메뉴 건너뛰기




Volumn 81, Issue 13, 2015, Pages 4423-4431

Efficient genome editing in clostridium cellulolyticum via CRISPR-Cas9 nickase

Author keywords

[No Author keywords available]

Indexed keywords

CLOSTRIDIUM;

EID: 84930787559     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.00873-15     Document Type: Article
Times cited : (178)

References (52)
  • 1
    • 84873800970 scopus 로고    scopus 로고
    • Genome-scale engineering for systems and synthetic biology
    • Esvelt KM, Wang HH. 2013. Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641. http://dx.doi.org/10.1038/msb.2012.66.
    • (2013) Mol Syst Biol , vol.9 , pp. 641
    • Esvelt, K.M.1    Wang, H.H.2
  • 2
    • 84894081804 scopus 로고    scopus 로고
    • Cas9-based tools for targeted genome editing and transcriptional control
    • Xu T, Li Y, Van Nostrand JD, He Z, Zhou J. 2014. Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol 80:1544-1552. http://dx.doi.org/10.1128/AEM.03786-13.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 1544-1552
    • Xu, T.1    Li, Y.2    Van Nostrand, J.D.3    He, Z.4    Zhou, J.5
  • 3
    • 84860362257 scopus 로고    scopus 로고
    • Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker
    • Heap JT, Ehsaan M, Cooksley CM, Ng YK, Cartman ST, Winzer K, Minton NP. 2012. Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res 40(8): e59. http://dx.doi.org/10.1093/nar/gkr1321.
    • (2012) Nucleic Acids Res , vol.40 , Issue.8 , pp. e59
    • Heap, J.T.1    Ehsaan, M.2    Cooksley, C.M.3    Ng, Y.K.4    Cartman, S.T.5    Winzer, K.6    Minton, N.P.7
  • 4
    • 84893795134 scopus 로고    scopus 로고
    • Dockerin-containing protease inhibitor protects key cellulosomal cellulases from proteolysis in Clostridium cellulolyticum
    • Xu T, Li Y, He Z, Zhou J. 2014. Dockerin-containing protease inhibitor protects key cellulosomal cellulases from proteolysis in Clostridium cellulolyticum. Mol Microbiol 91:694-705. http://dx.doi.org/10.1111/mmi.12488.
    • (2014) Mol Microbiol , vol.91 , pp. 694-705
    • Xu, T.1    Li, Y.2    He, Z.3    Zhou, J.4
  • 5
    • 0942290450 scopus 로고    scopus 로고
    • Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1
    • Maamar H, Valette O, Fierobe HP, Belaich A, Belaich JP, Tardif C. 2004. Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1. Mol Microbiol 51:589-598. http://dx.doi.org/10.1046/j.1365-2958.2003.03859.x.
    • (2004) Mol Microbiol , vol.51 , pp. 589-598
    • Maamar, H.1    Valette, O.2    Fierobe, H.P.3    Belaich, A.4    Belaich, J.P.5    Tardif, C.6
  • 8
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821. http://dx.doi.org/10.1126/science.1225829.
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1    Chylinski, K.2    Fonfara, I.3    Hauer, M.4    Doudna, J.A.5    Charpentier, E.6
  • 11
    • 84883785822 scopus 로고    scopus 로고
    • Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
    • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688-691. http://dx.doi.org/10.1038/nbt.2654.
    • (2013) Nat Biotechnol , vol.31 , pp. 688-691
    • Li, J.F.1    Norville, J.E.2    Aach, J.3    McCormack, M.4    Zhang, D.5    Bush, J.6    Church, G.M.7    Sheen, J.8
  • 12
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336-4343. http://dx.doi.org/10.1093/nar/gkt135.
    • (2013) Nucleic Acids Res , vol.41 , pp. 4336-4343
    • DiCarlo, J.E.1    Norville, J.E.2    Mali, P.3    Rios, X.4    Aach, J.5    Church, G.M.6
  • 13
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233-239. http://dx.doi.org/10.1038/nbt.2508.
    • (2013) Nat Biotechnol , vol.31 , pp. 233-239
    • Jiang, W.1    Bikard, D.2    Cox, D.3    Zhang, F.4    Marraffini, L.A.5
  • 15
    • 84925876620 scopus 로고    scopus 로고
    • Harnessing CRISPR-Cas systems for bacterial genome editing
    • Selle K, Barrangou R. 2015. Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol 23:225-232. http://dx.doi.org/10.1016/j.tim.2015.01.008.
    • (2015) Trends Microbiol , vol.23 , pp. 225-232
    • Selle, K.1    Barrangou, R.2
  • 16
    • 84964315717 scopus 로고    scopus 로고
    • CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
    • Oh JH, van Pijkeren JP. 2014. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42:e131. http://dx.doi.org/10.1093/nar/gku623.
    • (2014) Nucleic Acids Res , vol.42 , pp. e131
    • Oh, J.H.1    van Pijkeren, J.P.2
  • 17
    • 84934947770 scopus 로고    scopus 로고
    • High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system.
    • Cobb RE, Wang Y, Zhao H. 8 December 2014. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol http://dx.doi.org/10.1021/sb500351f.
    • (2014) ACS Synth Biol
    • Cobb, R.E.1    Wang, Y.2    Zhao, H.3
  • 18
    • 84926466507 scopus 로고    scopus 로고
    • One-step highefficiency CRISPR/Cas9-mediated genome editing in Streptomyces
    • Huang H, Zheng G, Jiang W, Hu H, Lu Y. 2015. One-step highefficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin (Shanghai) 47:231-243. http://dx.doi.org/10.1093/abbs/gmv007.
    • (2015) Acta Biochim Biophys Sin (Shanghai) , vol.47 , pp. 231-243
    • Huang, H.1    Zheng, G.2    Jiang, W.3    Hu, H.4    Lu, Y.5
  • 19
    • 84925355124 scopus 로고    scopus 로고
    • Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
    • Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. 2015. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506-2514. http://dx.doi.org/10.1128/AEM.04023-14.
    • (2015) Appl Environ Microbiol , vol.81 , pp. 2506-2514
    • Jiang, Y.1    Chen, B.2    Duan, C.3    Sun, B.4    Yang, J.5    Yang, S.6
  • 20
    • 84940106526 scopus 로고    scopus 로고
    • CRISPR-Cas9 based engineering of actinomycetal genomes.
    • Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. 7 April 2015. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol http://dx.doi.org/10.1021/acssynbio.5b00038.
    • (2015) ACS Synth Biol
    • Tong, Y.1    Charusanti, P.2    Zhang, L.3    Weber, T.4    Lee, S.Y.5
  • 22
    • 84903362877 scopus 로고    scopus 로고
    • Programmable removal of bacterial strains by use of genometargeting CRISPR-Cas systems
    • Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL. 2014. Programmable removal of bacterial strains by use of genometargeting CRISPR-Cas systems. mBio 5(1):e00928-13. http://dx.doi.org/10.1128/mBio.00928-13.
    • (2014) mBio , vol.5 , Issue.1 , pp. e00928-e00913
    • Gomaa, A.A.1    Klumpe, H.E.2    Luo, M.L.3    Selle, K.4    Barrangou, R.5    Beisel, C.L.6
  • 23
    • 84983208863 scopus 로고    scopus 로고
    • Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
    • Citorik RJ, Mimee M, Lu TK. 2014. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32: 1141-1145. http://dx.doi.org/10.1038/nbt.3011.
    • (2014) Nat Biotechnol , vol.32 , pp. 1141-1145
    • Citorik, R.J.1    Mimee, M.2    Lu, T.K.3
  • 24
    • 23744447992 scopus 로고    scopus 로고
    • Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia
    • Desvaux M. 2005. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29:741-764. http://dx.doi.org/10.1016/j.femsre.2004.11.003.
    • (2005) FEMS Microbiol Rev , vol.29 , pp. 741-764
    • Desvaux, M.1
  • 25
    • 84876468510 scopus 로고    scopus 로고
    • Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources
    • Lan EI, Liao JC. 2013. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339-349. http://dx.doi.org/10.1016/j.biortech.2012.09.104.
    • (2013) Bioresour Technol , vol.135 , pp. 339-349
    • Lan, E.I.1    Liao, J.C.2
  • 26
    • 84902095351 scopus 로고    scopus 로고
    • Classification and evolution of type II CRISPR-Cas systems
    • Chylinski K, Makarova KS, Charpentier E, Koonin EV. 2014. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42:6091-6105. http://dx.doi.org/10.1093/nar/gku241.
    • (2014) Nucleic Acids Res , vol.42 , pp. 6091-6105
    • Chylinski, K.1    Makarova, K.S.2    Charpentier, E.3    Koonin, E.V.4
  • 27
    • 84863111753 scopus 로고    scopus 로고
    • PePPER: a webserver for prediction of prokaryote promoter elements and regulons
    • de Jong A, Pietersma H, Cordes M, Kuipers OP, Kok J. 2012. PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 13:299. http://dx.doi.org/10.1186/1471-2164-13-299.
    • (2012) BMC Genomics , vol.13 , pp. 299
    • de Jong, A.1    Pietersma, H.2    Cordes, M.3    Kuipers, O.P.4    Kok, J.5
  • 28
  • 29
    • 84896718453 scopus 로고    scopus 로고
    • Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation
    • Li Y, Xu T, Tschaplinski TJ, Engle NL, Yang Y, Graham DE, He Z, Zhou J. 2014. Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation. Biotechnol Biofuels 7:25. http://dx.doi.org/10.1186/1754-6834-7-25.
    • (2014) Biotechnol Biofuels , vol.7 , pp. 25
    • Li, Y.1    Xu, T.2    Tschaplinski, T.J.3    Engle, N.L.4    Yang, Y.5    Graham, D.E.6    He, Z.7    Zhou, J.8
  • 30
    • 17344392308 scopus 로고    scopus 로고
    • A new mathematical model for relative quantification in real-time RT-PCR
    • Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. http://dx.doi.org/10.1093/nar/29.9.e45.
    • (2001) Nucleic Acids Res , vol.29 , pp. e45
    • Pfaffl, M.W.1
  • 32
    • 84892749369 scopus 로고    scopus 로고
    • Genetic screens in human cells using the CRISPR-Cas9 system
    • Wang T, Wei JJ, Sabatini DM, Lander ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80-84. http://dx.doi.org/10.1126/science.1246981.
    • (2014) Science , vol.343 , pp. 80-84
    • Wang, T.1    Wei, J.J.2    Sabatini, D.M.3    Lander, E.S.4
  • 33
    • 33644857839 scopus 로고    scopus 로고
    • GenomeDiagram: a python package for the visualization of large-scale genomic data
    • Pritchard L, White JA, Birch PR, Toth IK. 2006. GenomeDiagram: a python package for the visualization of large-scale genomic data. Bioinformatics 22:616-617. http://dx.doi.org/10.1093/bioinformatics/btk021.
    • (2006) Bioinformatics , vol.22 , pp. 616-617
    • Pritchard, L.1    White, J.A.2    Birch, P.R.3    Toth, I.K.4
  • 34
    • 80053264411 scopus 로고    scopus 로고
    • Regulation of alternative sigma factor use
    • Osterberg S, del Peso-Santos T, Shingler V. 2011. Regulation of alternative sigma factor use. Annu Rev Microbiol 65:37-55. http://dx.doi.org/10.1146/annurev.micro.112408.134219.
    • (2011) Annu Rev Microbiol , vol.65 , pp. 37-55
    • Osterberg, S.1    del Peso-Santos, T.2    Shingler, V.3
  • 36
    • 35848960148 scopus 로고    scopus 로고
    • Nonhomologous end-joining in bacteria: a microbial perspective
    • Pitcher RS, Brissett NC, Doherty AJ. 2007. Nonhomologous end-joining in bacteria: a microbial perspective. Annu Rev Microbiol 61:259-282. http://dx.doi.org/10.1146/annurev.micro.61.080706.093354.
    • (2007) Annu Rev Microbiol , vol.61 , pp. 259-282
    • Pitcher, R.S.1    Brissett, N.C.2    Doherty, A.J.3
  • 37
    • 33645781346 scopus 로고    scopus 로고
    • Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining
    • Bowater R, Doherty AJ. 2006. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet 2:e8. http://dx.doi.org/10.1371/journal.pgen.0020008.
    • (2006) PLoS Genet , vol.2 , pp. e8
    • Bowater, R.1    Doherty, A.J.2
  • 38
    • 57349157777 scopus 로고    scopus 로고
    • RecBCD enzyme and the repair of double-stranded DNA breaks
    • Dillingham MS, Kowalczykowski SC. 2008. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 72:642-671. http://dx.doi.org/10.1128/MMBR.00020-08.
    • (2008) Microbiol Mol Biol Rev , vol.72 , pp. 642-671
    • Dillingham, M.S.1    Kowalczykowski, S.C.2
  • 39
    • 84860364258 scopus 로고    scopus 로고
    • Targeted gene engineering in Clostridium cellulolyticum H10 without methylation
    • Cui GZ, Hong W, Zhang J, Li WL, Feng YG, Liu YJ, Cui Q. 2012. Targeted gene engineering in Clostridium cellulolyticum H10 without methylation. J Microbiol Methods 89:201-208. http://dx.doi.org/10.1016/j.mimet.2012.02.015.
    • (2012) J Microbiol Methods , vol.89 , pp. 201-208
    • Cui, G.Z.1    Hong, W.2    Zhang, J.3    Li, W.L.4    Feng, Y.G.5    Liu, Y.J.6    Cui, Q.7
  • 40
    • 84874682725 scopus 로고    scopus 로고
    • Effects of DNA size on transformation and recombination efficiencies in Xylella fastidiosa
    • Kung SH, Retchless AC, Kwan JY, Almeida RP. 2013. Effects of DNA size on transformation and recombination efficiencies in Xylella fastidiosa. Appl Environ Microbiol 79:1712-1717. http://dx.doi.org/10.1128/AEM.03525-12.
    • (2013) Appl Environ Microbiol , vol.79 , pp. 1712-1717
    • Kung, S.H.1    Retchless, A.C.2    Kwan, J.Y.3    Almeida, R.P.4
  • 41
    • 0026640882 scopus 로고
    • Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology
    • Khasanov FK, Zvingila DJ, Zainullin AA, Prozorov AA, Bashkirov VI. 1992. Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology. Mol Gen Genet 234:494-497. http://dx.doi.org/10.1007/BF00538711.
    • (1992) Mol Gen Genet , vol.234 , pp. 494-497
    • Khasanov, F.K.1    Zvingila, D.J.2    Zainullin, A.A.3    Prozorov, A.A.4    Bashkirov, V.I.5
  • 43
    • 84880570576 scopus 로고    scopus 로고
    • High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
    • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822-826. http://dx.doi.org/10.1038/nbt.2623.
    • (2013) Nat Biotechnol , vol.31 , pp. 822-826
    • Fu, Y.1    Foden, J.A.2    Khayter, C.3    Maeder, M.L.4    Reyon, D.5    Joung, J.K.6    Sander, J.D.7
  • 46
    • 55449115425 scopus 로고    scopus 로고
    • Comparative and evolutionary analysis of the bacterial homologous recombination systems
    • Rocha EP, Cornet E, Michel B. 2005. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 1:e15. http://dx.doi.org/10.1371/journal.pgen.0010015.
    • (2005) PLoS Genet , vol.1 , pp. e15
    • Rocha, E.P.1    Cornet, E.2    Michel, B.3
  • 47
    • 79951565665 scopus 로고    scopus 로고
    • Single- strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template
    • Metzger MJ, McConnell-Smith A, Stoddard BL, Miller AD. 2011. Single- strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template. Nucleic Acids Res 39:926-935. http://dx.doi.org/10.1093/nar/gkq826.
    • (2011) Nucleic Acids Res , vol.39 , pp. 926-935
    • Metzger, M.J.1    McConnell-Smith, A.2    Stoddard, B.L.3    Miller, A.D.4
  • 48
    • 80052376859 scopus 로고    scopus 로고
    • DNA nicks promote efficient and safe targeted gene correction
    • Davis L, Maizels N. 2011. DNA nicks promote efficient and safe targeted gene correction. PLoS One 6:e23981. http://dx.doi.org/10.1371/journal.pone.0023981.
    • (2011) PLoS One , vol.6 , pp. e23981
    • Davis, L.1    Maizels, N.2
  • 49
    • 84887104139 scopus 로고    scopus 로고
    • Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
    • Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. 2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10:1116-1121. http://dx.doi.org/10.1038/nmeth.2681.
    • (2013) Nat Methods , vol.10 , pp. 1116-1121
    • Esvelt, K.M.1    Mali, P.2    Braff, J.L.3    Moosburner, M.4    Yaung, S.J.5    Church, G.M.6
  • 50
    • 0022689021 scopus 로고
    • Homologous recombination in Escherichia coli: dependence on substrate length and homology
    • Shen P, Huang HV. 1986. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441-457.
    • (1986) Genetics , vol.112 , pp. 441-457
    • Shen, P.1    Huang, H.V.2
  • 51
    • 0037444087 scopus 로고    scopus 로고
    • Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker
    • Zhong J, Karberg M, Lambowitz AM. 2003. Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. Nucleic Acids Res 31:1656-1664. http://dx.doi.org/10.1093/nar/gkg248.
    • (2003) Nucleic Acids Res , vol.31 , pp. 1656-1664
    • Zhong, J.1    Karberg, M.2    Lambowitz, A.M.3
  • 52
    • 0742289608 scopus 로고    scopus 로고
    • Use of computer- designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes
    • Perutka J, Wang WJ, Goerlitz D, Lambowitz AM. 2004. Use of computer- designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J Mol Biol 336:421-439. http://dx.doi.org/10.1016/j.jmb.2003.12.009.
    • (2004) J Mol Biol , vol.336 , pp. 421-439
    • Perutka, J.1    Wang, W.J.2    Goerlitz, D.3    Lambowitz, A.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.