-
1
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278 (2014).
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
2
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander, J.D., Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347-355 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
3
-
-
84913594397
-
Genome editing the new frontier of genome engineering with CRISPR-Cas9
-
Doudna, J.A., Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
4
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012).
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
5
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607 (2011).
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
-
6
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).
-
(2013)
ELife
, vol.2
, pp. e00471
-
-
Jinek, M.1
-
7
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013).
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
-
8
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
9
-
-
64049118040
-
Short motif sequences determine the targets of the prokaryotic CRISPR defence system
-
Mojica, F.J., Diéz-Villasenõr, C., Garciá-Martínez, J., Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733-740 (2009).
-
(2009)
Microbiology
, vol.155
, pp. 733-740
-
-
Mojica, F.J.1
Diéz-Villasenõr, C.2
Garciá-Martínez, J.3
Almendros, C.4
-
10
-
-
84879026965
-
Protospacer recognition motifs: Mixed identities and functional diversity
-
Shah, S.A., Erdmann, S., Mojica, F.J., Garrett, R.A. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. 10, 891-899 (2013).
-
(2013)
RNA Biol.
, vol.10
, pp. 891-899
-
-
Shah, S.A.1
Erdmann, S.2
Mojica, F.J.3
Garrett, R.A.4
-
11
-
-
80755145195
-
The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
-
Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39, 9275-9282 (2011).
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 9275-9282
-
-
Sapranauskas, R.1
-
12
-
-
38949214103
-
Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus
-
Horvath, P. et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190, 1401-1412 (2008).
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1401-1412
-
-
Horvath, P.1
-
13
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C., Doudna, J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62-67 (2014).
-
(2014)
Nature
, vol.507
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.A.5
-
14
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang, W., Bikard, D., Cox, D., Zhang, F., Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233-239 (2013).
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
15
-
-
84895832944
-
Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
-
Fonfara, I. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 42, 2577-2590 (2014).
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 2577-2590
-
-
Fonfara, I.1
-
16
-
-
84887104139
-
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
-
Esvelt, K.M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116-1121 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 1116-1121
-
-
Esvelt, K.M.1
-
17
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran, F.A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191 (2015).
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
-
18
-
-
84878193178
-
Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis
-
Zhang, Y. et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50, 488-503 (2013).
-
(2013)
Mol. Cell
, vol.50
, pp. 488-503
-
-
Zhang, Y.1
-
19
-
-
84959104222
-
Functional footprinting of regulatory DNA
-
Vierstra, J. et al. Functional footprinting of regulatory DNA. Nat. Methods 12, 927-930 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 927-930
-
-
Vierstra, J.1
-
20
-
-
84946925193
-
BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis
-
16 September
-
Canver, M.C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature doi:10.1038/nature15521 (16 September 2015).
-
(2015)
Nature
-
-
Canver, M.C.1
-
21
-
-
84955199174
-
CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting
-
20 August
-
Courtney, D.G. et al. CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting. Gene Ther. doi:10.1038/gt.2015.82 (20 August 2015).
-
(2015)
Gene Ther.
-
-
Courtney, D.G.1
-
22
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
Kleinstiver, B.P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485 (2015).
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
-
23
-
-
84893157352
-
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
-
Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014).
-
(2014)
Science
, vol.343
, pp. 1247997
-
-
Jinek, M.1
-
24
-
-
84908508061
-
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
-
Anders, C., Niewoehner, O., Duerst, A., Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573 (2014).
-
(2014)
Nature
, vol.513
, pp. 569-573
-
-
Anders, C.1
Niewoehner, O.2
Duerst, A.3
Jinek, M.4
-
25
-
-
84896733529
-
Crystal structure of Cas9 in complex with guide RNA and target DNA
-
Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949 (2014).
-
(2014)
Cell
, vol.156
, pp. 935-949
-
-
Nishimasu, H.1
-
26
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822-826 (2013).
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 822-826
-
-
Fu, Y.1
-
27
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
-
Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187-197 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 187-197
-
-
Tsai, S.Q.1
-
28
-
-
84903138336
-
CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences
-
Lin, Y. et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 42, 7473-7485 (2014).
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 7473-7485
-
-
Lin, Y.1
-
29
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M., Joung, J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279-284 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
Cascio, V.M.4
Joung, J.K.5
-
30
-
-
84940368054
-
Crystal structure of Staphylococcus aureus Cas9
-
Nishimasu, H. et al. Crystal structure of Staphylococcus aureus Cas9. Cell 162, 1113-1126 (2015).
-
(2015)
Cell
, vol.162
, pp. 1113-1126
-
-
Nishimasu, H.1
-
31
-
-
28544437131
-
A highly sensitive selection method for directed evolution of homing endonucleases
-
Chen, Z., Zhao, H. A highly sensitive selection method for directed evolution of homing endonucleases. Nucleic Acids Res. 33, e154 (2005).
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. e154
-
-
Chen, Z.1
Zhao, H.2
-
32
-
-
77952316381
-
A unified genetic, computational and experimental framework identifies functionally relevant residues of the homing endonuclease I-BmoI
-
Kleinstiver, B.P., Fernandes, A.D., Gloor, G.B., Edgell, D.R. A unified genetic, computational and experimental framework identifies functionally relevant residues of the homing endonuclease I-BmoI. Nucleic Acids Res. 38, 2411-2427 (2010).
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 2411-2427
-
-
Kleinstiver, B.P.1
Fernandes, A.D.2
Gloor, G.B.3
Edgell, D.R.4
-
33
-
-
84860747716
-
FLASH assembly of TALENs for high-throughput genome editing
-
Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 30, 460-465 (2012).
-
(2012)
Nat. Biotechnol.
, vol.30
, pp. 460-465
-
-
Reyon, D.1
|