메뉴 건너뛰기




Volumn 11, Issue 4, 2017, Pages

Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community

Author keywords

big data; computer vision; deep learning; hyperspectral; multispectral; remote sensing

Indexed keywords

BIG DATA; COMPUTER VISION; LEARNING ALGORITHMS; NATURAL LANGUAGE PROCESSING SYSTEMS; REMOTE SENSING; SPEECH RECOGNITION; SURVEYS;

EID: 85032865390     PISSN: None     EISSN: 19313195     Source Type: Journal    
DOI: 10.1117/1.JRS.11.042609     Document Type: Review
Times cited : (613)

References (419)
  • 2
    • 84956802323 scopus 로고    scopus 로고
    • A tutorial survey of architectures, algorithms, and applications for deep learning
    • L. Deng, "A tutorial survey of architectures, algorithms, and applications for deep learning," APSIPA Trans. Signal Inf. Process. 3(e2), 1-29 (2014).
    • (2014) APSIPA Trans. Signal Inf. Process , vol.3 , Issue.E2 , pp. 1-29
    • Deng, L.1
  • 4
    • 84888349041 scopus 로고    scopus 로고
    • Hyperspectral remote sensing data analysis and future challenges
    • J. M. Bioucas-dias et al., "Hyperspectral remote sensing data analysis and future challenges," IEEE Geosci. Remote Sens. Mag. 1, 6-36 (2013).
    • (2013) IEEE Geosci. Remote Sens. Mag. , vol.1 , pp. 6-36
    • Bioucas-Dias, J.M.1
  • 5
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens. 43(6), 1351-1362 (2005).
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 6
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
    • G. Camps-Valls et al., "Advances in hyperspectral image classification: Earth monitoring with statistical learning methods," IEEE Signal Process. Mag. 31(1), 45-54 (2013).
    • (2013) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1
  • 7
    • 85027948638 scopus 로고    scopus 로고
    • A comprehensive evaluation of spectral distance functions and metrics for hyperspectral image processing
    • H. Deborah, N. Richard, and J. Y. Hardeberg, "A comprehensive evaluation of spectral distance functions and metrics for hyperspectral image processing," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 3224-3234 (2015).
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.8 , Issue.6 , pp. 3224-3234
    • Deborah, H.1    Richard, N.2    Hardeberg, J.Y.3
  • 8
    • 84857435937 scopus 로고    scopus 로고
    • Pedestrian detection: An evaluation of the state of the art
    • P. Dollar et al., "Pedestrian detection: an evaluation of the state of the art," IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743-761 (2012).
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.4 , pp. 743-761
    • Dollar, P.1
  • 9
    • 84860267020 scopus 로고    scopus 로고
    • Multiple classifier system for remote sensing image classification: A review
    • P. Du et al., "Multiple classifier system for remote sensing image classification: a review," Sensors, 12(4), 4764-4792 (2012).
    • (2012) Sensors , vol.12 , Issue.4 , pp. 4764-4792
    • Du, P.1
  • 10
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • M. Fauvel et al., "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE 101(3), 652-675 (2013).
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1
  • 11
    • 84876726723 scopus 로고    scopus 로고
    • Change detection from remotely sensed images: From pixel-based to object-based approaches
    • M. Hussain et al., "Change detection from remotely sensed images: from pixel-based to object-based approaches," ISPRS J. Photogramm. Remote Sens. 80, 91-106 (2013).
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.80 , pp. 91-106
    • Hussain, M.1
  • 12
    • 84966578780 scopus 로고    scopus 로고
    • A review of multi-temporal remote sensing data change detection algorithms
    • G. Jianya et al., "A review of multi-temporal remote sensing data change detection algorithms," Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 37(B7), 757-762 (2008).
    • (2008) Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. , vol.37 , Issue.B7 , pp. 757-762
    • Jianya, G.1
  • 13
    • 84955438526 scopus 로고    scopus 로고
    • Machine learning in geosciences and remote sensing
    • D. J. Lary et al., "Machine learning in geosciences and remote sensing," Geosci. Front. 7(1), 3-10 (2016).
    • (2016) Geosci. Front. , vol.7 , Issue.1 , pp. 3-10
    • Lary, D.J.1
  • 14
    • 85032751123 scopus 로고    scopus 로고
    • Manifold-learning-based feature extraction for classification of hyperspectral data: A review of advances in manifold learning
    • D. Lunga et al., "Manifold-learning-based feature extraction for classification of hyperspectral data: a review of advances in manifold learning," IEEE Signal Process. Mag. 31(1), 55-66 (2014).
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 55-66
    • Lunga, D.1
  • 15
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • A. Plaza et al., "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data," IEEE Trans. Geosci. Remote Sens. 42(3), 650-663 (2004).
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1
  • 17
    • 8144231500 scopus 로고    scopus 로고
    • A survey of spectral unmixing algorithms
    • N. Keshava, "A survey of spectral unmixing algorithms," Lincoln Lab. J. 14(1), 55-78 (2003).
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 55-78
    • Keshava, N.1
  • 19
    • 84872100099 scopus 로고    scopus 로고
    • Recent developments in endmember extraction and spectral unmixing
    • S. Prasad, L. M. Bruce, and J. Chanussot, Eds., Springer, Berlin, Germany
    • A. Plaza et al., "Recent developments in endmember extraction and spectral unmixing," in Optical Remote Sensing, S. Prasad, L. M. Bruce, and J. Chanussot, Eds., pp. 235-267, Springer, Berlin, Germany (2011).
    • (2011) Optical Remote Sensing , pp. 235-267
    • Plaza, A.1
  • 20
    • 84899702499 scopus 로고    scopus 로고
    • Incorporating spatial information in spectral unmixing: A review
    • C. Shi and L. Wang, "Incorporating spatial information in spectral unmixing: a review," Remote Sens. Environ. 149, 70-87 (2014).
    • (2014) Remote Sens. Environ. , vol.149 , pp. 70-87
    • Shi, C.1    Wang, L.2
  • 21
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • M. D. Zeiler, G. W. Taylor, and R. Fergus, "Adaptive deconvolutional networks for mid and high level feature learning," in 2011 Int. Conf. on Computer Vision, pp. 2018-2025 (2011).
    • (2011) 2011 Int. Conf. on Computer Vision , pp. 2018-2025
    • Zeiler, M.D.1    Taylor, G.W.2    Fergus, R.3
  • 22
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer
    • M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in European Conf. on Computer Vision, pp. 818-833, Springer (2014).
    • (2014) European Conf. on Computer Vision , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 24
    • 84997712018 scopus 로고    scopus 로고
    • Why regularized auto-encoders learn sparse representation?
    • D. Arpit et al., "Why regularized auto-encoders learn sparse representation?," in Int. Conf. on Machine Learning, pp. 136-144 (2016).
    • (2016) Int. Conf. on Machine Learning , pp. 136-144
    • Arpit, D.1
  • 27
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun et al., "Gradient-based learning applied to document recognition," Proc. IEEE 86(11), 2278-2324 (1998).
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1
  • 28
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • G. Tesauro, D. Touretzky, and T. Leed, Eds.
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Advances in Neural Information Processing Systems, G. Tesauro, D. Touretzky, and T. Leed, Eds., pp. 1097-1105 (2012).
    • (2012) Advances in Neural Information Processing Systems , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 35
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science 313(5786), 504-507 (2006).
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 37
  • 39
    • 85032869099 scopus 로고    scopus 로고
    • (03 August)
    • "Recurrent neural networks," https://www.tensorflow.org/tutorials/recurrent (03 August 2017).
    • (2017) Recurrent Neural Networks
  • 40
    • 85022190521 scopus 로고    scopus 로고
    • A tutorial on deep learning part 2: Autoencoders, convolutional neural networks and recurrent neural networks
    • Q. V. Le, "A tutorial on deep learning part 2: autoencoders, convolutional neural networks and recurrent neural networks," Google Brain, pp. 1-20 (2015).
    • (2015) Google Brain , pp. 1-20
    • Le, Q.V.1
  • 44
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition challenge
    • O. Russakovsky et al., "ImageNet large scale visual recognition challenge," Int. J. Comput. Vision 115(3), 211-252 (2015).
    • (2015) Int. J. Comput. Vision , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 46
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, "Approximation by superpositions of a sigmoidal function," Math. Control Signals Syst. 2(4), 303-314 (1989).
    • (1989) Math. Control Signals Syst. , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 50
    • 84957926960 scopus 로고    scopus 로고
    • A survey of randomized algorithms for training neural networks
    • L. Zhang and P. N. Suganthan, "A survey of randomized algorithms for training neural networks," Inf. Sci. 364, 146-155 (2016).
    • (2016) Inf. Sci. , vol.364 , pp. 146-155
    • Zhang, L.1    Suganthan, P.N.2
  • 52
    • 50549197532 scopus 로고
    • Some methods of speeding up the convergence of iteration methods
    • B. T. Polyak, "Some methods of speeding up the convergence of iteration methods," USSR Comput. Math. Math. Phys. 4(5), 1-17 (1964).
    • (1964) USSR Comput. Math. Math. Phys. , vol.4 , Issue.5 , pp. 1-17
    • Polyak, B.T.1
  • 53
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization," J. Mach. Learn. Res. 12, 2121-2159 (2011).
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 54
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
    • T. Tieleman and G. Hinton, "Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude," COURSERA: Neural Networks Mach. Learn. 4(2), 26-31 (2012).
    • (2012) COURSERA: Neural Networks Mach. Learn. , vol.4 , Issue.2 , pp. 26-31
    • Tieleman, T.1    Hinton, G.2
  • 56
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber, "Deep learning in neural networks: an overview," Neural Networks 61, 85-117 (2015).
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 57
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput. 18(7), 1527-1554 (2006).
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 58
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • Y. Bengio et al., "Greedy layer-wise training of deep networks," Adv. Neural Inf. Process. Syst. 19, 153 (2007).
    • (2007) Adv. Neural Inf. Process. Syst. , vol.19 , pp. 153
    • Bengio, Y.1
  • 59
    • 84877755914 scopus 로고    scopus 로고
    • A better way to pretrain deep boltzmann machines
    • F. Pereira et al., Eds., Curran Associates, Inc.
    • R. R. Salakhutdinov and G. E. Hinton, "A better way to pretrain deep Boltzmann machines," in Advances in Neural Information Processing Systems, F. Pereira et al., Eds., pp. 2447-2455, Curran Associates, Inc. (2012).
    • (2012) Advances in Neural Information Processing Systems , pp. 2447-2455
    • Salakhutdinov, R.R.1    Hinton, G.E.2
  • 61
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Networks 5(2), 157-166 (1994).
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 62
  • 65
    • 84930575472 scopus 로고    scopus 로고
    • Remote sensing big data computing: Challenges and opportunities
    • Special section: a note on new trends in data-aware scheduling and resource provisioning in modern HPC systems
    • Y. Ma et al., "Remote sensing big data computing: challenges and opportunities," Future Gener. Comput. Syst. 51, 47-60 (2015)Special section: a note on new trends in data-aware scheduling and resource provisioning in modern HPC systems.
    • (2015) Future Gener. Comput. Syst. , vol.51 , pp. 47-60
    • Ma, Y.1
  • 66
    • 84994297166 scopus 로고    scopus 로고
    • Big data for remote sensing: Challenges and opportunities
    • M. Chi et al., "Big data for remote sensing: challenges and opportunities," Proc. IEEE 104, 2207-2219 (2016).
    • (2016) Proc. IEEE , vol.104 , pp. 2207-2219
    • Chi, M.1
  • 68
    • 84881039921 scopus 로고    scopus 로고
    • Flexible, high performance convolutional neural networks for image classification
    • AAAI Press
    • D. C. Cireşan et al., "Flexible, high performance convolutional neural networks for image classification," in Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011), Vol. 2, pp. 1237-1242, AAAI Press (2011).
    • (2011) Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011) , vol.2 , pp. 1237-1242
    • Cireşan, D.C.1
  • 77
    • 85013977220 scopus 로고    scopus 로고
    • Deep learning applications and challenges in big data analytics
    • M. M. Najafabadi et al., "Deep learning applications and challenges in big data analytics," J. Big Data 2(1), 1-21 (2015).
    • (2015) J. Big Data , vol.2 , Issue.1 , pp. 1-21
    • Najafabadi, M.M.1
  • 78
    • 84923318381 scopus 로고    scopus 로고
    • Big data deep learning: Challenges and perspectives
    • X.-W. Chen and X. Len, "Big data deep learning: challenges and perspectives," IEEE Access 2, 514-525 (2014).
    • (2014) IEEE Access , vol.2 , pp. 514-525
    • Chen, X.-W.1    Len, X.2
  • 79
    • 85013974691 scopus 로고    scopus 로고
    • A survey of open source tools for machine learning with big data in the hadoop ecosystem
    • S. Landset et al., "A survey of open source tools for machine learning with big data in the Hadoop ecosystem," J. Big Data 2(1), 24 (2015).
    • (2015) J. Big Data , vol.2 , Issue.1 , pp. 24
    • Landset, S.1
  • 80
    • 84913590208 scopus 로고    scopus 로고
    • Deep learning for content-based image retrieval: A comprehensive study
    • J. Wan et al., "Deep learning for content-based image retrieval: a comprehensive study," in Proc. of the 22nd ACM Int. Conf. on Multimedia, pp. 157-166 (2014).
    • (2014) Proc. of the 22nd ACM Int. Conf. on Multimedia , pp. 157-166
    • Wan, J.1
  • 81
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Y. Jia et al., "Caffe: convolutional architecture for fast feature embedding," in ACM Int. Conf. on Multimedia, pp. 675-678 (2014).
    • (2014) ACM Int. Conf. on Multimedia , pp. 675-678
    • Jia, Y.1
  • 84
    • 85006010727 scopus 로고    scopus 로고
    • GVNN: Neural network library for geometric computer vision
    • Springer International
    • A. Handa et al., "GVNN: neural network library for geometric computer vision," in Computer Vision Workshop (ECCV 2016), pp. 67-82, Springer International (2016).
    • (2016) Computer Vision Workshop (ECCV 2016) , pp. 67-82
    • Handa, A.1
  • 85
    • 84971640658 scopus 로고    scopus 로고
    • F. Chollet, "Keras," https://github.com/fchollet/keras (2015).
    • (2015) Keras
    • Chollet, F.1
  • 88
  • 89
    • 81855221241 scopus 로고    scopus 로고
    • Sequential deep learning for human action recognition
    • Springer
    • M. Baccouche et al., "Sequential deep learning for human action recognition," in Int. Workshop on Human Behavior Understanding, pp. 29-39, Springer (2011).
    • (2011) Int. Workshop on Human Behavior Understanding , pp. 29-39
    • Baccouche, M.1
  • 91
    • 84973865953 scopus 로고    scopus 로고
    • Learning spatiotemporal features with 3D convolutional networks
    • D. Tran et al., "Learning spatiotemporal features with 3D convolutional networks," in IEEE Int. Conf. on Computer Vision (ICCV 2015), pp. 4489-4497 (2015).
    • (2015) IEEE Int. Conf. on Computer Vision (ICCV 2015) , pp. 4489-4497
    • Tran, D.1
  • 92
    • 85019099168 scopus 로고    scopus 로고
    • Temporal segment networks: Towards good practices for deep action recognition
    • L. Wang et al., "Temporal segment networks: towards good practices for deep action recognition," in European Conf. on Computer Vision, pp. 20-36 (2016).
    • (2016) European Conf. on Computer Vision , pp. 20-36
    • Wang, L.1
  • 93
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for largevocabulary speech recognition
    • G. E. Dahl et al., "Context-dependent pre-trained deep neural networks for largevocabulary speech recognition," IEEE Trans. Audio Speech Lang. Process. 20(1), 30-42 (2012).
    • (2012) IEEE Trans. Audio Speech Lang. Process , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1
  • 94
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups," IEEE Signal Process. Mag. 29(6), 82-97 (2012).
    • (2012) IEEE Signal Process. Mag. , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1
  • 101
    • 85016280072 scopus 로고    scopus 로고
    • Phi-LSTM: A phrase-based hierarchical LSTM model for image captioning
    • Y. H. Tan and C. S. Chan, "phi-LSTM: a phrase-based hierarchical LSTM model for image captioning," in 13th Asian Conf. on Computer Vision (ACCV), pp. 101-117 (2016).
    • (2016) 13th Asian Conf. on Computer Vision (ACCV) , pp. 101-117
    • Tan, Y.H.1    Chan, C.S.2
  • 103
    • 84903779279 scopus 로고    scopus 로고
    • Searching for exotic particles in high-energy physics with deep learning
    • P. Baldi, P. Sadowski, and D. Whiteson, "Searching for exotic particles in high-energy physics with deep learning," Nat. Commun. 5, 4308 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 4308
    • Baldi, P.1    Sadowski, P.2    Whiteson, D.3
  • 104
    • 84965122247 scopus 로고    scopus 로고
    • Galileo: Perceiving physical object properties by integrating a physics engine with deep learning
    • C. Cortes et al., Eds., Curran Associates, Inc.
    • J. Wu et al., "Galileo: perceiving physical object properties by integrating a physics engine with deep learning," in Advances in Neural Information Processing Systems, C. Cortes et al., Eds., pp. 127-135, Curran Associates, Inc. (2015).
    • (2015) Advances in Neural Information Processing Systems , pp. 127-135
    • Wu, J.1
  • 105
    • 84885929616 scopus 로고    scopus 로고
    • A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
    • Springer
    • A. A. Cruz-Roa et al., "A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection," in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 403-410, Springer (2013).
    • (2013) Int. Conf. on Medical Image Computing and Computer-Assisted Intervention , pp. 403-410
    • Cruz-Roa, A.A.1
  • 106
    • 84925878230 scopus 로고    scopus 로고
    • Using deep learning to enhance cancer diagnosis and classification
    • R. Fakoor et al., "Using deep learning to enhance cancer diagnosis and classification," in Proc. of the Int. Conf. on Machine Learning (2013).
    • (2013) Proc. of the Int. Conf. on Machine Learning
    • Fakoor, R.1
  • 107
    • 84968542311 scopus 로고    scopus 로고
    • Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
    • K. Sirinukunwattana et al., "Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images," IEEE Trans. Med. Imaging 35(5), 1196-1206 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1196-1206
    • Sirinukunwattana, K.1
  • 108
    • 84894359867 scopus 로고    scopus 로고
    • A review of unsupervised feature learning and deep learning for time-series modeling
    • M. Längkvist, L. Karlsson, and A. Loutfi, "A review of unsupervised feature learning and deep learning for time-series modeling," Pattern Recognit. Lett. 42, 11-24 (2014).
    • (2014) Pattern Recognit. Lett. , vol.42 , pp. 11-24
    • Längkvist, M.1    Karlsson, L.2    Loutfi, A.3
  • 109
    • 85016118286 scopus 로고    scopus 로고
    • Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis
    • S. Sarkar et al., "Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis," in Annual Conf. of the Prognostics and Health Management (2015).
    • (2015) Annual Conf. of the Prognostics and Health Management
    • Sarkar, S.1
  • 110
    • 84899568094 scopus 로고    scopus 로고
    • Time series forecasting using a deep belief network with restricted boltzmann machines
    • T. Kuremoto et al., "Time series forecasting using a deep belief network with restricted Boltzmann machines," Neurocomputing 137, 47-56 (2014).
    • (2014) Neurocomputing , vol.137 , pp. 47-56
    • Kuremoto, T.1
  • 113
    • 85018890661 scopus 로고    scopus 로고
    • Learning what and where to draw
    • D. D. Lee et al., Eds., Curran Associates, Inc.
    • S. E. Reed et al., "Learning what and where to draw," in Advances in Neural Information Processing Systems, D. D. Lee et al., Eds., pp. 217-225, Curran Associates, Inc. (2016).
    • (2016) Advances in Neural Information Processing Systems , pp. 217-225
    • Reed, S.E.1
  • 119
    • 84924408055 scopus 로고    scopus 로고
    • Droid-sec: Deep learning in android malware detection
    • Z. Yuan et al., "Droid-sec: deep learning in android malware detection," ACM SIGCOMM Comput. Commun. Rev. 44(4), 371-372 (2014).
    • (2014) ACM SIGCOMM Comput. Commun. Rev. , vol.44 , Issue.4 , pp. 371-372
    • Yuan, Z.1
  • 120
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning-A new frontier in artificial intelligence research
    • I. Arel, D. C. Rose, and T. P. Karnowski, "Deep machine learning-a new frontier in artificial intelligence research," IEEE Comput. Intell. Mag. 5(4), 13-18 (2010).
    • (2010) IEEE Comput. Intell. Mag. , vol.5 , Issue.4 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 121
    • 85010651075 scopus 로고    scopus 로고
    • A survey of deep neural network architectures and their applications
    • W. Liu et al., "A survey of deep neural network architectures and their applications," Neurocomputing 234, 11-26 (2017).
    • (2017) Neurocomputing , vol.234 , pp. 11-26
    • Liu, W.1
  • 123
    • 85032782045 scopus 로고    scopus 로고
    • Deep learning and its applications to signal and information processing [exploratory DSP]
    • D. Yu and L. Deng, "Deep learning and its applications to signal and information processing [exploratory DSP]," IEEE Signal Process. Mag. 28(1), 145-154 (2011).
    • (2011) IEEE Signal Process. Mag. , vol.28 , Issue.1 , pp. 145-154
    • Yu, D.1    Deng, L.2
  • 125
    • 84903724014 scopus 로고    scopus 로고
    • Deep learning: Methods and applications
    • L. Deng and D. Yu, "Deep learning: methods and applications," Found. Trends Signal Process. 7(3-4), 197-387 (2013).
    • (2013) Found. Trends Signal Process , vol.7 , Issue.3-4 , pp. 197-387
    • Deng, L.1    Yu, D.2
  • 130
    • 85019157984 scopus 로고    scopus 로고
    • Point cloud labeling using 3D convolutional neural network
    • J. Huang and S. You, "Point cloud labeling using 3D convolutional neural network," in Int. Conf. on Pattern Recognition (2016).
    • (2016) Int. Conf. on Pattern Recognition
    • Huang, J.1    You, S.2
  • 131
    • 84990032596 scopus 로고    scopus 로고
    • Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation
    • W. Kehl et al., "Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation," in European Conf. on Computer Vision, pp. 205-220 (2016).
    • (2016) European Conf. on Computer Vision , pp. 205-220
    • Kehl, W.1
  • 134
    • 84945188860 scopus 로고    scopus 로고
    • Projective feature learning for 3D shapes with multi-view depth images
    • Wiley Online Library
    • Z. Xie et al., "Projective feature learning for 3D shapes with multi-view depth images," in Computer Graphics Forum, Vol. 34(7), pp. 1-11, Wiley Online Library (2015).
    • (2015) Computer Graphics Forum , vol.34 , Issue.7 , pp. 1-11
    • Xie, Z.1
  • 135
    • 84973888858 scopus 로고    scopus 로고
    • DeepDriving: Learning affordance for direct perception in autonomous driving
    • C. Chen, "DeepDriving: learning affordance for direct perception in autonomous driving," in Proc. of the IEEE Int. Conf. on Computer Vision, pp. 2722-2730 (2015).
    • (2015) Proc. of the IEEE Int. Conf. on Computer Vision , pp. 2722-2730
    • Chen, C.1
  • 137
    • 85044923280 scopus 로고    scopus 로고
    • A system for large-scale automatic traffic sign recognition and mapping
    • A. Chigorin and A. Konushin, "A system for large-scale automatic traffic sign recognition and mapping," in CMRT13-City Models, Roads and Traffic 2013, pp. 13-17 (2013).
    • (2013) CMRT13-City Models, Roads and Traffic 2013 , pp. 13-17
    • Chigorin, A.1    Konushin, A.2
  • 139
    • 84960407578 scopus 로고    scopus 로고
    • Traffic sign recognition using extreme learning classifier with deep convolutional features
    • Suzhou, China
    • Y. Zeng et al., "Traffic sign recognition using extreme learning classifier with deep convolutional features," in Int. Conf. on Intelligence Science and Big Data Engineering (IScIDE '15), Suzhou, China (2015).
    • (2015) Int. Conf. on Intelligence Science and Big Data Engineering (IScIDE '15)
    • Zeng, Y.1
  • 140
    • 84962512661 scopus 로고    scopus 로고
    • Detection of seals in remote sensing images using features extracted from deep convolutional neural networks
    • A.-B. Salberg, "Detection of seals in remote sensing images using features extracted from deep convolutional neural networks," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS'15), pp. 1893-1896 (2015).
    • (2015) IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS'15) , pp. 1893-1896
    • Salberg, A.-B.1
  • 141
    • 85016510342 scopus 로고    scopus 로고
    • Transferred deep learning for anomaly detection in hyperspectral imagery
    • W. Li, G. Wu, and Q. Du, "Transferred deep learning for anomaly detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett. 14(5), 597-601 (2017).
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.5 , pp. 597-601
    • Li, W.1    Wu, G.2    Du, Q.3
  • 142
    • 84943387057 scopus 로고    scopus 로고
    • Deep belief networks for false alarm rejection in forward-looking groundpenetrating radar
    • J. Becker et al., "Deep belief networks for false alarm rejection in forward-looking groundpenetrating radar," Proc. SPIE 9454, 94540W (2015).
    • (2015) Proc. SPIE , vol.9454 , pp. 94540
    • Becker, J.1
  • 143
    • 84962606109 scopus 로고    scopus 로고
    • Target classification in oceanographic SAR images with deep neural networks: Architecture and initial results
    • IEEE
    • C. Bentes, D. Velotto, and S. Lehner, "Target classification in oceanographic SAR images with deep neural networks: architecture and initial results," in IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS '15), pp. 3703-3706, IEEE (2015).
    • (2015) IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS '15) , pp. 3703-3706
    • Bentes, C.1    Velotto, D.2    Lehner, S.3
  • 144
    • 84982141319 scopus 로고    scopus 로고
    • Detecting buried explosive hazards with handheld GPR and deep learning
    • L. E. Besaw, "Detecting buried explosive hazards with handheld GPR and deep learning," Proc. SPIE 9823, 98230N (2016).
    • (2016) Proc. SPIE , vol.9823 , pp. 98230
    • Besaw, L.E.1
  • 145
    • 84905695247 scopus 로고    scopus 로고
    • Deep learning algorithms for detecting explosive hazards in ground penetrating radar data
    • L. E. Besaw and P. J. Stimac, "Deep learning algorithms for detecting explosive hazards in ground penetrating radar data," Proc. SPIE 9072, 90720Y (2014).
    • (2014) Proc. SPIE , vol.9072 , pp. 90720
    • Besaw, L.E.1    Stimac, P.J.2
  • 146
    • 84976407137 scopus 로고    scopus 로고
    • SAR ATR based on displacement-and rotation-insensitive CNN
    • K. Du et al., "SAR ATR based on displacement-and rotation-insensitive CNN," Remote Sens. Lett. 7(9), 895-904 (2016).
    • (2016) Remote Sens. Lett. , vol.7 , Issue.9 , pp. 895-904
    • Du, K.1
  • 148
    • 84948680884 scopus 로고    scopus 로고
    • Deep convolutional neural networks for ATR from SAR imagery
    • D. A. E. Morgan, "Deep convolutional neural networks for ATR from SAR imagery," Proc. SPIE 9475, 94750F (2015).
    • (2015) Proc. SPIE , vol.9475 , pp. 94750
    • Morgan, D.A.E.1
  • 149
    • 84897782056 scopus 로고    scopus 로고
    • SAR automatic target recognition based on a visual cortical system
    • IEEE
    • J. C. Ni and Y. L. Xu, "SAR automatic target recognition based on a visual cortical system," in 6th Int. Congress on Image and Signal Processing (CISP '13), Vol. 2, pp. 778-782, IEEE (2013).
    • (2013) 6th Int. Congress on Image and Signal Processing (CISP '13) , vol.2 , pp. 778-782
    • Ni, J.C.1    Xu, Y.L.2
  • 150
    • 84885830182 scopus 로고    scopus 로고
    • Recognition of SAR target based on multilayer auto-encoder and SNN
    • Z. Sun, L. Xue, and Y. Xu, "Recognition of SAR target based on multilayer auto-encoder and SNN," Int. J. Innovative Comput. Inf. Control 9(11), 4331-4341 (2013).
    • (2013) Int. J. Innovative Comput. Inf. Control , vol.9 , Issue.11 , pp. 4331-4341
    • Sun, Z.1    Xue, L.2    Xu, Y.3
  • 152
    • 79952027705 scopus 로고    scopus 로고
    • A multifeature tensor for remote-sensing target recognition
    • L. Zhang et al., "A multifeature tensor for remote-sensing target recognition," IEEE Geosci. Remote Sens. Lett. 8(2), 374-378 (2011).
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.2 , pp. 374-378
    • Zhang, L.1
  • 153
    • 84940765289 scopus 로고    scopus 로고
    • A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery
    • L. Zhang, Z. Shi, and J. Wu, "A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(10), 4895-4909 (2015).
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.8 , Issue.10 , pp. 4895-4909
    • Zhang, L.1    Shi, Z.2    Wu, J.3
  • 155
    • 84930804691 scopus 로고    scopus 로고
    • Change detection in synthetic aperture radar images based on deep neural networks
    • M. Gong, Z. Zhou, and J. Ma, "Change detection in synthetic aperture radar images based on deep neural networks," IEEE Trans. Neural Networks Learn. Syst. 27(1), 125-138 (2016).
    • (2016) IEEE Trans. Neural Networks Learn. Syst. , vol.27 , Issue.1 , pp. 125-138
    • Gong, M.1    Zhou, Z.2    Ma, J.3
  • 156
    • 34548224594 scopus 로고    scopus 로고
    • An innovative neural-net method to detect temporal changes in highresolution optical satellite imagery
    • F. Pacifici et al., "An innovative neural-net method to detect temporal changes in highresolution optical satellite imagery," IEEE Trans. Geosci. Remote Sens. 45(9), 2940-2952 (2007).
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.9 , pp. 2940-2952
    • Pacifici, F.1
  • 158
    • 84908476182 scopus 로고    scopus 로고
    • Deep learning to classify difference image for image change detection
    • IEEE
    • J. Zhao et al., "Deep learning to classify difference image for image change detection," in Int. Joint Conf. on Neural Networks (IJCNN '14), pp. 411-417, IEEE (2014).
    • (2014) Int. Joint Conf. on Neural Networks (IJCNN '14) , pp. 411-417
    • Zhao, J.1
  • 160
    • 84894082731 scopus 로고    scopus 로고
    • Differential evolution extreme learning machine for the classification of hyperspectral images
    • Y. Bazi et al., "Differential evolution extreme learning machine for the classification of hyperspectral images," IEEE Trans. Geosci. Remote Sens. 11(6), 1066-1070 (2014).
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.11 , Issue.6 , pp. 1066-1070
    • Bazi, Y.1
  • 161
    • 85007427844 scopus 로고    scopus 로고
    • Deep convolutional networks with superpixel segmentation for hyperspectral image classification
    • J. Cao, Z. Chen, and B. Wang, "Deep convolutional networks with superpixel segmentation for hyperspectral image classification," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 3310-3313 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 3310-3313
    • Cao, J.1    Chen, Z.2    Wang, B.3
  • 162
    • 85007427844 scopus 로고    scopus 로고
    • Graph-based deep convolutional networks with superpixel segmentation for hyperspectral image classification
    • J. Cao, Z. Chen, and B. Wang, "Graph-based deep convolutional networks with superpixel segmentation for hyperspectral image classification," in 2016 IEEE Geoscience and Remote Sensing Symposium (IGARSS), pp. 3310-3313 (2016).
    • (2016) 2016 IEEE Geoscience and Remote Sensing Symposium (IGARSS) , pp. 3310-3313
    • Cao, J.1    Chen, Z.2    Wang, B.3
  • 163
    • 84912029121 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine
    • C. Chen, W. Li, and H. Su et al., "Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine," Remote Sens. 6(6), 5795-5814 (2014).
    • (2014) Remote Sens. , vol.6 , Issue.6 , pp. 5795-5814
    • Chen, C.1    Li, W.2    Su, H.3
  • 164
    • 85007486834 scopus 로고    scopus 로고
    • Scene classification of high resolution remote sensing images using convolutional neural networks
    • G. Cheng et al., "Scene classification of high resolution remote sensing images using convolutional neural networks," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 767-770 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 767-770
    • Cheng, G.1
  • 165
    • 33947699893 scopus 로고    scopus 로고
    • Use of neural networks for automatic classification from high-resolution images
    • F. Del Frate et al., "Use of neural networks for automatic classification from high-resolution images," IEEE Trans. Geosci. Remote Sens. 45(4), 800-809 (2007).
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.4 , pp. 800-809
    • Del Frate, F.1
  • 166
    • 85007417697 scopus 로고    scopus 로고
    • Using CNN-based high-level features for remote sensing scene classification
    • Z. Fang, W. Li, and Q. Du, "Using CNN-based high-level features for remote sensing scene classification," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 2610-2613 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 2610-2613
    • Fang, Z.1    Li, W.2    Du, Q.3
  • 167
    • 85000450755 scopus 로고    scopus 로고
    • Semi-supervised classification of hyperspectral imagery based on stacked autoencoders
    • 10033
    • Q. Fu et al., "Semi-supervised classification of hyperspectral imagery based on stacked autoencoders," Proc. SPIE 10033, 100332B (2016).
    • (2016) Proc. SPIE , pp. 100332
    • Fu, Q.1
  • 168
    • 84947126879 scopus 로고    scopus 로고
    • High-resolution SAR image classification via deep convolutional autoencoders
    • J. Geng et al., "High-resolution SAR image classification via deep convolutional autoencoders," IEEE Trans. Geosci. Remote Sens. Lett. 12(11), 2351-2355 (2015).
    • (2015) IEEE Trans. Geosci. Remote Sens. Lett. , vol.12 , Issue.11 , pp. 2351-2355
    • Geng, J.1
  • 169
    • 85007022366 scopus 로고    scopus 로고
    • Scene classification based on a hierarchical convolutional sparse autoencoder for high spatial resolution imagery
    • X. Han et al., "Scene classification based on a hierarchical convolutional sparse autoencoder for high spatial resolution imagery," Int. J. Remote Sens. 38(2), 514-536 (2017).
    • (2017) Int. J. Remote Sens. , vol.38 , Issue.2 , pp. 514-536
    • Han, X.1
  • 170
    • 85007463494 scopus 로고    scopus 로고
    • Hyperspectral image classification based on deep stacking network
    • M. He et al., "Hyperspectral image classification based on deep stacking network," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 3286-3289 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 3286-3289
    • He, M.1
  • 171
    • 84962483072 scopus 로고    scopus 로고
    • Polarimetric SAR images classification using deep belief networks with learning features
    • B. Hou et al., "Polarimetric SAR images classification using deep belief networks with learning features," in IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS), pp. 2366-2369 (2015).
    • (2015) IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS) , pp. 2366-2369
    • Hou, B.1
  • 172
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • W. Hu et al., "Deep convolutional neural networks for hyperspectral image classification," J. Sens. 2015, 1-12 (2015).
    • (2015) J. Sens. , vol.2015 , pp. 1-12
    • Hu, W.1
  • 173
    • 85000501173 scopus 로고    scopus 로고
    • Very high resolution images classification by fine tuning deep convolutional neural networks
    • 10033
    • M. Iftene, Q. Liu, and Y. Wang, "Very high resolution images classification by fine tuning deep convolutional neural networks," Proc. SPIE 10033, 100332D (2016).
    • (2016) Proc. SPIE , pp. 100332
    • Iftene, M.1    Liu, Q.2    Wang, Y.3
  • 174
    • 85007506834 scopus 로고    scopus 로고
    • Convolutional neural network based classification for hyperspectral data
    • P. Jia et al., "Convolutional neural network based classification for hyperspectral data," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 5075-5078 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 5075-5078
    • Jia, P.1
  • 176
    • 84971612769 scopus 로고    scopus 로고
    • Classification and segmentation of satellite orthoimagery using convolutional neural networks
    • M. Längkvist et al., "Classification and segmentation of satellite orthoimagery using convolutional neural networks," Remote Sens. 8(4), 329 (2016).
    • (2016) Remote Sens. , vol.8 , Issue.4 , pp. 329
    • Längkvist, M.1
  • 178
    • 85032866885 scopus 로고    scopus 로고
    • Active learning for hyperspectral image classification with a stacked autoencoders based neural network
    • J. Li, "Active learning for hyperspectral image classification with a stacked autoencoders based neural network," in IEEE Int. Conf. on Image Processing (ICIP '16), pp. 1062-1065 (2016).
    • (2016) IEEE Int. Conf. on Image Processing (ICIP '16) , pp. 1062-1065
    • Li, J.1
  • 180
  • 181
    • 84995529466 scopus 로고    scopus 로고
    • Hyperspectral image classification using deep pixel-pair features
    • W. Li et al., "Hyperspectral image classification using deep pixel-pair features," IEEE Trans. Geosci. Remote Sens. 55(2), 844-853 (2017).
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.2 , pp. 844-853
    • Li, W.1
  • 182
    • 84998910231 scopus 로고    scopus 로고
    • Hyperspectral image reconstruction by deep convolutional neural network for classification
    • Y. Li, W. Xie, and H. Li, "Hyperspectral image reconstruction by deep convolutional neural network for classification," Pattern Recognit. 63, 371-383 (2017).
    • (2017) Pattern Recognit , vol.63 , pp. 371-383
    • Li, Y.1    Xie, W.2    Li, H.3
  • 184
    • 84937140953 scopus 로고    scopus 로고
    • Hyperspectral classification via deep networks and superpixel segmentation
    • Y. Liu et al., "Hyperspectral classification via deep networks and superpixel segmentation," Int. J. Remote Sens. 36(13), 3459-3482 (2015).
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.13 , pp. 3459-3482
    • Liu, Y.1
  • 185
    • 84956603880 scopus 로고    scopus 로고
    • Hyperspectral classification via learnt features
    • Y. Liu et al., "Hyperspectral classification via learnt features," in Int. Conf. on Image Processing (ICIP '15), pp. 1-5 (2015).
    • (2015) Int. Conf. on Image Processing (ICIP '15) , pp. 1-5
    • Liu, Y.1
  • 186
  • 187
    • 84959139728 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral image based on deep auto-encoder
    • X. Ma, H. Wang, and J. Geng, "Spectral-spatial classification of hyperspectral image based on deep auto-encoder," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4073-4085 (2016).
    • (2016) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.9 , Issue.9 , pp. 4073-4085
    • Ma, X.1    Wang, H.2    Geng, J.3
  • 188
    • 85007508508 scopus 로고    scopus 로고
    • Hyperspectral image classification with small training set by deep network and relative distance prior
    • IEEE
    • X. Ma et al., "Hyperspectral image classification with small training set by deep network and relative distance prior," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 3282-3285, IEEE (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 3282-3285
    • Ma, X.1
  • 189
    • 84943420300 scopus 로고    scopus 로고
    • Infrared ultraspectral signature classification based on a restricted boltzmann machine with sparse and prior constraints
    • X. Mei et al., "Infrared ultraspectral signature classification based on a restricted Boltzmann machine with sparse and prior constraints," Int. J. Remote Sens. 36(18), 4724-4747 (2015).
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.18 , pp. 4724-4747
    • Mei, X.1
  • 190
    • 85007420689 scopus 로고    scopus 로고
    • Integrating spectral and spatial information into deep convolutional neural networks for hyperspectral classification
    • S. Mei et al., "Integrating spectral and spatial information into deep convolutional neural networks for hyperspectral classification," in IEEE Geoscience and Remote Sensing Symp. (IGARSS'15), pp. 5067-5070 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS'15) , pp. 5067-5070
    • Mei, S.1
  • 191
    • 84962541943 scopus 로고    scopus 로고
    • Automatic fusion and classification using random forests and features extracted with deep learning
    • A. Merentitis and C. Debes, "Automatic fusion and classification using random forests and features extracted with deep learning," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '15), pp. 2943-2946 (2015).
    • (2015) IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '15) , pp. 2943-2946
    • Merentitis, A.1    Debes, C.2
  • 192
    • 84979775123 scopus 로고    scopus 로고
    • Towards better exploiting convolutional neural networks for remote sensing scene classification
    • K. Nogueira, O. A. B. Penatti, and J. A. dos Santos, "Towards better exploiting convolutional neural networks for remote sensing scene classification," Pattern Recognit. 61, 539-556 (2017).
    • (2017) Pattern Recognit , vol.61 , pp. 539-556
    • Nogueira, K.1    Penatti, O.A.B.2    Dos Santos, J.A.3
  • 193
    • 85012965527 scopus 로고    scopus 로고
    • R-VCANet: A new deep-learning-based hyperspectral image classification method
    • B. Pan, Z. Shi, and X. Xu, "R-VCANet: a new deep-learning-based hyperspectral image classification method," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(5), 1975-1986 (2017).
    • (2017) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.10 , Issue.5 , pp. 1975-1986
    • Pan, B.1    Shi, Z.2    Xu, X.3
  • 194
    • 85034983308 scopus 로고    scopus 로고
    • Benchmarking deep learning frameworks for the classification of very high resolution satellite multispectral data
    • M. Papadomanolaki et al., "Benchmarking deep learning frameworks for the classification of very high resolution satellite multispectral data," in ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 3, no. 7, pp. 83-88 (2016).
    • (2016) ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences , vol.3 , Issue.7 , pp. 83-88
    • Papadomanolaki, M.1
  • 195
    • 85011339638 scopus 로고    scopus 로고
    • Classification of remote sensed images using random forests and deep learning framework
    • 10004
    • S. Piramanayagam et al., "Classification of remote sensed images using random forests and deep learning framework," Proc. SPIE 10004, 100040L (2016).
    • (2016) Proc. SPIE , pp. 100040
    • Piramanayagam, S.1
  • 196
    • 85005808178 scopus 로고    scopus 로고
    • Object-oriented ensemble classification for polarimetric SAR imagery using restricted boltzmann machines
    • F. Qin, J. Guo, and W. Sun, "Object-oriented ensemble classification for polarimetric SAR imagery using restricted Boltzmann machines," Remote Sens. Lett. 8(3), 204-213 (2017).
    • (2017) Remote Sens. Lett. , vol.8 , Issue.3 , pp. 204-213
    • Qin, F.1    Guo, J.2    Sun, W.3
  • 197
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens. 46(4), 1231-1242 (2008).
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 198
    • 84907474375 scopus 로고    scopus 로고
    • Semisupervised hyperspectral classification using task-driven dictionary learning with laplacian regularization
    • Z. Wang, N. M. Nasrabadi, and T. S. Huang, "Semisupervised hyperspectral classification using task-driven dictionary learning with Laplacian regularization," IEEE Trans. Geosci. Remote Sens. 53(3), 1161-1173 (2015).
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1161-1173
    • Wang, Z.1    Nasrabadi, N.M.2    Huang, T.S.3
  • 199
    • 85007415863 scopus 로고    scopus 로고
    • Hyperspectral image classification using two-channel deep convolutional neural network
    • J. Yang et al., "Hyperspectral image classification using two-channel deep convolutional neural network," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 5079-5082 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 5079-5082
    • Yang, J.1
  • 200
    • 84994519156 scopus 로고    scopus 로고
    • Convolutional neural networks for hyperspectral image classification
    • S. Yu, S. Jia, and C. Xu, "Convolutional neural networks for hyperspectral image classification," Neurocomputing 219, 88-98 (2017).
    • (2017) Neurocomputing , vol.219 , pp. 88-98
    • Yu, S.1    Jia, S.2    Xu, C.3
  • 201
    • 84976347344 scopus 로고    scopus 로고
    • A deep learning framework for hyperspectral image classification using spatial pyramid pooling
    • J. Yue, S. Mao, and M. Li, "A deep learning framework for hyperspectral image classification using spatial pyramid pooling," Remote Sens. Lett. 7(9), 875-884 (2016).
    • (2016) Remote Sens. Lett. , vol.7 , Issue.9 , pp. 875-884
    • Yue, J.1    Mao, S.2    Li, M.3
  • 202
    • 84930423638 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
    • J. Yue et al., "Spectral-spatial classification of hyperspectral images using deep convolutional neural networks," Remote Sens. Lett. 6(6), 468-477 (2015).
    • (2015) Remote Sens. Lett. , vol.6 , Issue.6 , pp. 468-477
    • Yue, J.1
  • 203
    • 85007462360 scopus 로고    scopus 로고
    • Multilabel classification of UAV images with convolutional neural networks
    • IEEE
    • A. Zeggada and F. Melgani, "Multilabel classification of UAV images with convolutional neural networks," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 5083-5086, IEEE (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 5083-5086
    • Zeggada, A.1    Melgani, F.2
  • 204
    • 84945898896 scopus 로고    scopus 로고
    • Scene classification via a gradient boosting randomconvolutional network framework
    • F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting randomconvolutional network framework," IEEE Trans. Geosci. Remote Sens. 54(3), 1793-1802 (2016).
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 205
    • 85011966281 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery using a dualchannel convolutional neural network
    • H. Zhang et al., "Spectral-spatial classification of hyperspectral imagery using a dualchannel convolutional neural network," Remote Sens. Lett. 8(5), 438-447 (2017).
    • (2017) Remote Sens. Lett. , vol.8 , Issue.5 , pp. 438-447
    • Zhang, H.1
  • 206
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • W. Zhao and S. Du, "Learning multiscale and deep representations for classifying remotely sensed imagery," ISPRS J. Photogramm. Remote Sens. 113, 155-165 (2016).
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 207
    • 84967166415 scopus 로고    scopus 로고
    • Large patch convolutional neural networks for the scene classification of high spatial resolution imagery
    • Y. Zhong, F. Fei, and L. Zhang, "Large patch convolutional neural networks for the scene classification of high spatial resolution imagery," J. Appl. Remote Sens. 10(2), 025006 (2016).
    • (2016) J. Appl. Remote Sens. , vol.10 , Issue.2 , pp. 025006
    • Zhong, Y.1    Fei, F.2    Zhang, L.3
  • 208
    • 84994662729 scopus 로고    scopus 로고
    • SatCNN: Satellite image dataset classification using agile convolutional neural networks
    • Y. Zhong et al., "SatCNN: satellite image dataset classification using agile convolutional neural networks," Remote Sens. Lett. 8(2), 136-145 (2017).
    • (2017) Remote Sens. Lett. , vol.8 , Issue.2 , pp. 136-145
    • Zhong, Y.1
  • 209
    • 85007490436 scopus 로고    scopus 로고
    • Deep fusion of hyperspectral and LiDAR data for thematic classification
    • Y. Chen et al., "Deep fusion of hyperspectral and LiDAR data for thematic classification," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 3591-3594 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 3591-3594
    • Chen, Y.1
  • 210
    • 85007610585 scopus 로고    scopus 로고
    • Bands sensitive convolutional network for hyperspectral image classification
    • ACM
    • L. Ran et al., "Bands sensitive convolutional network for hyperspectral image classification," in Proc. of the Int. Conf. on Internet Multimedia Computing and Service, pp. 268-272, ACM (2016).
    • (2016) Proc. of the Int. Conf. on Internet Multimedia Computing and Service , pp. 268-272
    • Ran, L.1
  • 211
    • 84961344134 scopus 로고    scopus 로고
    • Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
    • J. Zabalza et al., "Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging," Neurocomputing 185, 1-10 (2016).
    • (2016) Neurocomputing , vol.185 , pp. 1-10
    • Zabalza, J.1
  • 212
    • 84984939548 scopus 로고    scopus 로고
    • Geological disaster recognition on optical remote sensing images using deep learning
    • Y. Liu and L. Wu, "Geological disaster recognition on optical remote sensing images using deep learning," Procedia Comput. Sci. 91, 566-575 (2016).
    • (2016) Procedia Comput. Sci. , vol.91 , pp. 566-575
    • Liu, Y.1    Wu, L.2
  • 213
    • 84867963090 scopus 로고    scopus 로고
    • Design of deep belief networks for short-term prediction of drought index using data in the huaihe river basin
    • J. Chen, Q. Jin, and J. Chao, "Design of deep belief networks for short-term prediction of drought index using data in the Huaihe river basin," Math. Prob. Eng. 2012, 235929 (2012).
    • (2012) Math. Prob. Eng. , vol.2012 , pp. 235929
    • Chen, J.1    Jin, Q.2    Chao, J.3
  • 214
    • 84889840127 scopus 로고    scopus 로고
    • A neural network-based estimate of the seasonal to inter-annual variability of the atlantic ocean carbon sink
    • P. Landschützer et al., "A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink," Biogeosciences 10(11), 7793-7815 (2013).
    • (2013) Biogeosciences , vol.10 , Issue.11 , pp. 7793-7815
    • Landschützer, P.1
  • 215
    • 85007504703 scopus 로고    scopus 로고
    • Cloud detection of remote sensing images by deep learning
    • IEEE
    • M. Shi et al., "Cloud detection of remote sensing images by deep learning," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 701-704, IEEE (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 701-704
    • Shi, M.1
  • 216
    • 84965121965 scopus 로고    scopus 로고
    • Convolutional LSTM network: A machine learning approach for precipitation nowcasting
    • C. Cortes et al., Eds., Curran Associates, Inc.
    • X. Shi et al., "Convolutional LSTM network: a machine learning approach for precipitation nowcasting," in Advances in Neural Information Processing Systems, C. Cortes et al., Eds., pp. 802-810, Curran Associates, Inc. (2015).
    • (2015) Advances in Neural Information Processing Systems , pp. 802-810
    • Shi, X.1
  • 217
    • 84925425713 scopus 로고    scopus 로고
    • Predicting geo-informative attributes in large-scale image collections using convolutional neural networks
    • S. Lee, H. Zhang, and D. J. Crandall, "Predicting geo-informative attributes in large-scale image collections using convolutional neural networks," in IEEE Winter Conf. on Applications of Computer Vision (WACV '15), pp. 550-557 (2015).
    • (2015) IEEE Winter Conf. on Applications of Computer Vision (WACV '15) , pp. 550-557
    • Lee, S.1    Zhang, H.2    Crandall, D.J.3
  • 218
    • 84946811871 scopus 로고    scopus 로고
    • Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks
    • Y. Kim and T. Moon, "Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks," IEEE Geosci. Remote Sens. Lett. 13(1), 1-5 (2015).
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.1 , pp. 1-5
    • Kim, Y.1    Moon, T.2
  • 220
    • 84971631219 scopus 로고    scopus 로고
    • Deep convolutional neural networks for pedestrian detection
    • D. Tomè et al., "Deep convolutional neural networks for pedestrian detection," Signal Process. Image Commun. 47, 482-489 (2016).
    • (2016) Signal Process. Image Commun. , vol.47 , pp. 482-489
    • Tomè, D.1
  • 221
    • 85007417752 scopus 로고    scopus 로고
    • A universal remote sensing image quality improvement method with deep learning
    • Y. Wei et al., "A universal remote sensing image quality improvement method with deep learning," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 6950-6953 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 6950-6953
    • Wei, Y.1
  • 222
    • 85010888144 scopus 로고    scopus 로고
    • Systematic infrared image quality improvement using deep learning based techniques
    • 10008
    • H. Zhang et al., "Systematic infrared image quality improvement using deep learning based techniques," Proc. SPIE 10008, 100080P (2016).
    • (2016) Proc. SPIE , pp. 100080
    • Zhang, H.1
  • 223
    • 85007451874 scopus 로고    scopus 로고
    • Using deep neural networks for synthetic aperture radar image registration
    • D. Quan et al., "Using deep neural networks for synthetic aperture radar image registration," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 2799-2802 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 2799-2802
    • Quan, D.1
  • 224
    • 84982237011 scopus 로고    scopus 로고
    • A self-improving convolution neural network for the classification of hyperspectral data
    • P. Ghamisi, Y. Chen, and X. X. Zhu, "A self-improving convolution neural network for the classification of hyperspectral data," IEEE Geosci. Remote Sens. Lett. 13(10), 1537-1541 (2016).
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.10 , pp. 1537-1541
    • Ghamisi, P.1    Chen, Y.2    Zhu, X.X.3
  • 225
    • 85007439465 scopus 로고    scopus 로고
    • Deep learning approach for large scale land cover mapping based on remote sensing data fusion
    • IEEE
    • N. Kussul et al., "Deep learning approach for large scale land cover mapping based on remote sensing data fusion," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 198-201, IEEE (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 198-201
    • Kussul, N.1
  • 226
    • 84993997577 scopus 로고    scopus 로고
    • Stacked autoencoder-based deep learning for remote-sensing image classification: A case study of african land-cover mapping
    • W. Li et al., "Stacked autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping," Int. J. Remote Sens. 37(23), 5632-5646 (2016).
    • (2016) Int. J. Remote Sens. , vol.37 , Issue.23 , pp. 5632-5646
    • Li, W.1
  • 227
    • 85007496315 scopus 로고    scopus 로고
    • Terrain classification with polarimetric SAR based on deep sparse filtering network
    • H. Liu et al., "Terrain classification with polarimetric SAR based on deep sparse filtering network," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 64-67 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 64-67
    • Liu, H.1
  • 228
    • 84962569483 scopus 로고    scopus 로고
    • Deep supervised learning for hyper-spectral data classification through convolutional neural networks
    • K. Makantasis et al., "Deep supervised learning for hyper-spectral data classification through convolutional neural networks," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pp. 4959-4962 (2015).
    • (2015) IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS) , pp. 4959-4962
    • Makantasis, K.1
  • 230
    • 85028158057 scopus 로고    scopus 로고
    • Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images
    • G. Cheng et al., "Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images," IEEE Trans. Geosci. Remote Sens. 53(8), 4238-4249 (2015).
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.8 , pp. 4238-4249
    • Cheng, G.1
  • 231
    • 84947868906 scopus 로고    scopus 로고
    • Multiview deep learning for land-use classification
    • F. P. S. Luus et al., "Multiview deep learning for land-use classification," IEEE Geosci. Remote Sens. Lett. 12(12), 2448-2452 (2015).
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.12 , pp. 2448-2452
    • Luus, F.P.S.1
  • 232
    • 84939208923 scopus 로고    scopus 로고
    • Urban land use and land cover classification using remotely sensed SAR data through deep belief networks
    • Q. Lv et al., "Urban land use and land cover classification using remotely sensed SAR data through deep belief networks," J. Sens. 2015, 1-10 (2015).
    • (2015) J. Sens. , vol.2015 , pp. 1-10
    • Lv, Q.1
  • 233
    • 84988038682 scopus 로고    scopus 로고
    • Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning
    • X. Ma, H. Wang, and J. Wang, "Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning," ISPRS J. Photogramm. Remote Sens. 120, 99-107 (2016).
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.120 , pp. 99-107
    • Ma, X.1    Wang, H.2    Wang, J.3
  • 235
    • 84978388572 scopus 로고    scopus 로고
    • Using convolutional features and a sparse autoencoder for land-use scene classification
    • E. Othman et al., "Using convolutional features and a sparse autoencoder for land-use scene classification," Int. J. Remote Sens. 37(10), 2149-2167 (2016).
    • (2016) Int. J. Remote Sens. , vol.37 , Issue.10 , pp. 2149-2167
    • Othman, E.1
  • 237
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • A. Romero, C. Gatta, and G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification," IEEE Trans. Geosci. Remote Sens. 54(3), 1349-1362 (2016).
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 238
    • 85007467133 scopus 로고    scopus 로고
    • Active learning based autoencoder for hyperspectral imagery classification
    • Y. Sun et al., "Active learning based autoencoder for hyperspectral imagery classification," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 469-472 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 469-472
    • Sun, Y.1
  • 240
    • 84945964878 scopus 로고    scopus 로고
    • 3D object recognition using convolutional neural networks with transfer learning between input channels
    • Springer International
    • L. Alexandre, "3D object recognition using convolutional neural networks with transfer learning between input channels," in 13th Int. Conf. on Intelligent Autonomous Systems, pp. 889-898, Springer International (2016).
    • (2016) 13th Int. Conf. on Intelligent Autonomous Systems , pp. 889-898
    • Alexandre, L.1
  • 242
    • 84965102370 scopus 로고    scopus 로고
    • 3D object proposals for accurate object class detection
    • C. Cortes et al., Eds., Curran Associates, Inc.
    • X. Chen and Y. Zhu, "3D object proposals for accurate object class detection," in Advances in Neural Information Processing Systems, C. Cortes et al., Eds., pp. 424-432, Curran Associates, Inc. (2015).
    • (2015) Advances in Neural Information Processing Systems , pp. 424-432
    • Chen, X.1    Zhu, Y.2
  • 243
    • 85027047340 scopus 로고    scopus 로고
    • Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
    • G. Cheng, P. Zhou, and J. Han, "Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images," IEEE Trans. Geosci. Remote Sens. 54(12), 7405-7415 (2016).
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.12 , pp. 7405-7415
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 245
    • 84940765932 scopus 로고    scopus 로고
    • Object recognition in remote sensing images using sparse deep belief networks
    • W. Diao et al., "Object recognition in remote sensing images using sparse deep belief networks," Remote Sens. Lett. 6(10), 745-754 (2015).
    • (2015) Remote Sens. Lett. , vol.6 , Issue.10 , pp. 745-754
    • Diao, W.1
  • 246
  • 249
    • 84997282964 scopus 로고    scopus 로고
    • Shape-based object extraction in high-resolution remote-sensing images using deep boltzmann machine
    • Q. Wu et al., "Shape-based object extraction in high-resolution remote-sensing images using deep Boltzmann machine," Int. J. Remote Sens. 37(24), 6012-6022 (2016).
    • (2016) Int. J. Remote Sens. , vol.37 , Issue.24 , pp. 6012-6022
    • Wu, Q.1
  • 252
    • 84993982662 scopus 로고    scopus 로고
    • Pansharpening by convolutional neural networks
    • G. Masi et al., "Pansharpening by convolutional neural networks," Remote Sens. 8(7), 594 (2016).
    • (2016) Remote Sens. , vol.8 , Issue.7 , pp. 594
    • Masi, G.1
  • 253
    • 85027937409 scopus 로고    scopus 로고
    • A new pan-sharpening method with deep neural networks
    • W. Huang et al., "A new pan-sharpening method with deep neural networks," IEEE Geosci. Remote Sens. Lett. 12(5), 1037-1041 (2015).
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.5 , pp. 1037-1041
    • Huang, W.1
  • 254
    • 84952810861 scopus 로고    scopus 로고
    • Automated detection of impact craters and volcanic rootless cones in mars satellite imagery using convolutional neural networks and support vector machines
    • L. Palafox, A. Alvarez, and C. Hamilton, "Automated detection of impact craters and volcanic rootless cones in mars satellite imagery using convolutional neural networks and support vector machines," in 46th Lunar and Planetary Science Conf., pp. 1-2 (2015).
    • (2015) 46th Lunar and Planetary Science Conf. , pp. 1-2
    • Palafox, L.1    Alvarez, A.2    Hamilton, C.3
  • 255
    • 85009807662 scopus 로고    scopus 로고
    • Plant identification using deep neural networks via optimization of transfer learning parameters
    • M. M. Ghazi, B. Yanikoglu, and E. Aptoula, "Plant identification using deep neural networks via optimization of transfer learning parameters," Neurocomputing 235, 228-235 (2017).
    • (2017) Neurocomputing , vol.235 , pp. 228-235
    • Ghazi, M.M.1    Yanikoglu, B.2    Aptoula, E.3
  • 256
    • 84942588784 scopus 로고    scopus 로고
    • Deep learning-based tree classification using mobile LiDAR data
    • H. Guan et al., "Deep learning-based tree classification using mobile LiDAR data," Remote Sens. Lett. 6(11), 864-873 (2015).
    • (2015) Remote Sens. Lett. , vol.6 , Issue.11 , pp. 864-873
    • Guan, H.1
  • 257
    • 0037696635 scopus 로고    scopus 로고
    • Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn
    • P. K. Goel et al., "Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn," Comput. Electron. Agric. 39(2), 67-93 (2003).
    • (2003) Comput. Electron. Agric. , vol.39 , Issue.2 , pp. 67-93
    • Goel, P.K.1
  • 259
    • 84994176955 scopus 로고    scopus 로고
    • Augmenting a convolutional neural network with local histograms-A case study in crop classification from high-resolution UAV imagery
    • J. Rebetez et al., "Augmenting a convolutional neural network with local histograms-a case study in crop classification from high-resolution UAV imagery," in European Symp. on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 515-520 (2016).
    • (2016) European Symp. on Artificial Neural Networks, Computational Intelligence and Machine Learning , pp. 515-520
    • Rebetez, J.1
  • 260
    • 84978378744 scopus 로고    scopus 로고
    • Deep neural networks based recognition of plant diseases by leaf image classification
    • S. Sladojevic et al., "Deep neural networks based recognition of plant diseases by leaf image classification," Comput. Intell. Neurosci. 2016, 1-11 (2016).
    • (2016) Comput. Intell. Neurosci. , vol.2016 , pp. 1-11
    • Sladojevic, S.1
  • 262
    • 85007453563 scopus 로고    scopus 로고
    • Road network extraction via deep learning and line integral convolution
    • IEEE
    • P. Li et al., "Road network extraction via deep learning and line integral convolution," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 1599-1602, IEEE (2016).
    • (2016) IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 1599-1602
    • Li, P.1
  • 264
    • 84934294672 scopus 로고    scopus 로고
    • Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine
    • J. Wang et al., "Road network extraction: a neural-dynamic framework based on deep learning and a finite state machine," Int. J. Remote Sens. 36(12), 3144-3169 (2015).
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.12 , pp. 3144-3169
    • Wang, J.1
  • 266
    • 85028232652 scopus 로고    scopus 로고
    • Automated extraction of urban road manhole covers using mobile laser scanning data
    • Y. Yu, H. Guan, and Z. Ji, "Automated extraction of urban road manhole covers using mobile laser scanning data," IEEE Trans. Intell. Transp. Syst. 16(4), 2167-2181 (2015).
    • (2015) IEEE Trans. Intell. Transp. Syst. , vol.16 , Issue.4 , pp. 2167-2181
    • Yu, Y.1    Guan, H.2    Ji, Z.3
  • 267
    • 85007429390 scopus 로고    scopus 로고
    • Fully convolutional networks for building and road extraction: Preliminary results
    • Z. Zhong et al., "Fully convolutional networks for building and road extraction: preliminary results," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 1591-1594 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 1591-1594
    • Zhong, Z.1
  • 268
    • 67649219352 scopus 로고    scopus 로고
    • Learning long-range vision for autonomous off-road driving
    • R. Hadsell et al., "Learning long-range vision for autonomous off-road driving," J. Field Rob. 26(2), 120-144 (2009).
    • (2009) J. Field Rob. , vol.26 , Issue.2 , pp. 120-144
    • Hadsell, R.1
  • 269
    • 85007436568 scopus 로고    scopus 로고
    • Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis
    • IEEE
    • L. Mou and X. X. Zhu, "Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 1823-1826, IEEE (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 1823-1826
    • Mou, L.1    Zhu, X.X.2
  • 270
    • 84944068115 scopus 로고    scopus 로고
    • Scene recognition by manifold regularized deep learning architecture
    • Y. Yuan, L. Mou, and X. Lu, "Scene recognition by manifold regularized deep learning architecture," IEEE Trans. Neural Networks Learn. Syst. 26(10), 2222-2233 (2015).
    • (2015) IEEE Trans. Neural Networks Learn. Syst. , vol.26 , Issue.10 , pp. 2222-2233
    • Yuan, Y.1    Mou, L.2    Lu, X.3
  • 275
    • 84962489522 scopus 로고    scopus 로고
    • Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks
    • A. Lagrange et al., "Benchmarking classification of earth-observation data: from learning explicit features to convolutional networks," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '15), pp. 4173-4176 (2015).
    • (2015) IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '15) , pp. 4173-4176
    • Lagrange, A.1
  • 276
    • 84949921276 scopus 로고    scopus 로고
    • Deep learning earth observation classification using ImageNet pretrained networks
    • D. Marmanis et al., "Deep learning earth observation classification using ImageNet pretrained networks," IEEE Geosci. Remote Sens. Lett. 13(1), 105-109 (2016).
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.1 , pp. 105-109
    • Marmanis, D.1
  • 281
    • 84869762769 scopus 로고    scopus 로고
    • Deep learning in very high resolution remote sensing image information mining communication concept
    • IEEE
    • C. Vaduva, I. Gavat, and M. Datcu, "Deep learning in very high resolution remote sensing image information mining communication concept," in Proc. of the 20th European Signal Processing Conf. (EUSIPCO '12), pp. 2506-2510, IEEE (2012).
    • (2012) Proc. of the 20th European Signal Processing Conf. (EUSIPCO '12) , pp. 2506-2510
    • Vaduva, C.1    Gavat, I.2    Datcu, M.3
  • 282
    • 84994217941 scopus 로고    scopus 로고
    • Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks
    • M. Volpi and D. Tuia, "Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks," IEEE Trans. Geosci. Remote Sens. 55(2), 881-893 (2017).
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.2 , pp. 881-893
    • Volpi, M.1    Tuia, D.2
  • 284
    • 85007496775 scopus 로고    scopus 로고
    • CRF learning with CNN features for hyperspectral image segmentation
    • F. I. Alam et al., "CRF learning with CNN features for hyperspectral image segmentation," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 6890-6893 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 6890-6893
    • Alam, F.I.1
  • 285
    • 85007500060 scopus 로고    scopus 로고
    • How useful is region-based classification of remote sensing images in a deep learning framework?
    • N. Audebert, B. L. Saux, and S. Lefèvre, "How useful is region-based classification of remote sensing images in a deep learning framework?" in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 5091-5094 (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 5091-5094
    • Audebert, N.1    Saux, B.L.2    Lefèvre, S.3
  • 286
    • 84962719370 scopus 로고    scopus 로고
    • A supervised hierarchical segmentation of remote-sensing images using a committee of multi-scale convolutional neural networks
    • E. Basaeed et al., "A supervised hierarchical segmentation of remote-sensing images using a committee of multi-scale convolutional neural networks," Int. J. Remote Sens. 37(7), 1671-1691 (2016).
    • (2016) Int. J. Remote Sens. , vol.37 , Issue.7 , pp. 1671-1691
    • Basaeed, E.1
  • 287
    • 84961217641 scopus 로고    scopus 로고
    • Supervised remote sensing image segmentation using boosted convolutional neural networks
    • E. Basaeed, H. Bhaskar, and M. Al-Mualla, "Supervised remote sensing image segmentation using boosted convolutional neural networks," Knowl. Based Syst. 99, 19-27 (2016).
    • (2016) Knowl. Based Syst. , vol.99 , pp. 19-27
    • Basaeed, E.1    Bhaskar, H.2    Al-Mualla, M.3
  • 289
    • 84962609582 scopus 로고    scopus 로고
    • Deep hierarchical representation and segmentation of high resolution remote sensing images
    • J. Wang et al., "Deep hierarchical representation and segmentation of high resolution remote sensing images," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '15), pp. 4320-4323 (2015).
    • (2015) IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '15) , pp. 4320-4323
    • Wang, J.1
  • 290
    • 85007489737 scopus 로고    scopus 로고
    • Very deep learning for ship discrimination in synthetic aperture radar imagery
    • IEEE
    • C. P. Schwegmann et al., "Very deep learning for ship discrimination in synthetic aperture radar imagery," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 104-107, IEEE (2016).
    • (2016) IEEE Geoscience and Remote Sensing Symp. (IGARSS '16) , pp. 104-107
    • Schwegmann, C.P.1
  • 291
    • 84907463801 scopus 로고    scopus 로고
    • Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
    • J. Tang et al., "Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine," IEEE Trans. Geosci. Remote Sens. 53(3), 1174-1185 (2015).
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1174-1185
    • Tang, J.1
  • 293
    • 84906509108 scopus 로고    scopus 로고
    • Deep network cascade for image super-resolution
    • Z. Cui et al., "Deep network cascade for image super-resolution," Lect. Notes Comput. Sci. 8693, 49-64 (2014).
    • (2014) Lect. Notes Comput. Sci. , vol.8693 , pp. 49-64
    • Cui, Z.1
  • 294
    • 84962128851 scopus 로고    scopus 로고
    • Image super-resolution using deep convolutional networks
    • C. Dong et al., "Image super-resolution using deep convolutional networks," IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295-307 (2016).
    • (2016) IEEE Trans. Pattern Anal. Mach. Intell. , vol.38 , Issue.2 , pp. 295-307
    • Dong, C.1
  • 295
    • 85016967048 scopus 로고    scopus 로고
    • Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived SST data
    • A. Ducournau and R. Fablet, "Deep learning for ocean remote sensing: an application of convolutional neural networks for super-resolution on satellite-derived SST data," in 9th Workshop on Pattern Recognition in Remote Sensing (2016).
    • (2016) 9th Workshop on Pattern Recognition in Remote Sensing
    • Ducournau, A.1    Fablet, R.2
  • 296
    • 84978081674 scopus 로고    scopus 로고
    • Single-image super resolution for multispectral remote sensing data using convolutional neural networks
    • L. Liebel and M. Körner, "Single-image super resolution for multispectral remote sensing data using convolutional neural networks," in XXIII ISPRS Congress Proc., pp. 883-890 (2016).
    • (2016) XXIII ISPRS Congress Proc. , pp. 883-890
    • Liebel, L.1    Körner, M.2
  • 297
    • 84907500988 scopus 로고    scopus 로고
    • Deep architecture for traffic flow prediction: Deep belief networks with multitask learning
    • W. Huang et al., "Deep architecture for traffic flow prediction: deep belief networks with multitask learning," IEEE Trans. Intell. Transp. Syst. 15(5), 2191-2201 (2014).
    • (2014) IEEE Trans. Intell. Transp. Syst. , vol.15 , Issue.5 , pp. 2191-2201
    • Huang, W.1
  • 298
    • 85027926799 scopus 로고    scopus 로고
    • Traffic flow prediction with big data: A deep learning approach
    • Y. Lv et al., "Traffic flow prediction with big data: a deep learning approach," IEEE Trans. Intell. Transp. Syst. 16(2), 865-873 (2015).
    • (2015) IEEE Trans. Intell. Transp. Syst. , vol.16 , Issue.2 , pp. 865-873
    • Lv, Y.1
  • 300
    • 84949678222 scopus 로고    scopus 로고
    • DeepFish: Accurate underwater live fish recognition with a deep architecture
    • H. Qin et al., "DeepFish: accurate underwater live fish recognition with a deep architecture," Neurocomputing 187, 49-58 (2016).
    • (2016) Neurocomputing , vol.187 , pp. 49-58
    • Qin, H.1
  • 301
    • 85032863582 scopus 로고    scopus 로고
    • When underwater imagery analysis meets deep learning: A solution at the age of big visual data
    • H. Qin et al., "When underwater imagery analysis meets deep learning: a solution at the age of big visual data," in 7th Int. Symp. on Image and Signal Processing and Analysis (ISPA '15), pp. 259-264 (2015).
    • (2015) 7th Int. Symp. on Image and Signal Processing and Analysis (ISPA '15) , pp. 259-264
    • Qin, H.1
  • 302
    • 85006848531 scopus 로고    scopus 로고
    • Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks
    • D. P. Williams, "Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks," in Proc. 23rd Int. Conf. on Pattern Recognition (ICPR) (2016).
    • (2016) Proc. 23rd Int. Conf. on Pattern Recognition (ICPR)
    • Williams, D.P.1
  • 306
    • 85007496838 scopus 로고    scopus 로고
    • Building extraction from multi-source remote sensing images via deep deconvolution neural networks
    • IEEE
    • Z. Huang et al., "Building extraction from multi-source remote sensing images via deep deconvolution neural networks," in Geoscience and Remote Sensing Symp. (IGARSS), pp. 1835-1838, IEEE (2016).
    • (2016) Geoscience and Remote Sensing Symp. (IGARSS) , pp. 1835-1838
    • Huang, Z.1
  • 308
    • 84926617496 scopus 로고    scopus 로고
    • Building and road detection from large aerial imagery
    • S. Saito and Y. Aoki, "Building and road detection from large aerial imagery," Proc. SPIE 9405, 94050K (2015).
    • (2015) Proc. SPIE , vol.9405 , pp. 94050
    • Saito, S.1    Aoki, Y.2
  • 309
    • 84962523390 scopus 로고    scopus 로고
    • Building detection in very high resolution multispectral data with deep learning features
    • M. Vakalopoulou et al., "Building detection in very high resolution multispectral data with deep learning features," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2015), pp. 1873-1876 (2015).
    • (2015) IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2015) , pp. 1873-1876
    • Vakalopoulou, M.1
  • 311
    • 84979608665 scopus 로고    scopus 로고
    • Classification of urban aerial data based on pixel labelling with deep convolutional neural networks and logistic regression
    • W. Yao, P. Poleswki, and P. Krzystek, "Classification of urban aerial data based on pixel labelling with deep convolutional neural networks and logistic regression," Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B7, 405-410 (2016).
    • (2016) Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. , vol.XLI-B7 , pp. 405-410
    • Yao, W.1    Poleswki, P.2    Krzystek, P.3
  • 312
    • 85007492103 scopus 로고    scopus 로고
    • CNN based suburban building detection using monocular high resolution google earth images
    • IEEE
    • Q. Zhang et al., "CNN based suburban building detection using monocular high resolution Google Earth images," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2016), pp. 661-664, IEEE (2016).
    • (2016) IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2016) , pp. 661-664
    • Zhang, Q.1
  • 313
    • 85007448558 scopus 로고    scopus 로고
    • A CNN based functional zone classification method for aerial images
    • IEEE
    • Z. Zhang et al., "A CNN based functional zone classification method for aerial images," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2016), pp. 5449-5452, IEEE (2016).
    • (2016) IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2016) , pp. 5449-5452
    • Zhang, Z.1
  • 314
    • 84978805832 scopus 로고    scopus 로고
    • Robust vehicle detection by combining deep features with exemplar classification
    • L. Cao et al., "Robust vehicle detection by combining deep features with exemplar classification," Neurocomputing 215, 225-231 (2016).
    • (2016) Neurocomputing , vol.215 , pp. 225-231
    • Cao, L.1
  • 315
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • X. Chen et al., "Vehicle detection in satellite images by hybrid deep convolutional neural networks," IEEE Geosci. Remote Sens. Lett. 11(10), 1797-1801 (2014).
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1
  • 316
    • 85032860578 scopus 로고    scopus 로고
    • A novel vehicle classification model for urban traffic surveillance using the deep neural network model
    • K. Goyal and D. Kaur, "A novel vehicle classification model for urban traffic surveillance using the deep neural network model," Int. J. Educ. Manage. Eng. 6(1), 18-31 (2016).
    • (2016) Int. J. Educ. Manage. Eng. , vol.6 , Issue.1 , pp. 18-31
    • Goyal, K.1    Kaur, D.2
  • 317
  • 318
    • 85006833221 scopus 로고    scopus 로고
    • Vehicle detection in urban point clouds with orthogonal-view convolutional neural network
    • J. Huang and S. You, "Vehicle detection in urban point clouds with orthogonal-view convolutional neural network," in 2016 IEEE Int. Conf. on Image Processing (ICIP), pp. 2593-2597 (2016).
    • (2016) 2016 IEEE Int. Conf. on Image Processing (ICIP) , pp. 2593-2597
    • Huang, J.1    You, S.2
  • 320
    • 84962248343 scopus 로고    scopus 로고
    • Deep neural networks-based vehicle detection in satellite images
    • IEEE
    • Q. Jiang et al., "Deep neural networks-based vehicle detection in satellite images," in Int. Symp. on Bioelectronics and Bioinformatics (ISBB), pp. 184-187, IEEE (2015).
    • (2015) Int. Symp. on Bioelectronics and Bioinformatics (ISBB) , pp. 184-187
    • Jiang, Q.1
  • 323
    • 84983341548 scopus 로고    scopus 로고
    • Online vehicle detection using deep neural networks and lidar based preselected image patches
    • S. Lange, F. Ulbrich, and D. Goehring, "Online vehicle detection using deep neural networks and lidar based preselected image patches," in Proc. IEEE Intelligent Vehicles Symp., pp. 954-959 (2016).
    • (2016) Proc. IEEE Intelligent Vehicles Symp. , pp. 954-959
    • Lange, S.1    Ulbrich, F.2    Goehring, D.3
  • 325
    • 84901815784 scopus 로고    scopus 로고
    • A vehicle detection algorithm based on deep belief network
    • H. Wang, Y. Cai, and L. Chen, "A vehicle detection algorithm based on deep belief network," Sci. World J. 2014, 647380 (2014).
    • (2014) Sci. World J. , vol.2014 , pp. 647380
    • Wang, H.1    Cai, Y.2    Chen, L.3
  • 326
    • 84983287336 scopus 로고    scopus 로고
    • Appearance-based brake-lights recognition using deep learning and vehicle detection
    • IEEE
    • J.-G. Wang et al., "Appearance-based brake-lights recognition using deep learning and vehicle detection," in Intelligent Vehicles Symp., pp. 815-820, IEEE (2016).
    • (2016) Intelligent Vehicles Symp. , pp. 815-820
    • Wang, J.-G.1
  • 327
    • 84953270625 scopus 로고    scopus 로고
    • Night-time vehicle sensing in far infrared image with deep learning
    • H. Wang et al., "Night-time vehicle sensing in far infrared image with deep learning," J. Sens. 2016, 3403451 (2015).
    • (2015) J. Sens. , vol.2016 , pp. 3403451
    • Wang, H.1
  • 329
    • 70350618080 scopus 로고    scopus 로고
    • Cyclone track forecasting based on satellite images using artificial neural networks
    • R. Kovordányi and C. Roy, "Cyclone track forecasting based on satellite images using artificial neural networks," ISPRS J. Photogramm. Remote Sens. 64(6), 513-521 (2009).
    • (2009) ISPRS J. Photogramm. Remote Sens. , vol.64 , Issue.6 , pp. 513-521
    • Kovordányi, R.1    Roy, C.2
  • 330
    • 84954059623 scopus 로고    scopus 로고
    • Improved cloud phase retrieval approaches for China's FY-3A/VIRR multi-channel data using artificial neural networks
    • C. Yang and J. Guo, "Improved cloud phase retrieval approaches for China's FY-3A/VIRR multi-channel data using artificial neural networks," Optik 127(4), 1797-1803 (2016).
    • (2016) Optik , vol.127 , Issue.4 , pp. 1797-1803
    • Yang, C.1    Guo, J.2
  • 331
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on deep belief network
    • Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 2381-2392 (2015).
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.8 , Issue.6 , pp. 2381-2392
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 332
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • J. M. P. Nascimento and J. M. B. Dias, "Vertex component analysis: a fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens. 43(4), 898-910 (2005).
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 333
    • 84959533227 scopus 로고    scopus 로고
    • PCANet: A simple deep learning baseline for image classification?
    • T. H. Chan et al., "PCANet: a simple deep learning baseline for image classification?," IEEE Trans. Image Process. 24(12), 5017-5032 (2015).
    • (2015) IEEE Trans. Image Process , vol.24 , Issue.12 , pp. 5017-5032
    • Chan, T.H.1
  • 334
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Y. Chen et al., "Deep feature extraction and classification of hyperspectral images based on convolutional neural networks," IEEE Trans. Geosci. Remote Sens. 54(10), 6232-6251 (2016).
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1
  • 335
    • 84906332834 scopus 로고    scopus 로고
    • DeCAF: A deep convolutional activation feature for generic visual recognition
    • J. Donahue et al., "DeCAF: a deep convolutional activation feature for generic visual recognition," ICML 32, 647-655 (2014).
    • (2014) ICML , vol.32 , pp. 647-655
    • Donahue, J.1
  • 336
    • 85011277882 scopus 로고    scopus 로고
    • CNN-based object segmentation in urban lidar with missing points
    • IEEE
    • A. Zelener and I. Stamos, "CNN-based object segmentation in urban lidar with missing points," in Fourth Int. Conf. on 3D Vision (3DV), pp. 417-425, IEEE (2016).
    • (2016) Fourth Int. Conf. on 3D Vision (3DV) , pp. 417-425
    • Zelener, A.1    Stamos, I.2
  • 338
    • 84906274934 scopus 로고    scopus 로고
    • Hyperspectral band selection based on the aggregation of proximity measures for automated target detection
    • J. E. Ball, D. T. Anderson, and S. Samiappan, "Hyperspectral band selection based on the aggregation of proximity measures for automated target detection," Proc. SPIE 9088, 908814 (2014).
    • (2014) Proc. SPIE , vol.9088 , pp. 908814
    • Ball, J.E.1    Anderson, D.T.2    Samiappan, S.3
  • 339
    • 56749172068 scopus 로고    scopus 로고
    • Level set hyperspectral image classification using best band analysis
    • J. E. Ball and L. M. Bruce, "Level set hyperspectral image classification using best band analysis," IEEE Trans. Geosci. Remote Sens. 45(10), 3022-3027 (2007).
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3022-3027
    • Ball, J.E.1    Bruce, L.M.2
  • 340
    • 78650919905 scopus 로고    scopus 로고
    • Level set hyperspectral image segmentation using spectral information divergence-based best band selection
    • IEEE
    • J. E. Ball et al., "Level set hyperspectral image segmentation using spectral information divergence-based best band selection," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2007), pp. 4053-4056, IEEE (2007).
    • (2007) IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2007) , pp. 4053-4056
    • Ball, J.E.1
  • 341
    • 84864740145 scopus 로고    scopus 로고
    • Spectral unmixing cluster validity index for multiple sets of endmembers
    • D. T. Anderson and A. Zare, "Spectral unmixing cluster validity index for multiple sets of endmembers," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(4), 1282-1295 (2012).
    • (2012) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.5 , Issue.4 , pp. 1282-1295
    • Anderson, D.T.1    Zare, A.2
  • 342
    • 0034432355 scopus 로고    scopus 로고
    • Comparison of approaches for determining end-members in hyperspectral data
    • IEEE
    • M. E. Winter, "Comparison of approaches for determining end-members in hyperspectral data," in Aerospace Conf. Proc., pp. 305-313, IEEE (2000).
    • (2000) Aerospace Conf. Proc. , pp. 305-313
    • Winter, M.E.1
  • 345
    • 34547226008 scopus 로고    scopus 로고
    • Hyperspectral pixel unmixing via spectral band selection and DC-insensitive singular value decomposition
    • J. E. Ball, L. M. Bruce, and N. H. Younan, "Hyperspectral pixel unmixing via spectral band selection and DC-insensitive singular value decomposition," IEEE Geosci. Remote Sens. Lett. 4(3), 382-386 (2007).
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.3 , pp. 382-386
    • Ball, J.E.1    Bruce, L.M.2    Younan, N.H.3
  • 346
    • 0031105739 scopus 로고    scopus 로고
    • Introduction neural networks in remote sensing
    • P. M. Atkinson and A. Tatnall, "Introduction neural networks in remote sensing," Int. J. Remote Sens. 18(4), 699-709 (1997).
    • (1997) Int. J. Remote Sens. , vol.18 , Issue.4 , pp. 699-709
    • Atkinson, P.M.1    Tatnall, A.2
  • 347
    • 84939177511 scopus 로고    scopus 로고
    • On understanding big data impacts in remotely sensed image classification using support vector machine methods
    • G. Cavallaro et al., "On understanding big data impacts in remotely sensed image classification using support vector machine methods," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(10), 4634-4646 (2015).
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.8 , Issue.10 , pp. 4634-4646
    • Cavallaro, G.1
  • 348
  • 349
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines: A review
    • G. Huang et al., "Trends in extreme learning machines: a review," Neural Networks 61, 32-48 (2015).
    • (2015) Neural Networks , vol.61 , pp. 32-48
    • Huang, G.1
  • 350
    • 84874545698 scopus 로고    scopus 로고
    • Feature mining for hyperspectral image classification
    • X. Jia, B.-C. Kuo, and M. M. Crawford, "Feature mining for hyperspectral image classification," Proc. IEEE 101(3), 676-697 (2013).
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 676-697
    • Jia, X.1    Kuo, B.-C.2    Crawford, M.M.3
  • 351
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • D. Lu and Q. Weng, "A survey of image classification methods and techniques for improving classification performance," Int. J. Remote Sens. 28(5), 823-870 (2007).
    • (2007) Int. J. Remote Sens. , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 353
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ. 113, S110-S122 (2009).
    • (2009) Remote Sens. Environ. , vol.113 , pp. S110-S122
    • Plaza, A.1
  • 354
    • 85014972207 scopus 로고    scopus 로고
    • A review of road extraction from remote sensing images
    • W. Wang et al., "A review of road extraction from remote sensing images," J. Traffic Transp. Eng. 3(3), 271-282 (2016).
    • (2016) J. Traffic Transp. Eng. , vol.3 , Issue.3 , pp. 271-282
    • Wang, W.1
  • 355
    • 85017874614 scopus 로고    scopus 로고
    • (20 November)
    • "IEEE GRSS data fusion contest," http://www.grss-ieee.org/community/technicalcommittees/data-fusion/ (20 November 2016).
    • (2016) IEEE GRSS Data Fusion Contest
  • 356
    • 85032872209 scopus 로고    scopus 로고
    • (20 November)
    • "Indian Pines dataset," http://dynamo.ecn.purdue.edu/biehl/MultiSpec (20 November 2016).
    • (2016) Indian Pines Dataset
  • 357
    • 85032873209 scopus 로고    scopus 로고
    • (20 November)
    • "Kennedy Space Center," http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral-Remote-Sensing-Scenes#Kennedy-Space-Center-.28KSC.29 (20 November 2016).
    • (2016) Kennedy Space Center
  • 358
    • 85032873309 scopus 로고    scopus 로고
    • (20 November)
    • "Pavia dataset," http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral-Remote-Sensing-Scenes#Pavia-Centre-and-University (20 November 2016).
    • (2016) Pavia Dataset
  • 359
    • 85032864780 scopus 로고    scopus 로고
    • (20 November)
    • "Salinas dataset," http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral-Remote-Sensing-Scenes#Salinas (20 November 2016).
    • (2016) Salinas Dataset
  • 360
    • 85032874466 scopus 로고    scopus 로고
    • (20 November)
    • "Washington DC Mall," https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html (20 November 2016).
    • (2016) Washington DC Mall
  • 361
    • 84961970561 scopus 로고    scopus 로고
    • A survey on object detection in optical remote sensing images
    • G. Cheng and J. Han, "A survey on object detection in optical remote sensing images," ISPRS J. Photogramm. Remote Sens. 117, 11-28 (2016).
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.117 , pp. 11-28
    • Cheng, G.1    Han, J.2
  • 362
    • 84905925092 scopus 로고    scopus 로고
    • Deep learning-based classification of hyperspectral data
    • Y. Chen et al., "Deep learning-based classification of hyperspectral data," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2094-2107 (2014).
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.7 , Issue.6 , pp. 2094-2107
    • Chen, Y.1
  • 363
    • 84962910954 scopus 로고    scopus 로고
    • Hyperspectral image classification with convolutional neural networks
    • ACM
    • V. Slavkovikj et al., "Hyperspectral image classification with convolutional neural networks," in Proc. of the 23rd ACM Int. Conf. on Multimedia, pp. 1159-1162, ACM (2015).
    • (2015) Proc. of the 23rd ACM Int. Conf. on Multimedia , pp. 1159-1162
    • Slavkovikj, V.1
  • 364
    • 84947865496 scopus 로고    scopus 로고
    • Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
    • C. Tao et al., "Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification," IEEE Geosci. Remote Sens. Lett. 12(12), 2438-2442 (2015).
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.12 , pp. 2438-2442
    • Tao, C.1
  • 365
    • 84867711674 scopus 로고    scopus 로고
    • Learning invariant feature hierarchies
    • Springer
    • Y. LeCun, "Learning invariant feature hierarchies," in Computer Vision (ECCV 2012), pp. 496-505, Springer (2012).
    • (2012) Computer Vision (ECCV 2012) , pp. 496-505
    • LeCun, Y.1
  • 366
    • 85007613389 scopus 로고    scopus 로고
    • Kernel methods in remote sensing: A review
    • M. Pal, "Kernel methods in remote sensing: a review," ISH J. Hydraul. Eng. 15(Suppl. 1), 194-215 (2009).
    • (2009) ISH J. Hydraul. Eng. , vol.15 , pp. 194-215
    • Pal, M.1
  • 367
    • 46349084770 scopus 로고    scopus 로고
    • The application of remote sensing techniques to sugarcane (Saccharum spp. Hybrid) production: A review of the literature
    • E. M. Abdel-Rahman and F. B. Ahmed, "The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature," Int. J. Remote Sens. 29(13), 3753-3767 (2008).
    • (2008) Int. J. Remote Sens. , vol.29 , Issue.13 , pp. 3753-3767
    • Abdel-Rahman, E.M.1    Ahmed, F.B.2
  • 368
    • 84962670222 scopus 로고    scopus 로고
    • Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data
    • I. Ali et al., "Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data," Remote Sens. 7(12), 16398-16421 (2015).
    • (2015) Remote Sens. , vol.7 , Issue.12 , pp. 16398-16421
    • Ali, I.1
  • 369
    • 77952881448 scopus 로고    scopus 로고
    • Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review
    • E. Adam, O. Mutanga, and D. Rugege, "Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review," Wetlands Ecol. Manage. 18(3), 281-296 (2010).
    • (2010) Wetlands Ecol. Manage , vol.18 , Issue.3 , pp. 281-296
    • Adam, E.1    Mutanga, O.2    Rugege, D.3
  • 370
    • 0036814955 scopus 로고    scopus 로고
    • Satellite remote sensing of wetlands
    • S. L. Ozesmi and M. E. Bauer, "Satellite remote sensing of wetlands," Wetlands Ecol. Manage. 10(5), 381-402 (2002).
    • (2002) Wetlands Ecol. Manage , vol.10 , Issue.5 , pp. 381-402
    • Ozesmi, S.L.1    Bauer, M.E.2
  • 371
    • 34047245996 scopus 로고    scopus 로고
    • A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling
    • W. A. Dorigo et al., "A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling," Int. J. Appl. Earth Obs. Geoinf. 9(2), 165-193 (2007).
    • (2007) Int. J. Appl. Earth Obs. Geoinf. , vol.9 , Issue.2 , pp. 165-193
    • Dorigo, W.A.1
  • 372
    • 84910139108 scopus 로고    scopus 로고
    • Earth observation satellite sensors for biodiversity monitoring: Potentials and bottlenecks
    • C. Kuenzer et al., "Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks," Int. J. Remote Sens. 35(18), 6599-6647 (2014).
    • (2014) Int. J. Remote Sens. , vol.35 , Issue.18 , pp. 6599-6647
    • Kuenzer, C.1
  • 373
    • 78249275535 scopus 로고    scopus 로고
    • Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists
    • K. Wang et al., "Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists," Sensors 10(11), 9647-9667 (2010).
    • (2010) Sensors , vol.10 , Issue.11 , pp. 9647-9667
    • Wang, K.1
  • 374
    • 84983070439 scopus 로고    scopus 로고
    • Review of studies on tree species classification from remotely sensed data
    • F. E. Fassnacht et al., "Review of studies on tree species classification from remotely sensed data," Remote Sens. Environ. 186, 64-87 (2016).
    • (2016) Remote Sens. Environ. , vol.186 , pp. 64-87
    • Fassnacht, F.E.1
  • 378
    • 77949524387 scopus 로고    scopus 로고
    • Visualizing higher-layer features of a deep network
    • D. Erhan et al., "Visualizing higher-layer features of a deep network," Univ. Montreal 1341, 3 (2009).
    • (2009) Univ. Montreal , vol.1341 , pp. 3
    • Erhan, D.1
  • 379
    • 84861161549 scopus 로고    scopus 로고
    • Very high-resolution remote sensing: Challenges and opportunities
    • J. A. Benediktsson, J. Chanussot, and W.W. Moon, "Very high-resolution remote sensing: challenges and opportunities," Proc. IEEE 100(6), 1907-1910 (2012).
    • (2012) Proc. IEEE , vol.100 , Issue.6 , pp. 1907-1910
    • Benediktsson, J.A.1    Chanussot, J.2    Moon, W.W.3
  • 380
    • 84951972263 scopus 로고    scopus 로고
    • Social media as an information source for rapid flood inundation mapping
    • J. Fohringer et al., "Social media as an information source for rapid flood inundation mapping," Nat. Hazards Earth Syst. Sci. 15(12), 2725-2738 (2015).
    • (2015) Nat. Hazards Earth Syst. Sci. , vol.15 , Issue.12 , pp. 2725-2738
    • Fohringer, J.1
  • 381
    • 84906100197 scopus 로고    scopus 로고
    • Spectral clustering for sensing urban land use using twitter activity
    • V. Frias-Martinez and E. Frias-Martinez, "Spectral clustering for sensing urban land use using Twitter activity," Eng. Appl. Artif. Intell. 35, 237-245 (2014).
    • (2014) Eng. Appl. Artif. Intell. , vol.35 , pp. 237-245
    • Frias-Martinez, V.1    Frias-Martinez, E.2
  • 382
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • T. Kohonen, "The self-organizing map," Neurocomputing 21(1), 1-6 (1998).
    • (1998) Neurocomputing , vol.21 , Issue.1 , pp. 1-6
    • Kohonen, T.1
  • 383
    • 84903152550 scopus 로고    scopus 로고
    • Real-time crisis mapping of natural disasters using social media
    • S. E. Middleton, L. Middleton, and S. Modafferi, "Real-time crisis mapping of natural disasters using social media," IEEE Intell. Syst. 29(2), 9-17 (2014).
    • (2014) IEEE Intell. Syst. , vol.29 , Issue.2 , pp. 9-17
    • Middleton, S.E.1    Middleton, L.2    Modafferi, S.3
  • 385
    • 84859139864 scopus 로고    scopus 로고
    • The convergence of GIS and social media: Challenges for GIScience
    • D. Sui and M. Goodchild, "The convergence of GIS and social media: challenges for GIScience," Int. J. Geogr. Inf. Sci. 25(11), 1737-1748 (2011).
    • (2011) Int. J. Geogr. Inf. Sci. , vol.25 , Issue.11 , pp. 1737-1748
    • Sui, D.1    Goodchild, M.2
  • 386
    • 85017642241 scopus 로고    scopus 로고
    • Efficient multiple kernel classification using feature and decision level fusion
    • A. J. Pinar et al., "Efficient multiple kernel classification using feature and decision level fusion," IEEE Trans. Fuzzy Syst. PP(99), 1-1 (2016).
    • (2016) IEEE Trans. Fuzzy Syst. , vol.PP , Issue.99 , pp. 1
    • Pinar, A.J.1
  • 387
    • 84906250605 scopus 로고    scopus 로고
    • Extension of the fuzzy integral for general fuzzy set-valued information
    • D. T. Anderson et al., "Extension of the fuzzy integral for general fuzzy set-valued information," IEEE Trans. Fuzzy Syst. 22, 1625-1639 (2014).
    • (2014) IEEE Trans. Fuzzy Syst. , vol.22 , pp. 1625-1639
    • Anderson, D.T.1
  • 388
    • 85026561848 scopus 로고    scopus 로고
    • Hyperspectral and lidar data fusion using extinction profiles and deep convolutional neural network
    • P. Ghamisi, B. Hfle, and X. X. Zhu, "Hyperspectral and lidar data fusion using extinction profiles and deep convolutional neural network," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. PP(99), 1-14 (2016).
    • (2016) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.PP , Issue.99 , pp. 1-14
    • Ghamisi, P.1    Hfle, B.2    Zhu, X.X.3
  • 389
  • 390
    • 84872335272 scopus 로고    scopus 로고
    • Long-range pedestrian detection using stereo and a cascade of convolutional network classifiers
    • Z. Kira et al., "Long-range pedestrian detection using stereo and a cascade of convolutional network classifiers," in IEEE Int. Conf. on Intelligent Robots and Systems, pp. 2396-2403 (2012).
    • (2012) IEEE Int. Conf. on Intelligent Robots and Systems , pp. 2396-2403
    • Kira, Z.1
  • 391
    • 85009255948 scopus 로고    scopus 로고
    • The ISPRS benchmark on urban object classification and 3D building reconstruction
    • F. Rottensteiner et al., "The ISPRS benchmark on urban object classification and 3D building reconstruction," ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. I-3, 293-298 (2012).
    • (2012) ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. , vol.I-3 , pp. 293-298
    • Rottensteiner, F.1
  • 392
    • 84867134807 scopus 로고    scopus 로고
    • Sparse filtering
    • J. Shawe-Taylor et al., Eds., Curran Associates, Inc.
    • J. Ngiam et al., "Sparse filtering," in Advances in Neural Information Processing Systems, J. Shawe-Taylor et al., Eds., pp. 1125-1133, Curran Associates, Inc. (2011).
    • (2011) Advances in Neural Information Processing Systems , pp. 1125-1133
    • Ngiam, J.1
  • 393
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Springer
    • Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," in European Conf. on Computational Learning Theory, pp. 23-37, Springer (1995).
    • (1995) European Conf. on Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2
  • 394
    • 84954181255 scopus 로고    scopus 로고
    • Three-class change detection in synthetic aperture radar images based on deep belief network
    • Springer
    • Q. Zhao et al., "Three-class change detection in synthetic aperture radar images based on deep belief network," in Bio-Inspired Computing-Theories and Applications, pp. 696-705, Springer (2015).
    • (2015) Bio-Inspired Computing-Theories and Applications , pp. 696-705
    • Zhao, Q.1
  • 395
    • 85027954143 scopus 로고    scopus 로고
    • A critical synthesis of remotely sensed optical image change detection techniques
    • A. P. Tewkesbury et al., "A critical synthesis of remotely sensed optical image change detection techniques," Remote Sens. Environ. 160, 1-14 (2015).
    • (2015) Remote Sens. Environ. , vol.160 , pp. 1-14
    • Tewkesbury, A.P.1
  • 396
    • 13844255632 scopus 로고    scopus 로고
    • Oil spill detection by satellite remote sensing
    • C. Brekke and A. H. S. Solberg, "Oil spill detection by satellite remote sensing," Remote Sens. Environ. 95(1), 1-13 (2005).
    • (2005) Remote Sens. Environ. , vol.95 , Issue.1 , pp. 1-13
    • Brekke, C.1    Solberg, A.H.S.2
  • 397
    • 0032648673 scopus 로고    scopus 로고
    • Automatic object extraction from aerial imagery a survey focusing on buildings
    • H. Mayer, "Automatic object extraction from aerial imagery a survey focusing on buildings," Comput. Vision Image Understanding 74(2), 138-149 (1999).
    • (1999) Comput. Vision Image Understanding , vol.74 , Issue.2 , pp. 138-149
    • Mayer, H.1
  • 398
    • 79954622955 scopus 로고    scopus 로고
    • Endmember variability in spectral mixture analysis: A review
    • B. Somers et al., "Endmember variability in spectral mixture analysis: a review," Remote Sens. Environ. 115(7), 1603-1616 (2011).
    • (2011) Remote Sens. Environ. , vol.115 , Issue.7 , pp. 1603-1616
    • Somers, B.1
  • 399
    • 84976403023 scopus 로고    scopus 로고
    • Domain adaptation for the classification of remote sensing data: An overview of recent advances
    • D. Tuia, C. Persello, and L. Bruzzone, "Domain adaptation for the classification of remote sensing data: an overview of recent advances," IEEE Geosci. Remote Sens. Mag. 4(2), 41-57 (2016).
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 41-57
    • Tuia, D.1    Persello, C.2    Bruzzone, L.3
  • 400
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng. 22(10), 1345-1359 (2010).
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 404
    • 84863271556 scopus 로고    scopus 로고
    • High-resolution satellite scene classification using a sparse coding based multiple feature combination
    • G. Sheng et al., "High-resolution satellite scene classification using a sparse coding based multiple feature combination," Int. J. Remote Sens. 33(8), 2395-2412 (2012).
    • (2012) Int. J. Remote Sens. , vol.33 , Issue.8 , pp. 2395-2412
    • Sheng, G.1
  • 405
    • 85023164668 scopus 로고    scopus 로고
    • How deep learning extracts and learns leaf features for plant classification
    • S. H. Lee et al., "How deep learning extracts and learns leaf features for plant classification," Pattern Recognit. 71, 1-13 (2017).
    • (2017) Pattern Recognit , vol.71 , pp. 1-13
    • Lee, S.H.1
  • 407
    • 84956626642 scopus 로고    scopus 로고
    • Deep-plant: Plant identification with convolutional neural networks
    • S. H. Lee et al., "Deep-plant: plant identification with convolutional neural networks," in IEEE Int. Conf. on Image Processing (ICIP 2015), pp. 452-456 (2015).
    • (2015) IEEE Int. Conf. on Image Processing (ICIP 2015) , pp. 452-456
    • Lee, S.H.1
  • 408
    • 84983343679 scopus 로고    scopus 로고
    • Deep transfer learning for automatic target classification: MWIR to LWIR
    • Z. Ding, N. Nasrabadi, and Y. Fu, "Deep transfer learning for automatic target classification: MWIR to LWIR," Proc. SPIE 9844, 984408 (2016).
    • (2016) Proc. SPIE , vol.9844 , pp. 984408
    • Ding, Z.1    Nasrabadi, N.2    Fu, Y.3
  • 411
    • 77949522811 scopus 로고    scopus 로고
    • Why does unsupervised pre-training help deep learning?
    • D. Erhan, A. Courville, and P. Vincent, "Why does unsupervised pre-training help deep learning?," J. Mach. Learn. Res. 11, 625-660 (2010).
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 625-660
    • Erhan, D.1    Courville, A.2    Vincent, P.3
  • 412
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
    • K. He et al., "Delving deep into rectifiers: surpassing human-level performance on ImageNet classification," in Proc. of the IEEE Int. Conf. on Computer Vision, pp. 1026-1034 (2015).
    • (2015) Proc. of the IEEE Int. Conf. on Computer Vision , pp. 1026-1034
    • He, K.1
  • 413
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • N. Srivastava et al., "Dropout: a simple way to prevent neural networks from overfitting," J. Mach. Learn. Res. 15(1), 1929-1958 (2014).
    • (2014) J. Mach. Learn. Res. , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.