-
1
-
-
84873800970
-
Genome-scale engineering for systems and synthetic biology
-
Esvelt KM, Wang HH. 2013. Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641. http://dx.doi.org/10.1038/msb.2012.66.
-
(2013)
Mol Syst Biol
, vol.9
, pp. 641
-
-
Esvelt, K.M.1
Wang, H.H.2
-
2
-
-
84894081804
-
Cas9-based tools for targeted genome editing and transcriptional control
-
Xu T, Li Y, Van Nostrand JD, He Z, Zhou J. 2014. Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol 80:1544-1552. http://dx.doi.org/10.1128/AEM.03786-13.
-
(2014)
Appl Environ Microbiol
, vol.80
, pp. 1544-1552
-
-
Xu, T.1
Li, Y.2
Van Nostrand, J.D.3
He, Z.4
Zhou, J.5
-
3
-
-
84860362257
-
Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker
-
Heap JT, Ehsaan M, Cooksley CM, Ng YK, Cartman ST, Winzer K, Minton NP. 2012. Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res 40(8): e59. http://dx.doi.org/10.1093/nar/gkr1321.
-
(2012)
Nucleic Acids Res
, vol.40
, Issue.8
, pp. e59
-
-
Heap, J.T.1
Ehsaan, M.2
Cooksley, C.M.3
Ng, Y.K.4
Cartman, S.T.5
Winzer, K.6
Minton, N.P.7
-
4
-
-
84893795134
-
Dockerin-containing protease inhibitor protects key cellulosomal cellulases from proteolysis in Clostridium cellulolyticum
-
Xu T, Li Y, He Z, Zhou J. 2014. Dockerin-containing protease inhibitor protects key cellulosomal cellulases from proteolysis in Clostridium cellulolyticum. Mol Microbiol 91:694-705. http://dx.doi.org/10.1111/mmi.12488.
-
(2014)
Mol Microbiol
, vol.91
, pp. 694-705
-
-
Xu, T.1
Li, Y.2
He, Z.3
Zhou, J.4
-
5
-
-
0942290450
-
Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1
-
Maamar H, Valette O, Fierobe HP, Belaich A, Belaich JP, Tardif C. 2004. Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1. Mol Microbiol 51:589-598. http://dx.doi.org/10.1046/j.1365-2958.2003.03859.x.
-
(2004)
Mol Microbiol
, vol.51
, pp. 589-598
-
-
Maamar, H.1
Valette, O.2
Fierobe, H.P.3
Belaich, A.4
Belaich, J.P.5
Tardif, C.6
-
6
-
-
84884167957
-
Generalized bacterial genome editing using mobile group II introns and Cre-lox
-
Enyeart PJ, Chirieleison SM, Dao MN, Perutka J, Quandt EM, Yao J, Whitt JT, Keatinge-Clay AT, Lambowitz AM, Ellington AD. 2013. Generalized bacterial genome editing using mobile group II introns and Cre-lox. Mol Syst Biol 9:685. http://dx.doi.org/10.1038/msb.2013.41.
-
(2013)
Mol Syst Biol
, vol.9
, pp. 685
-
-
Enyeart, P.J.1
Chirieleison, S.M.2
Dao, M.N.3
Perutka, J.4
Quandt, E.M.5
Yao, J.6
Whitt, J.T.7
Keatinge-Clay, A.T.8
Lambowitz, A.M.9
Ellington, A.D.10
-
7
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709-1712. http://dx.doi.org/10.1126/science.1138140.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
Moineau, S.6
Romero, D.A.7
Horvath, P.8
-
8
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821. http://dx.doi.org/10.1126/science.1225829.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
9
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-823. http://dx.doi.org/10.1126/science.1231143.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
Zhang, F.11
-
10
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. 2013. RNA-guided human genome engineering via Cas9. Science 339:823-826. http://dx.doi.org/10.1126/science.1232033.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
Norville, J.E.7
Church, G.M.8
-
11
-
-
84883785822
-
Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688-691. http://dx.doi.org/10.1038/nbt.2654.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 688-691
-
-
Li, J.F.1
Norville, J.E.2
Aach, J.3
McCormack, M.4
Zhang, D.5
Bush, J.6
Church, G.M.7
Sheen, J.8
-
12
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336-4343. http://dx.doi.org/10.1093/nar/gkt135.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
13
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233-239. http://dx.doi.org/10.1038/nbt.2508.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
14
-
-
84881475586
-
Heritable genome editing in C elegans via a CRISPRCas9 system.
-
Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA. 2013. Heritable genome editing in C. elegans via a CRISPRCas9 system. Nat Methods 10:741-743. http://dx.doi.org/10.1038/nmeth.2532.
-
(2013)
Nat Methods
, vol.10
, pp. 741-743
-
-
Friedland, A.E.1
Tzur, Y.B.2
Esvelt, K.M.3
Colaiacovo, M.P.4
Church, G.M.5
Calarco, J.A.6
-
15
-
-
84925876620
-
Harnessing CRISPR-Cas systems for bacterial genome editing
-
Selle K, Barrangou R. 2015. Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol 23:225-232. http://dx.doi.org/10.1016/j.tim.2015.01.008.
-
(2015)
Trends Microbiol
, vol.23
, pp. 225-232
-
-
Selle, K.1
Barrangou, R.2
-
16
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh JH, van Pijkeren JP. 2014. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42:e131. http://dx.doi.org/10.1093/nar/gku623.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. e131
-
-
Oh, J.H.1
van Pijkeren, J.P.2
-
17
-
-
84934947770
-
High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system.
-
Cobb RE, Wang Y, Zhao H. 8 December 2014. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol http://dx.doi.org/10.1021/sb500351f.
-
(2014)
ACS Synth Biol
-
-
Cobb, R.E.1
Wang, Y.2
Zhao, H.3
-
18
-
-
84926466507
-
One-step highefficiency CRISPR/Cas9-mediated genome editing in Streptomyces
-
Huang H, Zheng G, Jiang W, Hu H, Lu Y. 2015. One-step highefficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin (Shanghai) 47:231-243. http://dx.doi.org/10.1093/abbs/gmv007.
-
(2015)
Acta Biochim Biophys Sin (Shanghai)
, vol.47
, pp. 231-243
-
-
Huang, H.1
Zheng, G.2
Jiang, W.3
Hu, H.4
Lu, Y.5
-
19
-
-
84925355124
-
Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
-
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. 2015. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506-2514. http://dx.doi.org/10.1128/AEM.04023-14.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 2506-2514
-
-
Jiang, Y.1
Chen, B.2
Duan, C.3
Sun, B.4
Yang, J.5
Yang, S.6
-
21
-
-
84983142945
-
Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
-
Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA. 2014. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32: 1146-1150. http://dx.doi.org/10.1038/nbt.3043.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1146-1150
-
-
Bikard, D.1
Euler, C.W.2
Jiang, W.3
Nussenzweig, P.M.4
Goldberg, G.W.5
Duportet, X.6
Fischetti, V.A.7
Marraffini, L.A.8
-
22
-
-
84903362877
-
Programmable removal of bacterial strains by use of genometargeting CRISPR-Cas systems
-
Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL. 2014. Programmable removal of bacterial strains by use of genometargeting CRISPR-Cas systems. mBio 5(1):e00928-13. http://dx.doi.org/10.1128/mBio.00928-13.
-
(2014)
mBio
, vol.5
, Issue.1
, pp. e00928-e00913
-
-
Gomaa, A.A.1
Klumpe, H.E.2
Luo, M.L.3
Selle, K.4
Barrangou, R.5
Beisel, C.L.6
-
23
-
-
84983208863
-
Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
-
Citorik RJ, Mimee M, Lu TK. 2014. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32: 1141-1145. http://dx.doi.org/10.1038/nbt.3011.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1141-1145
-
-
Citorik, R.J.1
Mimee, M.2
Lu, T.K.3
-
24
-
-
23744447992
-
Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia
-
Desvaux M. 2005. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29:741-764. http://dx.doi.org/10.1016/j.femsre.2004.11.003.
-
(2005)
FEMS Microbiol Rev
, vol.29
, pp. 741-764
-
-
Desvaux, M.1
-
25
-
-
84876468510
-
Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources
-
Lan EI, Liao JC. 2013. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339-349. http://dx.doi.org/10.1016/j.biortech.2012.09.104.
-
(2013)
Bioresour Technol
, vol.135
, pp. 339-349
-
-
Lan, E.I.1
Liao, J.C.2
-
27
-
-
84863111753
-
PePPER: a webserver for prediction of prokaryote promoter elements and regulons
-
de Jong A, Pietersma H, Cordes M, Kuipers OP, Kok J. 2012. PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 13:299. http://dx.doi.org/10.1186/1471-2164-13-299.
-
(2012)
BMC Genomics
, vol.13
, pp. 299
-
-
de Jong, A.1
Pietersma, H.2
Cordes, M.3
Kuipers, O.P.4
Kok, J.5
-
29
-
-
84896718453
-
Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation
-
Li Y, Xu T, Tschaplinski TJ, Engle NL, Yang Y, Graham DE, He Z, Zhou J. 2014. Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation. Biotechnol Biofuels 7:25. http://dx.doi.org/10.1186/1754-6834-7-25.
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 25
-
-
Li, Y.1
Xu, T.2
Tschaplinski, T.J.3
Engle, N.L.4
Yang, Y.5
Graham, D.E.6
He, Z.7
Zhou, J.8
-
30
-
-
17344392308
-
A new mathematical model for relative quantification in real-time RT-PCR
-
Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. http://dx.doi.org/10.1093/nar/29.9.e45.
-
(2001)
Nucleic Acids Res
, vol.29
, pp. e45
-
-
Pfaffl, M.W.1
-
31
-
-
84902095352
-
Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
-
Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA. 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32:670-676. http://dx.doi.org/10.1038/nbt.2889.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 670-676
-
-
Wu, X.1
Scott, D.A.2
Kriz, A.J.3
Chiu, A.C.4
Hsu, P.D.5
Dadon, D.B.6
Cheng, A.W.7
Trevino, A.E.8
Konermann, S.9
Chen, S.10
Jaenisch, R.11
Zhang, F.12
Sharp, P.A.13
-
32
-
-
84892749369
-
Genetic screens in human cells using the CRISPR-Cas9 system
-
Wang T, Wei JJ, Sabatini DM, Lander ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80-84. http://dx.doi.org/10.1126/science.1246981.
-
(2014)
Science
, vol.343
, pp. 80-84
-
-
Wang, T.1
Wei, J.J.2
Sabatini, D.M.3
Lander, E.S.4
-
33
-
-
33644857839
-
GenomeDiagram: a python package for the visualization of large-scale genomic data
-
Pritchard L, White JA, Birch PR, Toth IK. 2006. GenomeDiagram: a python package for the visualization of large-scale genomic data. Bioinformatics 22:616-617. http://dx.doi.org/10.1093/bioinformatics/btk021.
-
(2006)
Bioinformatics
, vol.22
, pp. 616-617
-
-
Pritchard, L.1
White, J.A.2
Birch, P.R.3
Toth, I.K.4
-
34
-
-
80053264411
-
Regulation of alternative sigma factor use
-
Osterberg S, del Peso-Santos T, Shingler V. 2011. Regulation of alternative sigma factor use. Annu Rev Microbiol 65:37-55. http://dx.doi.org/10.1146/annurev.micro.112408.134219.
-
(2011)
Annu Rev Microbiol
, vol.65
, pp. 37-55
-
-
Osterberg, S.1
del Peso-Santos, T.2
Shingler, V.3
-
35
-
-
78049278436
-
Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant
-
Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC. 2010. Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76:6591-6599. http://dx.doi.org/10.1128/AEM.01484-10.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 6591-6599
-
-
Tripathi, S.A.1
Olson, D.G.2
Argyros, D.A.3
Miller, B.B.4
Barrett, T.F.5
Murphy, D.M.6
McCool, J.D.7
Warner, A.K.8
Rajgarhia, V.B.9
Lynd, L.R.10
Hogsett, D.A.11
Caiazza, N.C.12
-
36
-
-
35848960148
-
Nonhomologous end-joining in bacteria: a microbial perspective
-
Pitcher RS, Brissett NC, Doherty AJ. 2007. Nonhomologous end-joining in bacteria: a microbial perspective. Annu Rev Microbiol 61:259-282. http://dx.doi.org/10.1146/annurev.micro.61.080706.093354.
-
(2007)
Annu Rev Microbiol
, vol.61
, pp. 259-282
-
-
Pitcher, R.S.1
Brissett, N.C.2
Doherty, A.J.3
-
37
-
-
33645781346
-
Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining
-
Bowater R, Doherty AJ. 2006. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet 2:e8. http://dx.doi.org/10.1371/journal.pgen.0020008.
-
(2006)
PLoS Genet
, vol.2
, pp. e8
-
-
Bowater, R.1
Doherty, A.J.2
-
38
-
-
57349157777
-
RecBCD enzyme and the repair of double-stranded DNA breaks
-
Dillingham MS, Kowalczykowski SC. 2008. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 72:642-671. http://dx.doi.org/10.1128/MMBR.00020-08.
-
(2008)
Microbiol Mol Biol Rev
, vol.72
, pp. 642-671
-
-
Dillingham, M.S.1
Kowalczykowski, S.C.2
-
39
-
-
84860364258
-
Targeted gene engineering in Clostridium cellulolyticum H10 without methylation
-
Cui GZ, Hong W, Zhang J, Li WL, Feng YG, Liu YJ, Cui Q. 2012. Targeted gene engineering in Clostridium cellulolyticum H10 without methylation. J Microbiol Methods 89:201-208. http://dx.doi.org/10.1016/j.mimet.2012.02.015.
-
(2012)
J Microbiol Methods
, vol.89
, pp. 201-208
-
-
Cui, G.Z.1
Hong, W.2
Zhang, J.3
Li, W.L.4
Feng, Y.G.5
Liu, Y.J.6
Cui, Q.7
-
40
-
-
84874682725
-
Effects of DNA size on transformation and recombination efficiencies in Xylella fastidiosa
-
Kung SH, Retchless AC, Kwan JY, Almeida RP. 2013. Effects of DNA size on transformation and recombination efficiencies in Xylella fastidiosa. Appl Environ Microbiol 79:1712-1717. http://dx.doi.org/10.1128/AEM.03525-12.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 1712-1717
-
-
Kung, S.H.1
Retchless, A.C.2
Kwan, J.Y.3
Almeida, R.P.4
-
41
-
-
0026640882
-
Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology
-
Khasanov FK, Zvingila DJ, Zainullin AA, Prozorov AA, Bashkirov VI. 1992. Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology. Mol Gen Genet 234:494-497. http://dx.doi.org/10.1007/BF00538711.
-
(1992)
Mol Gen Genet
, vol.234
, pp. 494-497
-
-
Khasanov, F.K.1
Zvingila, D.J.2
Zainullin, A.A.3
Prozorov, A.A.4
Bashkirov, V.I.5
-
43
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822-826. http://dx.doi.org/10.1038/nbt.2623.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 822-826
-
-
Fu, Y.1
Foden, J.A.2
Khayter, C.3
Maeder, M.L.4
Reyon, D.5
Joung, J.K.6
Sander, J.D.7
-
44
-
-
84903138336
-
CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences
-
Lin YN, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G. 2014. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42:7473-7485. http://dx.doi.org/10.1093/nar/gku402.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 7473-7485
-
-
Lin, Y.N.1
Cradick, T.J.2
Brown, M.T.3
Deshmukh, H.4
Ranjan, P.5
Sarode, N.6
Wile, B.M.7
Vertino, P.M.8
Stewart, F.J.9
Bao, G.10
-
45
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380-1389. http://dx.doi.org/10.1016/j.cell.2013.08.021.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
Gootenberg, J.S.4
Konermann, S.5
Trevino, A.E.6
Scott, D.A.7
Inoue, A.8
Matoba, S.9
Zhang, Y.10
Zhang, F.11
-
46
-
-
55449115425
-
Comparative and evolutionary analysis of the bacterial homologous recombination systems
-
Rocha EP, Cornet E, Michel B. 2005. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 1:e15. http://dx.doi.org/10.1371/journal.pgen.0010015.
-
(2005)
PLoS Genet
, vol.1
, pp. e15
-
-
Rocha, E.P.1
Cornet, E.2
Michel, B.3
-
47
-
-
79951565665
-
Single- strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template
-
Metzger MJ, McConnell-Smith A, Stoddard BL, Miller AD. 2011. Single- strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template. Nucleic Acids Res 39:926-935. http://dx.doi.org/10.1093/nar/gkq826.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 926-935
-
-
Metzger, M.J.1
McConnell-Smith, A.2
Stoddard, B.L.3
Miller, A.D.4
-
48
-
-
80052376859
-
DNA nicks promote efficient and safe targeted gene correction
-
Davis L, Maizels N. 2011. DNA nicks promote efficient and safe targeted gene correction. PLoS One 6:e23981. http://dx.doi.org/10.1371/journal.pone.0023981.
-
(2011)
PLoS One
, vol.6
, pp. e23981
-
-
Davis, L.1
Maizels, N.2
-
49
-
-
84887104139
-
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
-
Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. 2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10:1116-1121. http://dx.doi.org/10.1038/nmeth.2681.
-
(2013)
Nat Methods
, vol.10
, pp. 1116-1121
-
-
Esvelt, K.M.1
Mali, P.2
Braff, J.L.3
Moosburner, M.4
Yaung, S.J.5
Church, G.M.6
-
50
-
-
0022689021
-
Homologous recombination in Escherichia coli: dependence on substrate length and homology
-
Shen P, Huang HV. 1986. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441-457.
-
(1986)
Genetics
, vol.112
, pp. 441-457
-
-
Shen, P.1
Huang, H.V.2
-
51
-
-
0037444087
-
Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker
-
Zhong J, Karberg M, Lambowitz AM. 2003. Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. Nucleic Acids Res 31:1656-1664. http://dx.doi.org/10.1093/nar/gkg248.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 1656-1664
-
-
Zhong, J.1
Karberg, M.2
Lambowitz, A.M.3
-
52
-
-
0742289608
-
Use of computer- designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes
-
Perutka J, Wang WJ, Goerlitz D, Lambowitz AM. 2004. Use of computer- designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J Mol Biol 336:421-439. http://dx.doi.org/10.1016/j.jmb.2003.12.009.
-
(2004)
J Mol Biol
, vol.336
, pp. 421-439
-
-
Perutka, J.1
Wang, W.J.2
Goerlitz, D.3
Lambowitz, A.M.4
|