-
1
-
-
84975506761
-
Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones
-
Kallscheuer N, Vogt M, Stenzel A, Gätgens J, Bott M, Marienhagen J. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab Eng. 2016;38:47-55.
-
(2016)
Metab Eng
, vol.38
, pp. 47-55
-
-
Kallscheuer, N.1
Vogt, M.2
Stenzel, A.3
Gätgens, J.4
Bott, M.5
Marienhagen, J.6
-
2
-
-
79952106791
-
From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production
-
Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng. 2011;13:159-68.
-
(2011)
Metab Eng
, vol.13
, pp. 159-168
-
-
Becker, J.1
Zelder, O.2
Häfner, S.3
Schröder, H.4
Wittmann, C.5
-
3
-
-
84994222230
-
Increased production of food-grade d-tagatose from d-galactose by permeabilized and immobilized cells of Corynebacterium glutamicum, a GRAS host, expressing d-galactose isomerase from Geobacillus thermodenitrificans
-
Shin KC, Sim DH, Seo MJ, Oh DK. Increased production of food-grade d-tagatose from d-galactose by permeabilized and immobilized cells of Corynebacterium glutamicum, a GRAS host, expressing d-galactose isomerase from Geobacillus thermodenitrificans. J Agric Food Chem. 2016;64:8146-53.
-
(2016)
J Agric Food Chem
, vol.64
, pp. 8146-8153
-
-
Shin, K.C.1
Sim, D.H.2
Seo, M.J.3
Oh, D.K.4
-
4
-
-
14844336971
-
Gene expression systems in corynebacteria
-
Srivastava P, Deb J. Gene expression systems in corynebacteria. Protein Expr Purif. 2005;40:221-9.
-
(2005)
Protein Expr Purif
, vol.40
, pp. 221-229
-
-
Srivastava, P.1
Deb, J.2
-
5
-
-
84891853096
-
High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum
-
Yim SS, An SJ, Choi JW, Ryu AJ, Jeong KJ. High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2014;98:273-84.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 273-284
-
-
Yim, S.S.1
An, S.J.2
Choi, J.W.3
Ryu, A.J.4
Jeong, K.J.5
-
6
-
-
84975122998
-
Expression of recombinant protein using Corynebacterium glutamicum: progress, challenges and applications
-
Liu X, Yang Y, Zhang W, Sun Y, Peng F, Jeffrey L, Harvey L, McNeil B, Bai Z. Expression of recombinant protein using Corynebacterium glutamicum: progress, challenges and applications. Crit Rev Biotechnol. 2016;36:652-64.
-
(2016)
Crit Rev Biotechnol
, vol.36
, pp. 652-664
-
-
Liu, X.1
Yang, Y.2
Zhang, W.3
Sun, Y.4
Peng, F.5
Jeffrey, L.6
Harvey, L.7
McNeil, B.8
Bai, Z.9
-
7
-
-
84884188636
-
Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology
-
Baumgart M, Unthan S, Rückert C, Sivalingam J, Grünberger A, Kalinowski J, Bott M, Noack S, Frunzke J. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl Environ Microbiol. 2013;79:6006-15.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 6006-6015
-
-
Baumgart, M.1
Unthan, S.2
Rückert, C.3
Sivalingam, J.4
Grünberger, A.5
Kalinowski, J.6
Bott, M.7
Noack, S.8
Frunzke, J.9
-
8
-
-
0028289983
-
Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum
-
Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145:69-73.
-
(1994)
Gene
, vol.145
, pp. 69-73
-
-
Schäfer, A.1
Tauch, A.2
Jäger, W.3
Kalinowski, J.4
Thierbach, G.5
Pühler, A.6
-
9
-
-
84887618985
-
Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum
-
Hu J, Tan Y, Li Y, Hu X, Xu D, Wang X. Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum. Plasmid. 2013;70:303-13.
-
(2013)
Plasmid
, vol.70
, pp. 303-313
-
-
Hu, J.1
Tan, Y.2
Li, Y.3
Hu, X.4
Xu, D.5
Wang, X.6
-
10
-
-
17844381074
-
Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum
-
Suzuki N, Tsuge Y, Inui M, Yukawa H. Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2005;67:225-33.
-
(2005)
Appl Microbiol Biotechnol
, vol.67
, pp. 225-233
-
-
Suzuki, N.1
Tsuge, Y.2
Inui, M.3
Yukawa, H.4
-
11
-
-
84953406324
-
Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements)
-
Choi JW, Yim SS, Kim MJ, Jeong KJ. Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements). Microb Cell Fact. 2015;14:207.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 207
-
-
Choi, J.W.1
Yim, S.S.2
Kim, M.J.3
Jeong, K.J.4
-
12
-
-
84973136613
-
Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi)
-
Cleto S, Jensen JV, Wendisch VF, Lu TK. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol. 2016;5:375-85.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 375-385
-
-
Cleto, S.1
Jensen, J.V.2
Wendisch, V.F.3
Lu, T.K.4
-
13
-
-
84940106526
-
CRISPR-Cas9 based engineering of actinomycetal genomes
-
Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol. 2015;4:1020-9.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1020-1029
-
-
Tong, Y.1
Charusanti, P.2
Zhang, L.3
Weber, T.4
Lee, S.Y.5
-
14
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41:7429-37.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
Hochschild, A.4
Zhang, F.5
Marraffini, L.A.6
-
15
-
-
84886993480
-
CRISPR interference (CRISPRi) for sequence-specific control of gene expression
-
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. 2013;8:2180-96.
-
(2013)
Nat Protoc
, vol.8
, pp. 2180-2196
-
-
Larson, M.H.1
Gilbert, L.A.2
Wang, X.3
Lim, W.A.4
Weissman, J.S.5
Qi, L.S.6
-
16
-
-
84913594397
-
The new frontier of genome engineering with CRISPR-Cas9
-
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
17
-
-
85020703557
-
Genome engineering of virulent Lactococcal phages using CRISPR-Cas9
-
Lemay ML, Tremblay DM, Moineau S. Genome engineering of virulent Lactococcal phages using CRISPR-Cas9. ACS Synth Biol. 2017;6:1351.
-
(2017)
ACS Synth Biol
, vol.6
, pp. 1351
-
-
Lemay, M.L.1
Tremblay, D.M.2
Moineau, S.3
-
18
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262-78.
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
19
-
-
85006485809
-
CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium
-
Huang H, Chai C, Li N, Rowe P, Minton NP, Yang S, Jiang W, Gu Y. CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol. 2016;5:1355-61.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 1355-1361
-
-
Huang, H.1
Chai, C.2
Li, N.3
Rowe, P.4
Minton, N.P.5
Yang, S.6
Jiang, W.7
Gu, Y.8
-
20
-
-
84978765496
-
CRISPR/Cas9 based genome editing of Penicillium chrysogenum
-
Pohl C, Kiel JA, Driessen AJ, Bovenberg RA, Nygard Y. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol. 2016;5:754-64.
-
(2016)
ACS Synth Biol
, vol.5
, pp. 754-764
-
-
Pohl, C.1
Kiel, J.A.2
Driessen, A.J.3
Bovenberg, R.A.4
Nygard, Y.5
-
21
-
-
84892765883
-
Genome-scale CRISPR-Cas9 knockout screening in human cells
-
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84-7.
-
(2014)
Science
, vol.343
, pp. 84-87
-
-
Shalem, O.1
Sanjana, N.E.2
Hartenian, E.3
Shi, X.4
Scott, D.A.5
Mikkelsen, T.S.6
Heckl, D.7
Ebert, B.L.8
Root, D.E.9
Doench, J.G.10
-
22
-
-
84971299957
-
Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9
-
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533:125-9.
-
(2016)
Nature
, vol.533
, pp. 125-129
-
-
Paquet, D.1
Kwart, D.2
Chen, A.3
Sproul, A.4
Jacob, S.5
Teo, S.6
Olsen, K.M.7
Gregg, A.8
Noggle, S.9
Tessier-Lavigne, M.10
-
23
-
-
84960911917
-
Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA
-
Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. 2016;34:339-44.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 339-344
-
-
Richardson, C.D.1
Ray, G.J.2
DeWitt, M.A.3
Curie, G.L.4
Corn, J.E.5
-
24
-
-
85018568286
-
Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli
-
Zerbini F, Zanella I, Fraccascia D, Konig E, Irene C, Frattini LF, Tomasi M, Fantappie L, Ganfini L, Caproni E, et al. Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli. Microb Cell Fact. 2017;16:68.
-
(2017)
Microb Cell Fact
, vol.16
, pp. 68
-
-
Zerbini, F.1
Zanella, I.2
Fraccascia, D.3
Konig, E.4
Irene, C.5
Frattini, L.F.6
Tomasi, M.7
Fantappie, L.8
Ganfini, L.9
Caproni, E.10
-
25
-
-
85015230298
-
Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system
-
Chen W, Zhang Y, Yeo WS, Bae T, Ji Q. Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system. J Am Chem Soc. 2017;139:3790-5.
-
(2017)
J Am Chem Soc
, vol.139
, pp. 3790-3795
-
-
Chen, W.1
Zhang, Y.2
Yeo, W.S.3
Bae, T.4
Ji, Q.5
-
26
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015;81:2506-14.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
Chen, B.2
Duan, C.3
Sun, B.4
Yang, J.5
Yang, S.6
-
27
-
-
84930787559
-
Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase
-
Xu T, Li Y, Shi Z, Hemme CL, Li Y, Zhu Y, Van Nostrand JD, He Z, Zhou J. Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl Environ Microbiol. 2015;81:4423-31.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 4423-4431
-
-
Xu, T.1
Li, Y.2
Shi, Z.3
Hemme, C.L.4
Li, Y.5
Zhu, Y.6
Nostrand, J.D.7
He, Z.8
Zhou, J.9
-
28
-
-
85000936582
-
Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9
-
Zhao D, Yuan S, Xiong B, Sun H, Ye L, Li J, Zhang X, Bi C. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microb Cell Fact. 2016;15:205.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 205
-
-
Zhao, D.1
Yuan, S.2
Xiong, B.3
Sun, H.4
Ye, L.5
Li, J.6
Zhang, X.7
Bi, C.8
-
29
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41:4336-43.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
30
-
-
84975061735
-
Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system
-
Zhang K, Duan X, Wu J. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci Rep. 2016;6:27943.
-
(2016)
Sci Rep
, vol.6
, pp. 27943
-
-
Zhang, K.1
Duan, X.2
Wu, J.3
-
31
-
-
84931846154
-
Editing plant genomes with CRISPR/Cas9
-
Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol. 2015;32:76-84.
-
(2015)
Curr Opin Biotechnol
, vol.32
, pp. 76-84
-
-
Belhaj, K.1
Chaparro-Garcia, A.2
Kamoun, S.3
Patron, N.J.4
Nekrasov, V.5
-
32
-
-
84886926151
-
Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
-
Jiang W, Zhou H, Bi H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41(20):e188. https://academic.oup.com/nar/article/41/20/e188/2414851
-
(2013)
Nucleic Acids Res
, vol.41
, Issue.20
-
-
Jiang, W.1
Zhou, H.2
Bi, H.3
-
33
-
-
84961933243
-
Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells
-
Dong ZQ, Chen TT, Zhang J, Hu N, Cao MY, Dong FF, Jiang YM, Chen P, Lu C, Pan MH. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells. Antivir Res. 2016;130:50-7.
-
(2016)
Antivir Res
, vol.130
, pp. 50-57
-
-
Dong, Z.Q.1
Chen, T.T.2
Zhang, J.3
Hu, N.4
Cao, M.Y.5
Dong, F.F.6
Jiang, Y.M.7
Chen, P.8
Lu, C.9
Pan, M.H.10
-
34
-
-
85020726978
-
CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum
-
Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, Sun B, Chen B, Xu X, Li Y. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun. 2017;8:15179.
-
(2017)
Nat Commun
, vol.8
, pp. 15179
-
-
Jiang, Y.1
Qian, F.2
Yang, J.3
Liu, Y.4
Dong, F.5
Xu, C.6
Sun, B.7
Chen, B.8
Xu, X.9
Li, Y.10
-
35
-
-
84999828451
-
Transcriptome and multivariable data analysis of Corynebacterium glutamicum under different dissolved oxygen conditions in bioreactors
-
Sun Y, Guo W, Wang F, Peng F, Yang Y, Dai X, Liu X, Bai Z. Transcriptome and multivariable data analysis of Corynebacterium glutamicum under different dissolved oxygen conditions in bioreactors. PLoS ONE. 2016;11:e0167156.
-
(2016)
PLoS ONE
, vol.11
-
-
Sun, Y.1
Guo, W.2
Wang, F.3
Peng, F.4
Yang, Y.5
Dai, X.6
Liu, X.7
Bai, Z.8
-
36
-
-
0032774281
-
Construction and application of new Corynebacterium glutamicum vectors
-
Jakoby M, Ngouoto-Nkili C-E, Burkovski A. Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech. 1999;13:437-41.
-
(1999)
Biotechnol Tech
, vol.13
, pp. 437-441
-
-
Jakoby, M.1
Ngouoto-Nkili, C.-E.2
Burkovski, A.3
-
37
-
-
79958149403
-
Tools for genetic manipulations in Corynebacterium glutamicum and their applications
-
Nešvera J, Pátek M. Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol. 2011;90:1641.
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, pp. 1641
-
-
Nešvera, J.1
Pátek, M.2
-
38
-
-
84855927732
-
Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum
-
Marchand CH, Salmeron C, Bou Raad R, Meniche X, Chami M, Masi M, Blanot D, Daffe M, Tropis M, Huc E, et al. Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum. J Bacteriol. 2012;194:587-97.
-
(2012)
J Bacteriol
, vol.194
, pp. 587-597
-
-
Marchand, C.H.1
Salmeron, C.2
Bou Raad, R.3
Meniche, X.4
Chami, M.5
Masi, M.6
Blanot, D.7
Daffe, M.8
Tropis, M.9
Huc, E.10
-
39
-
-
84863855263
-
Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets
-
Bott M, Brocker M. Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets. Appl Microbiol Biotechnol. 2012;94:1131-50.
-
(2012)
Appl Microbiol Biotechnol
, vol.94
, pp. 1131-1150
-
-
Bott, M.1
Brocker, M.2
-
40
-
-
1942519868
-
clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH
-
Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Mol Microbiol. 2004;52:285-302.
-
(2004)
Mol Microbiol
, vol.52
, pp. 285-302
-
-
Engels, S.1
Schweitzer, J.E.2
Ludwig, C.3
Bott, M.4
Schaffer, S.5
-
41
-
-
6344272244
-
Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection
-
Moker N, Brocker M, Schaffer S, Kramer R, Morbach S, Bott M. Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol. 2004;54:420-38.
-
(2004)
Mol Microbiol
, vol.54
, pp. 420-438
-
-
Moker, N.1
Brocker, M.2
Schaffer, S.3
Kramer, R.4
Morbach, S.5
Bott, M.6
-
42
-
-
84994624432
-
Arginine phosphorylation marks proteins for degradation by a Clp protease
-
Trentini DB, Suskiewicz MJ, Heuck A, Kurzbauer R, Deszcz L, Mechtler K, Clausen T. Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature. 2016;539:48-53.
-
(2016)
Nature
, vol.539
, pp. 48-53
-
-
Trentini, D.B.1
Suskiewicz, M.J.2
Heuck, A.3
Kurzbauer, R.4
Deszcz, L.5
Mechtler, K.6
Clausen, T.7
|