    • Nawabi, P.1    Bauer, S.2    Kyrpides, N.3    Lykidis, A.4
  • 383
    • 84963705444 scopus 로고    scopus 로고
    • Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme
    • Sherkhanov, S., Korman, T.P., Clarke, S.G., Bowie, J.U., Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme. Sci. Rep., 6, 2016.
    • (2016) Sci. Rep. , vol.6
    • Sherkhanov, S.1    Korman, T.P.2    Clarke, S.G.3    Bowie, J.U.4
  • 384
    • 84880511769 scopus 로고    scopus 로고
    • Fatty alcohol production in engineered E-coli expressing Marinobacter fatty acyl-CoA reductases
    • Liu, A.Q., Tan, X.M., Yao, L., Lu, X.F., Fatty alcohol production in engineered E-coli expressing Marinobacter fatty acyl-CoA reductases. Appl. Microbiol. Biotechnol. 97:15 (2013), 7061–7071.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , Issue.15 , pp. 7061-7071
    • Liu, A.Q.1    Tan, X.M.2    Yao, L.3    Lu, X.F.4
  • 385
    • 84979608957 scopus 로고    scopus 로고
    • High production of fatty alcohols in Escherichia coli with fatty acid starvation
    • Liu, Y.L., et al. High production of fatty alcohols in Escherichia coli with fatty acid starvation. Microb. Cell Fact., 15, 2016.
    • (2016) Microb. Cell Fact. , vol.15
    • Liu, Y.L.1
  • 387
    • 85056962123 scopus 로고    scopus 로고
    • Recombinant microorganism for the fermentative production of methionine, U.S. Patent No. 9,506,093. 29 Nov.
    • Dischert, W., Figge, R., 2016a. Recombinant microorganism for the fermentative production of methionine, U.S. Patent No. 9,506,093. 29 Nov.
    • (2016)
    • Dischert, W.1    Figge, R.2
  • 388
    • 85056912383 scopus 로고    scopus 로고
    • Microorganism for methionine production with enhanced glucose import, U.S. Patent No. 9,506,092. 29 Nov.
    • Dischert, W., Figge, R., 2016b. Microorganism for methionine production with enhanced glucose import, U.S. Patent No. 9,506,092. 29 Nov.
    • (2016)
    • Dischert, W.1    Figge, R.2
  • 389
    • 85056927078 scopus 로고    scopus 로고
    • Increasing methionine production by overexpressing succinate dehydrogenase, U.S. Patent No. 9,267,160. 23 Feb.
    • Figge, R., 2016. Increasing methionine production by overexpressing succinate dehydrogenase, U.S. Patent No. 9,267,160. 23 Feb.
    • (2016)
    • Figge, R.1
  • 390
    • 85056980007 scopus 로고    scopus 로고
    • Use of inducible promoters in the production of methionine, U.S. Patent No. 9,732,364. 15 Aug.
    • Figge, R., Vasseur, P., 2017. Use of inducible promoters in the production of methionine, U.S. Patent No. 9,732,364. 15 Aug.
    • (2017)
    • Figge, R.1    Vasseur, P.2
  • 391
    • 0035822553 scopus 로고    scopus 로고
    • Characterization of a new feedback-resistant 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase AroF of Escherichia coli
    • Jossek, R., Bongaerts, J., Sprenger, G.A., Characterization of a new feedback-resistant 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase AroF of Escherichia coli. FEMS Microbiol. Lett. 202:1 (2001), 145–148.
    • (2001) FEMS Microbiol. Lett. , vol.202 , Issue.1 , pp. 145-148
    • Jossek, R.1    Bongaerts, J.2    Sprenger, G.A.3
  • 392
    • 0028036558 scopus 로고
    • Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield
    • Patnaik, R., Liao, J.C., Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl. Environ. Microbiol. 60:11 (1994), 3903–3908.
    • (1994) Appl. Environ. Microbiol. , vol.60 , Issue.11 , pp. 3903-3908
    • Patnaik, R.1    Liao, J.C.2
  • 393
    • 85056979874 scopus 로고    scopus 로고
    • “DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine,”.
    • M. M. Gusyatiner, M. G. Lunts, Y. I. Kozlov, L. V Ivanovskaya, and E. B. Voroshilova, “DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine,” 2002.
    • (2002)
    • Gusyatiner, M.M.1    Lunts, M.G.2    Kozlov, Y.I.3    Ivanovskaya, L.V.4    Voroshilova, E.B.5
  • 394
    • 85056943403 scopus 로고    scopus 로고
    • Lysine decarboxylase gene and method of producing L-lysine, U.S. Patent No. 5,827,698. 27 Oct.
    • Kikuchi, Y., Suzuki, T., Kojima, H., 1998. Lysine decarboxylase gene and method of producing L-lysine, U.S. Patent No. 5,827,698. 27 Oct.
    • (1998)
    • Kikuchi, Y.1    Suzuki, T.2    Kojima, H.3
  • 395
    • 85056971171 scopus 로고    scopus 로고
    • L-threonine and L-tryptophan producing bacteria strain and method of making same, U.S. Patent Application No. 15/465,881.
    • Cheong, K.Y., Lee, S.M., Hwang, Y.B., LEE, K.C., Lee, K.H., 2017. L-threonine and L-tryptophan producing bacteria strain and method of making same, U.S. Patent Application No. 15/465,881.
    • (2017)
    • Cheong, K.Y.1    Lee, S.M.2    Hwang, Y.B.3    LEE, K.C.4    Lee, K.H.5
  • 396
    • 0029294180 scopus 로고
    • Pathway engineering for production of aromatics in Escherichia coli: confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities
    • Patnaik, R., Spitzer, R.G., Liao, J.C., Pathway engineering for production of aromatics in Escherichia coli: confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities. Biotechnol. Bioeng. 46:4 (1995), 361–370.
    • (1995) Biotechnol. Bioeng. , vol.46 , Issue.4 , pp. 361-370
    • Patnaik, R.1    Spitzer, R.G.2    Liao, J.C.3
  • 397
    • 0038391517 scopus 로고    scopus 로고
    • Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
    • Martin, V.J.J., Pitera, D.J., Withers, S.T., Newman, J.D., Keasling, J.D., Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21:7 (2003), 796–802.
    • (2003) Nat. Biotechnol. , vol.21 , Issue.7 , pp. 796-802
    • Martin, V.J.J.1    Pitera, D.J.2    Withers, S.T.3    Newman, J.D.4    Keasling, J.D.5
  • 398
    • 0034838359 scopus 로고    scopus 로고
    • Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol
    • Huang, Q.L., Roessner, C.A., Croteau, R., Scott, A.I., Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg. Med. Chem. 9:9 (2001), 2237–2242.
    • (2001) Bioorg. Med. Chem. , vol.9 , Issue.9 , pp. 2237-2242
    • Huang, Q.L.1    Roessner, C.A.2    Croteau, R.3    Scott, A.I.4
  • 399
    • 85039696705 scopus 로고    scopus 로고
    • The road to animal-free glycosaminoglycan production: current efforts and bottlenecks
    • Badri, A., Williams, A., Linhardt, R.J., Koffas, M.A., The road to animal-free glycosaminoglycan production: current efforts and bottlenecks. Curr. Opin. Biotechnol. 53 (2018), 85–92.
    • (2018) Curr. Opin. Biotechnol. , vol.53 , pp. 85-92
    • Badri, A.1    Williams, A.2    Linhardt, R.J.3    Koffas, M.A.4
  • 400
    • 84939564232 scopus 로고    scopus 로고
    • Heparin and related polysaccharides: synthesis using recombinant enzymes and metabolic engineering
    • Suflita, M., Fu, L., He, W., Koffas, M., Linhardt, R.J., Heparin and related polysaccharides: synthesis using recombinant enzymes and metabolic engineering. Appl. Microbiol. Biotechnol. 99:18 (2015), 7465–7479.
    • (2015) Appl. Microbiol. Biotechnol. , vol.99 , Issue.18 , pp. 7465-7479
    • Suflita, M.1    Fu, L.2    He, W.3    Koffas, M.4    Linhardt, R.J.5
  • 401
    • 85035806689 scopus 로고    scopus 로고
    • Engineering Escherichia coli co-cultures for production of curcuminoids from glucose
    • 1700576
    • Fang, Z., Jones, J.A., Zhou, J., Koffas, M.A.G., Engineering Escherichia coli co-cultures for production of curcuminoids from glucose. Biotecnol. J. 1700576 (2017), 1–8.
    • (2017) Biotecnol. J. , pp. 1-8
    • Fang, Z.1    Jones, J.A.2    Zhou, J.3    Koffas, M.A.G.4
  • 402
    • 84926646130 scopus 로고    scopus 로고
    • Distributing a metabolic pathway among a microbial consortium enhances production of natural products
    • (377-U157) (377-U157)
    • Zhou, K., Qiao, K.J., Edgar, S., Stephanopoulos, G., Distributing a metabolic pathway among a microbial consortium enhances production of natural products. (377-U157) Nat. Biotechnol., 33(4), 2015 (377-U157).
    • (2015) Nat. Biotechnol. , vol.33 , Issue.4
    • Zhou, K.1    Qiao, K.J.2    Edgar, S.3    Stephanopoulos, G.4
  • 403
    • 0030938239 scopus 로고    scopus 로고
    • Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes
    • Grohmann, K., Bothast, R.J., Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes. Process Biochem. 32:5 (1997), 405–415.
    • (1997) Process Biochem. , vol.32 , Issue.5 , pp. 405-415
    • Grohmann, K.1    Bothast, R.J.2
  • 404
    • 0034071629 scopus 로고    scopus 로고
    • Metabolic engineering applications to renewable resource utilization
    • Aristidou, A., Penttilä, M., Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotechnol. 11:2 (2000), 187–198.
    • (2000) Curr. Opin. Biotechnol. , vol.11 , Issue.2 , pp. 187-198
    • Aristidou, A.1    Penttilä, M.2
  • 405
    • 0023712889 scopus 로고
    • Alcohol production from glucose and xylose using Escherichia-Coli containing zymomonas-mobilis genes
    • Neale, A.D., Scopes, R.K., Kelly, J.M., Alcohol production from glucose and xylose using Escherichia-Coli containing zymomonas-mobilis genes. Appl. Microbiol. Biotechnol. 29:2–3 (1988), 162–167.
    • (1988) Appl. Microbiol. Biotechnol. , vol.29 , Issue.2-3 , pp. 162-167
    • Neale, A.D.1    Scopes, R.K.2    Kelly, J.M.3
  • 406
    • 79955030794 scopus 로고    scopus 로고
    • Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors
    • Lee, J.W., Jeffries, T.W., Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour. Technol. 102:10 (2011), 5884–5890.
    • (2011) Bioresour. Technol. , vol.102 , Issue.10 , pp. 5884-5890
    • Lee, J.W.1    Jeffries, T.W.2
  • 407
    • 0942288120 scopus 로고    scopus 로고
    • Bacteria engineered for fuel ethanol production: current status
    • Dien, B.S., Cotta, M.A., Jeffries, T.W., Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63:3 (2003), 258–266.
    • (2003) Appl. Microbiol. Biotechnol. , vol.63 , Issue.3 , pp. 258-266
    • Dien, B.S.1    Cotta, M.A.2    Jeffries, T.W.3
  • 408
    • 60349117090 scopus 로고    scopus 로고
    • A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose
    • Eiteman, M.A., Lee, S.A., Altman, R., Altman, E., A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Biotechnol. Bioeng. 102:3 (2009), 822–827.
    • (2009) Biotechnol. Bioeng. , vol.102 , Issue.3 , pp. 822-827
    • Eiteman, M.A.1    Lee, S.A.2    Altman, R.3    Altman, E.4
  • 409
    • 84978511515 scopus 로고    scopus 로고
    • Engineering of a synthetic metabolic pathway for the assimilation of (d)-xylose into value-added chemicals
    • Cam, Y., et al. Engineering of a synthetic metabolic pathway for the assimilation of (d)-xylose into value-added chemicals. ACS Synth. Biol. 5:7 (2016), 607–618.
    • (2016) ACS Synth. Biol. , vol.5 , Issue.7 , pp. 607-618
    • Cam, Y.1
  • 410
    • 85019214517 scopus 로고    scopus 로고
    • Metabolic engineering of an E. coli ndh knockout strain for PHB production from mixed glucose–xylose feedstock
    • Huo, G., et al. Metabolic engineering of an E. coli ndh knockout strain for PHB production from mixed glucose–xylose feedstock. J. Chem. Technol. Biotechnol. 92:10 (2017), 2739–2745.
    • (2017) J. Chem. Technol. Biotechnol. , vol.92 , Issue.10 , pp. 2739-2745
    • Huo, G.1
  • 411
    • 84958532700 scopus 로고    scopus 로고
    • Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect
    • Lu, H., et al. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect. BMC Biotechnol. 16:1 (2016), 1–10.
    • (2016) BMC Biotechnol. , vol.16 , Issue.1 , pp. 1-10
    • Lu, H.1
  • 412
    • 85012195222 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose
    • Zhao, A., Hu, X., Wang, X., Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose. Appl. Microbiol. Biotechnol. 101:9 (2017), 3587–3603.
    • (2017) Appl. Microbiol. Biotechnol. , vol.101 , Issue.9 , pp. 3587-3603
    • Zhao, A.1    Hu, X.2    Wang, X.3
  • 413
    • 77955716950 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of succinate from glycerol
    • Blankschien, M.D., Clomburg, J., Gonzalez, R., Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab. Eng. 12:5 (2010), 409–419.
    • (2010) Metab. Eng. , vol.12 , Issue.5 , pp. 409-419
    • Blankschien, M.D.1    Clomburg, J.2    Gonzalez, R.3
  • 414
    • 77954254857 scopus 로고    scopus 로고
    • Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol
    • Mazumdar, S., Clomburg, J.M., Gonzalez, R., Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol. Appl. Environ. Microbiol. 76:13 (2010), 4327–4336.
    • (2010) Appl. Environ. Microbiol. , vol.76 , Issue.13 , pp. 4327-4336
    • Mazumdar, S.1    Clomburg, J.M.2    Gonzalez, R.3
  • 415
    • 80555150665 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for α-farnesene production
    • Wang, C., et al. Metabolic engineering of Escherichia coli for α-farnesene production. Metab. Eng. 13:6 (2011), 648–655.
    • (2011) Metab. Eng. , vol.13 , Issue.6 , pp. 648-655
    • Wang, C.1
  • 416
    • 84900808181 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol
    • Tran, K.T., Maeda, T., Wood, T.K., Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl. Microbiol. Biotechnol. 98:10 (2014), 4757–4770.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , Issue.10 , pp. 4757-4770
    • Tran, K.T.1    Maeda, T.2    Wood, T.K.3
  • 417
    • 84865590395 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 1-propanol
    • Jun Choi, Y., Hwan Park, J., Yong Kim, T., Yup Lee, S., Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab. Eng. 14:5 (2012), 477–486.
    • (2012) Metab. Eng. , vol.14 , Issue.5 , pp. 477-486
    • Jun Choi, Y.1    Hwan Park, J.2    Yong Kim, T.3    Yup Lee, S.4
  • 418
    • 84855751916 scopus 로고    scopus 로고
    • Macroalgae as a Biomass Feedstock : A Preliminary Analysis
    • Department of Energy United States
    • Roesijadi, G., Jones, S.B., Snowden-Swan, L.J., Zhu, Y., Macroalgae as a Biomass Feedstock : A Preliminary Analysis. 2010, Department of Energy, United States.
    • (2010)
    • Roesijadi, G.1    Jones, S.B.2    Snowden-Swan, L.J.3    Zhu, Y.4
  • 419
    • 84856074574 scopus 로고    scopus 로고
    • An engineered microbial platform for direct biofuel production from brown macroalgae
    • (no. January), 230502
    • Wargacki, A.J., et al. An engineered microbial platform for direct biofuel production from brown macroalgae. (no. January) Sci. (80-.) 230502 (2012), 308–314.
    • (2012) Sci. (80-.) , pp. 308-314
    • Wargacki, A.J.1
  • 420
    • 79953889249 scopus 로고    scopus 로고
    • Conversion of proteins into biofuels by engineering nitrogen flux
    • Huo, Y.-X., et al. Conversion of proteins into biofuels by engineering nitrogen flux. Nat. Biotechnol. 29:4 (2011), 346–351.
    • (2011) Nat. Biotechnol. , vol.29 , Issue.4 , pp. 346-351
    • Huo, Y.-X.1
  • 421
    • 84896119130 scopus 로고    scopus 로고
    • Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis
    • Choi, K.Y., Wernick, D.G., Tat, C. a., Liao, J.C., Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab. Eng. 23 (2014), 53–61.
    • (2014) Metab. Eng. , vol.23 , pp. 53-61
    • Choi, K.Y.1    Wernick, D.G.2    Tat, C.A.3    Liao, J.C.4
  • 422
    • 33846607693 scopus 로고    scopus 로고
    • Bacillus methanolicus : a candidate for industrial production of amino acids from methanol at 50 °C
    • Brautaset, T., Jakobsen, Ø.M., Bacillus methanolicus : a candidate for industrial production of amino acids from methanol at 50 °C. Appl. Microbiol. Biotechnol., 2007, 22–34.
    • (2007) Appl. Microbiol. Biotechnol. , pp. 22-34
    • Brautaset, T.1    Jakobsen, Ø.M.2
  • 423
    • 84922433192 scopus 로고    scopus 로고
    • Engineering Escherichia coli for methanol conversion
    • Müller, J.E.N., et al. Engineering Escherichia coli for methanol conversion. Metab. Eng. 28 (2015), 190–201.
    • (2015) Metab. Eng. , vol.28 , pp. 190-201
    • Müller, J.E.N.1
  • 425
    • 78049248963 scopus 로고    scopus 로고
    • Methanol Assimilation in Methylobacterium extorquens AM1: demonstration of All Enzymes and Their Regulation
    • Smejkalova, H., Erb, T.J., Fuchs, G., Methanol Assimilation in Methylobacterium extorquens AM1: demonstration of All Enzymes and Their Regulation. PLoS One, 5(10), 2010.
    • (2010) PLoS One , vol.5 , Issue.10
    • Smejkalova, H.1    Erb, T.J.2    Fuchs, G.3
  • 426
    • 0036042189 scopus 로고    scopus 로고
    • Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria
    • Vorholt, J.A., Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch. Microbiol., 2002, 239–249.
    • (2002) Arch. Microbiol. , pp. 239-249
    • Vorholt, J.A.1
  • 427
    • 0004287189 scopus 로고
    • Biochemistry of Methylotrophs
    • Academic Press
    • Anthony, C., Biochemistry of Methylotrophs. 1982, Academic Press.
    • (1982)
    • Anthony, C.1
  • 428
    • 0018356970 scopus 로고
    • Growth and polysaccharide production by methylocystis parvus OBBP on methanol
    • Hou, C.T., Laskin, A.I., Patel, R.N., Growth and polysaccharide production by methylocystis parvus OBBP on methanol. Appl. Environ. Microbiol. 37:5 (1978), 800–804.
    • (1978) Appl. Environ. Microbiol. , vol.37 , Issue.5 , pp. 800-804
    • Hou, C.T.1    Laskin, A.I.2    Patel, R.N.3
  • 429
    • 0030266252 scopus 로고    scopus 로고
    • Efficient L-serine production from methanol and glycine by resting cells of Methylobacterium sp. strainMN43
    • Hagishita, T., Toyokazu, Y., Yoshikazu, I., Toshio, M., Efficient L-serine production from methanol and glycine by resting cells of Methylobacterium sp. strainMN43. Biosci. Biotechnol. Biochem. 60:10 (1996), 1604–1607.
    • (1996) Biosci. Biotechnol. Biochem. , vol.60 , Issue.10 , pp. 1604-1607
    • Hagishita, T.1    Toyokazu, Y.2    Yoshikazu, I.3    Toshio, M.4
  • 430
    • 0035405620 scopus 로고    scopus 로고
    • Overproduction of L-lysine from methanol by methylobacillus glycogenes derivatives carrying a plasmid with a mutated dapA gene
    • Motoyama, H., Yano, H., Terasaki, Y., Hakko, K., Co, K., Overproduction of L-lysine from methanol by methylobacillus glycogenes derivatives carrying a plasmid with a mutated dapA gene. Appl. Environ. Microbiol. 67:7 (2001), 3064–3070.
    • (2001) Appl. Environ. Microbiol. , vol.67 , Issue.7 , pp. 3064-3070
    • Motoyama, H.1    Yano, H.2    Terasaki, Y.3    Hakko, K.4    Co, K.5
  • 431
    • 84992321320 scopus 로고    scopus 로고
    • Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli
    • (no. June 2016)
    • Whitaker, W.B., et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. (no. June 2016), 39, 2017, 49–59.
    • (2017) , vol.39 , pp. 49-59
    • Whitaker, W.B.1
  • 432
    • 85036471562 scopus 로고    scopus 로고
    • Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs
    • Bennett, R.K., Steinberg, L.M., Chen, W., Papoutsakis, E.T., Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Curr. Opin. Biotechnol. 50 (2018), 81–93.
    • (2018) Curr. Opin. Biotechnol. , vol.50 , pp. 81-93
    • Bennett, R.K.1    Steinberg, L.M.2    Chen, W.3    Papoutsakis, E.T.4
  • 433
    • 84994494330 scopus 로고    scopus 로고
    • Scaffoldless engineered enzyme assembly for enhanced methanol utilization
    • Price, J.V., Chen, L., Whitaker, W.B., Papoutsakis, E., Chen, W., Scaffoldless engineered enzyme assembly for enhanced methanol utilization. Proc. Natl. Acad. Sci. USA 113:45 (2016), 12691–12696.
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , Issue.45 , pp. 12691-12696
    • Price, J.V.1    Chen, L.2    Whitaker, W.B.3    Papoutsakis, E.4    Chen, W.5
  • 434
    • 85036654608 scopus 로고    scopus 로고
    • Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph
    • (no. July 2017)
    • Bennett, R.K., Gonzalez, J.E., Whitaker, W.B., Antoniewicz, M.R., Papoutsakis, E.T., Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph. (no. July 2017) Metab. Eng. 45 (2018), 75–85.
    • (2018) Metab. Eng. , vol.45 , pp. 75-85
    • Bennett, R.K.1    Gonzalez, J.E.2    Whitaker, W.B.3    Antoniewicz, M.R.4    Papoutsakis, E.T.5
  • 435
    • 84995622089 scopus 로고    scopus 로고
    • Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by13C metabolic flux analysis
    • (no. November 2016)
    • Gonzalez, J.E., Long, C.P., Antoniewicz, M.R., Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by13C metabolic flux analysis. (no. November 2016) Metab. Eng. 39 (2017), 9–18.
    • (2017) Metab. Eng. , vol.39 , pp. 9-18
    • Gonzalez, J.E.1    Long, C.P.2    Antoniewicz, M.R.3
  • 436
    • 84909606329 scopus 로고    scopus 로고
    • Building carbon–carbon bonds using a biocatalytic methanol condensation cycle
    • Bogorad, I.W., et al. Building carbon–carbon bonds using a biocatalytic methanol condensation cycle. Proc. Natl. Acad. Sci. USA 111:45 (2014), 15928–15933.
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , Issue.45 , pp. 15928-15933
    • Bogorad, I.W.1
  • 437
    • 84925426233 scopus 로고    scopus 로고
    • Computational protein design enables a novel one-carbon assimilation pathway
    • (201500545) (201500545)
    • Siegel, J.B., et al. Computational protein design enables a novel one-carbon assimilation pathway. (201500545) Proc. Natl. Acad. Sci. USA, 2015 (201500545).
    • (2015) Proc. Natl. Acad. Sci. USA
    • Siegel, J.B.1
  • 438
    • 84940453195 scopus 로고    scopus 로고
    • Mechanistic analysis of an engineered enzyme that catalyzes the formose reaction
    • Poust, S., Piety, J., Bar-even, A., Louw, C., Baker, D., Mechanistic analysis of an engineered enzyme that catalyzes the formose reaction. Chembiochemistry, 2015, 1950–1954.
    • (2015) Chembiochemistry , pp. 1950-1954
    • Poust, S.1    Piety, J.2    Bar-even, A.3    Louw, C.4    Baker, D.5
  • 440
    • 30544444128 scopus 로고    scopus 로고
    • Immune evasion by staphylococci
    • Foster, T.J., Immune evasion by staphylococci. Nat. Rev. Microbiol. 3:12 (2005), 948–958.
    • (2005) Nat. Rev. Microbiol. , vol.3 , Issue.12 , pp. 948-958
    • Foster, T.J.1
  • 441
    • 0032213886 scopus 로고    scopus 로고
    • Inactivation in vitro of the Escherichia coli outer membrane protein FhuA by a phage T5-encoded lipoprotein
    • Pedruzzi, I., Rosenbusch, J.P., Locher, K.P., Inactivation in vitro of the Escherichia coli outer membrane protein FhuA by a phage T5-encoded lipoprotein. FEMS Microbiol. Lett. 168:1 (1998), 119–125.
    • (1998) FEMS Microbiol. Lett. , vol.168 , Issue.1 , pp. 119-125
    • Pedruzzi, I.1    Rosenbusch, J.P.2    Locher, K.P.3
  • 442
    • 0014339815 scopus 로고
    • Escherichia coli K Bacteriophages
    • Stirm, S., Escherichia coli K Bacteriophages. J. Virol. 2:10 (1968), 1107–1114.
    • (1968) J. Virol. , vol.2 , Issue.10 , pp. 1107-1114
    • Stirm, S.1
  • 443
    • 60349118910 scopus 로고    scopus 로고
    • Sequence analysis of Escherichia coli O157:H7 bacteriophage ??V10 and identification of a phage-encoded immunity protein that modifies the O157 antigen
    • Perry, L.L., et al. Sequence analysis of Escherichia coli O157:H7 bacteriophage ??V10 and identification of a phage-encoded immunity protein that modifies the O157 antigen. FEMS Microbiol. Lett. 292:2 (2009), 182–186.
    • (2009) FEMS Microbiol. Lett. , vol.292 , Issue.2 , pp. 182-186
    • Perry, L.L.1
  • 444
    • 23644448769 scopus 로고    scopus 로고
    • 16 β-hairpin region in the recognition mechanism
    • 16 β-hairpin region in the recognition mechanism. Biochem. J. 389:3 (2005), 869–876.
    • (2005) Biochem. J. , vol.389 , Issue.3 , pp. 869-876
    • Destoumieux-Garzón, D.1
  • 445
    • 0027326019 scopus 로고
    • Location and unusual membrane topology of the immunity protein of the Escherichia coli phage T4
    • Lu, M.-J., Stierhof, Y.-D., Henning, U., Location and unusual membrane topology of the immunity protein of the Escherichia coli phage T4. J. Virol. 67:8 (1993), 4905–4913.
    • (1993) J. Virol. , vol.67 , Issue.8 , pp. 4905-4913
    • Lu, M.-J.1    Stierhof, Y.-D.2    Henning, U.3
  • 446
    • 17044403057 scopus 로고    scopus 로고
    • Type II restriction endonucleases: structure and mechanism
    • Pingoud, A., Fuxreiter, M., Pingoud, V., Wende, W., Type II restriction endonucleases: structure and mechanism. Cell. Mol. Life Sci. 62:6 (2005), 685–707.
    • (2005) Cell. Mol. Life Sci. , vol.62 , Issue.6 , pp. 685-707
    • Pingoud, A.1    Fuxreiter, M.2    Pingoud, V.3    Wende, W.4
  • 447
    • 0032924950 scopus 로고    scopus 로고
    • Molecular characterization of a phage-encoded resistance system in lactococcus lactis molecular characterization of a phage-encoded resistance system in Lactococcus lactis
    • Mcgrath, S., Seegers, J.F.M.L., Fitzgerald, G.F., Grath, S.M.C., Seegers, J.O.S.F.M.L., Molecular characterization of a phage-encoded resistance system in lactococcus lactis molecular characterization of a phage-encoded resistance system in Lactococcus lactis. Appl. Environ. Microbiol. 65:5 (1999), 1891–1899.
    • (1999) Appl. Environ. Microbiol. , vol.65 , Issue.5 , pp. 1891-1899
    • Mcgrath, S.1    Seegers, J.F.M.L.2    Fitzgerald, G.F.3    Grath, S.M.C.4    Seegers, J.O.S.F.M.L.5
  • 448
    • 0022872027 scopus 로고
    • Escherichia coli K-12 restricts DNA containing 5-methylcytosine
    • Raleigh, E.A., Wilson, G., Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc. Natl. Acad. Sci. Usa. 83:23 (1986), 9070–9074.
    • (1986) Proc. Natl. Acad. Sci. Usa. , vol.83 , Issue.23 , pp. 9070-9074
    • Raleigh, E.A.1    Wilson, G.2
  • 449
    • 78149261827 scopus 로고    scopus 로고
    • The CRISPR/cas bacterial immune system cleaves bacteriophage and plasmid DNA
    • Garneau, J.E., et al. The CRISPR/cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:7320 (2010), 67–71.
    • (2010) Nature , vol.468 , Issue.7320 , pp. 67-71
    • Garneau, J.E.1
  • 450
    • 0020575930 scopus 로고
    • Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts
    • Krüger, D.H., Bickle, T. a., Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol. Rev. 47:3 (1983), 345–360.
    • (1983) Microbiol. Rev. , vol.47 , Issue.3 , pp. 345-360
    • Krüger, D.H.1    Bickle, T.A.2
  • 451
    • 0028953424 scopus 로고
    • Phage‐exclusion enzymes: a bonanza of biochemical and cell biology reagents?
    • Snyder, L., Phage‐exclusion enzymes: a bonanza of biochemical and cell biology reagents?. Mol. Microbiol. 15:3 (1995), 415–420.
    • (1995) Mol. Microbiol. , vol.15 , Issue.3 , pp. 415-420
    • Snyder, L.1
  • 453
    • 34047118522 scopus 로고    scopus 로고
    • CRISPR provides acquired resistance against viruses in prokaryotes
    • (no. March)
    • Barrangou, R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. (no. March) Science 315 (2007), 1709–1712.
    • (2007) Science , vol.315 , pp. 1709-1712
    • Barrangou, R.1
  • 454
    • 38949123143 scopus 로고    scopus 로고
    • Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
    • Deveau, H., et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:4 (2008), 1390–1400.
    • (2008) J. Bacteriol. , vol.190 , Issue.4 , pp. 1390-1400
    • Deveau, H.1
  • 455
    • 74249095519 scopus 로고    scopus 로고
    • CRISPR/Cas, the immune system of bacteria and archaea,”archaea
    • Horvath, P., Barrangou, R., CRISPR/Cas, the immune system of bacteria and archaea,”archaea. Science 327:5962 (2010), 167–170.
    • (2010) Science , vol.327 , Issue.5962 , pp. 167-170
    • Horvath, P.1    Barrangou, R.2
  • 456
    • 79959963663 scopus 로고    scopus 로고
    • Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
    • Semenova, E., et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. USA 108:25 (2011), 10098–10103.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , Issue.25 , pp. 10098-10103
    • Semenova, E.1
  • 457
    • 77957935381 scopus 로고    scopus 로고
    • CRISPR/Cas system and its role in phage-bacteria interactions
    • Deveau, H., Garneau, J.E., Moineau, S., CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol. 64:1 (2010), 475–493.
    • (2010) Annu. Rev. Microbiol. , vol.64 , Issue.1 , pp. 475-493
    • Deveau, H.1    Garneau, J.E.2    Moineau, S.3
  • 458
    • 84884687531 scopus 로고    scopus 로고
    • Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition
    • Westra, E.R., et al. Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet., 9(9), 2013.
    • (2013) PLoS Genet. , vol.9 , Issue.9
    • Westra, E.R.1
  • 459
    • 84864864464 scopus 로고    scopus 로고
    • Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
    • (no. May)
    • Datsenko, K.A., Pougach, K., Tikhonov, A., Wanner, B.L., Severinov, K., Semenova, E., Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. (no. May) Nat. Commun. 3 (2012), 945–947.
    • (2012) Nat. Commun. , vol.3 , pp. 945-947
    • Datsenko, K.A.1    Pougach, K.2    Tikhonov, A.3    Wanner, B.L.4    Severinov, K.5    Semenova, E.6
  • 460
    • 84860433123 scopus 로고    scopus 로고
    • CRISPR interference directs strand specific spacer acquisition
    • Swarts, D.C., Mosterd, C., van Passel, M.W.J., Brouns, S.J.J., CRISPR interference directs strand specific spacer acquisition. PLoS One 7:4 (2012), 1–7.
    • (2012) PLoS One , vol.7 , Issue.4 , pp. 1-7
    • Swarts, D.C.1    Mosterd, C.2    van Passel, M.W.J.3    Brouns, S.J.J.4
  • 461
    • 85030331090 scopus 로고    scopus 로고
    • The discovery, mechanisms, and evolutionary impact of Anti-CRISPRs
    • (p. annurev-virology-101416-041616) (p. annurev-virology-101416-041616)
    • Borges, A.L., Davidson, A.R., Bondy-Denomy, J., The discovery, mechanisms, and evolutionary impact of Anti-CRISPRs. (p. annurev-virology-101416-041616) Annu. Rev. Virol., 4(1), 2017 (p. annurev-virology-101416-041616).
    • (2017) Annu. Rev. Virol. , vol.4 , Issue.1
    • Borges, A.L.1    Davidson, A.R.2    Bondy-Denomy, J.3
  • 462
    • 85020305827 scopus 로고    scopus 로고
    • The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies
    • Strotskaya, A., et al. The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies. Nucleic Acids Res. 45:4 (2017), 1946–1957.
    • (2017) Nucleic Acids Res. , vol.45 , Issue.4 , pp. 1946-1957
    • Strotskaya, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.