-
2
-
-
84956802323
-
A tutorial survey of architectures, algorithms, and applications for deep learning
-
L. Deng, "A tutorial survey of architectures, algorithms, and applications for deep learning," APSIPA Trans. Signal Inf. Process. 3(e2), 1-29 (2014).
-
(2014)
APSIPA Trans. Signal Inf. Process
, vol.3
, Issue.E2
, pp. 1-29
-
-
Deng, L.1
-
3
-
-
84976384382
-
Deep learning for remote sensing data
-
L. Zhang, L. Zhang, and V. Kumar, "Deep learning for remote sensing data," IEEE Geosci. Remote Sens. Mag. 4, 22-40 (2016).
-
(2016)
IEEE Geosci. Remote Sens. Mag.
, vol.4
, pp. 22-40
-
-
Zhang, L.1
Zhang, L.2
Kumar, V.3
-
4
-
-
84888349041
-
Hyperspectral remote sensing data analysis and future challenges
-
J. M. Bioucas-dias et al., "Hyperspectral remote sensing data analysis and future challenges," IEEE Geosci. Remote Sens. Mag. 1, 6-36 (2013).
-
(2013)
IEEE Geosci. Remote Sens. Mag.
, vol.1
, pp. 6-36
-
-
Bioucas-Dias, J.M.1
-
5
-
-
20444432773
-
Kernel-based methods for hyperspectral image classification
-
G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens. 43(6), 1351-1362 (2005).
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, Issue.6
, pp. 1351-1362
-
-
Camps-Valls, G.1
Bruzzone, L.2
-
6
-
-
85032751634
-
Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
-
G. Camps-Valls et al., "Advances in hyperspectral image classification: Earth monitoring with statistical learning methods," IEEE Signal Process. Mag. 31(1), 45-54 (2013).
-
(2013)
IEEE Signal Process. Mag.
, vol.31
, Issue.1
, pp. 45-54
-
-
Camps-Valls, G.1
-
7
-
-
85027948638
-
A comprehensive evaluation of spectral distance functions and metrics for hyperspectral image processing
-
H. Deborah, N. Richard, and J. Y. Hardeberg, "A comprehensive evaluation of spectral distance functions and metrics for hyperspectral image processing," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 3224-3234 (2015).
-
(2015)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.8
, Issue.6
, pp. 3224-3234
-
-
Deborah, H.1
Richard, N.2
Hardeberg, J.Y.3
-
8
-
-
84857435937
-
Pedestrian detection: An evaluation of the state of the art
-
P. Dollar et al., "Pedestrian detection: an evaluation of the state of the art," IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743-761 (2012).
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.4
, pp. 743-761
-
-
Dollar, P.1
-
9
-
-
84860267020
-
Multiple classifier system for remote sensing image classification: A review
-
P. Du et al., "Multiple classifier system for remote sensing image classification: a review," Sensors, 12(4), 4764-4792 (2012).
-
(2012)
Sensors
, vol.12
, Issue.4
, pp. 4764-4792
-
-
Du, P.1
-
10
-
-
84899967600
-
Advances in spectral-spatial classification of hyperspectral images
-
M. Fauvel et al., "Advances in spectral-spatial classification of hyperspectral images," Proc. IEEE 101(3), 652-675 (2013).
-
(2013)
Proc. IEEE
, vol.101
, Issue.3
, pp. 652-675
-
-
Fauvel, M.1
-
11
-
-
84876726723
-
Change detection from remotely sensed images: From pixel-based to object-based approaches
-
M. Hussain et al., "Change detection from remotely sensed images: from pixel-based to object-based approaches," ISPRS J. Photogramm. Remote Sens. 80, 91-106 (2013).
-
(2013)
ISPRS J. Photogramm. Remote Sens.
, vol.80
, pp. 91-106
-
-
Hussain, M.1
-
12
-
-
84966578780
-
A review of multi-temporal remote sensing data change detection algorithms
-
G. Jianya et al., "A review of multi-temporal remote sensing data change detection algorithms," Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 37(B7), 757-762 (2008).
-
(2008)
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
, vol.37
, Issue.B7
, pp. 757-762
-
-
Jianya, G.1
-
13
-
-
84955438526
-
Machine learning in geosciences and remote sensing
-
D. J. Lary et al., "Machine learning in geosciences and remote sensing," Geosci. Front. 7(1), 3-10 (2016).
-
(2016)
Geosci. Front.
, vol.7
, Issue.1
, pp. 3-10
-
-
Lary, D.J.1
-
14
-
-
85032751123
-
Manifold-learning-based feature extraction for classification of hyperspectral data: A review of advances in manifold learning
-
D. Lunga et al., "Manifold-learning-based feature extraction for classification of hyperspectral data: a review of advances in manifold learning," IEEE Signal Process. Mag. 31(1), 55-66 (2014).
-
(2014)
IEEE Signal Process. Mag.
, vol.31
, Issue.1
, pp. 55-66
-
-
Lunga, D.1
-
15
-
-
12144289543
-
A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
-
A. Plaza et al., "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data," IEEE Trans. Geosci. Remote Sens. 42(3), 650-663 (2004).
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.3
, pp. 650-663
-
-
Plaza, A.1
-
17
-
-
8144231500
-
A survey of spectral unmixing algorithms
-
N. Keshava, "A survey of spectral unmixing algorithms," Lincoln Lab. J. 14(1), 55-78 (2003).
-
(2003)
Lincoln Lab. J.
, vol.14
, Issue.1
, pp. 55-78
-
-
Keshava, N.1
-
19
-
-
84872100099
-
Recent developments in endmember extraction and spectral unmixing
-
S. Prasad, L. M. Bruce, and J. Chanussot, Eds., Springer, Berlin, Germany
-
A. Plaza et al., "Recent developments in endmember extraction and spectral unmixing," in Optical Remote Sensing, S. Prasad, L. M. Bruce, and J. Chanussot, Eds., pp. 235-267, Springer, Berlin, Germany (2011).
-
(2011)
Optical Remote Sensing
, pp. 235-267
-
-
Plaza, A.1
-
20
-
-
84899702499
-
Incorporating spatial information in spectral unmixing: A review
-
C. Shi and L. Wang, "Incorporating spatial information in spectral unmixing: a review," Remote Sens. Environ. 149, 70-87 (2014).
-
(2014)
Remote Sens. Environ.
, vol.149
, pp. 70-87
-
-
Shi, C.1
Wang, L.2
-
21
-
-
84856686379
-
Adaptive deconvolutional networks for mid and high level feature learning
-
M. D. Zeiler, G. W. Taylor, and R. Fergus, "Adaptive deconvolutional networks for mid and high level feature learning," in 2011 Int. Conf. on Computer Vision, pp. 2018-2025 (2011).
-
(2011)
2011 Int. Conf. on Computer Vision
, pp. 2018-2025
-
-
Zeiler, M.D.1
Taylor, G.W.2
Fergus, R.3
-
22
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Springer
-
M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in European Conf. on Computer Vision, pp. 818-833, Springer (2014).
-
(2014)
European Conf. on Computer Vision
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
23
-
-
84944735469
-
-
MIT Press, Cambridge, Massachusetts
-
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, Massachusetts (2016).
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
24
-
-
84997712018
-
Why regularized auto-encoders learn sparse representation?
-
D. Arpit et al., "Why regularized auto-encoders learn sparse representation?," in Int. Conf. on Machine Learning, pp. 136-144 (2016).
-
(2016)
Int. Conf. on Machine Learning
, pp. 136-144
-
-
Arpit, D.1
-
27
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun et al., "Gradient-based learning applied to document recognition," Proc. IEEE 86(11), 2278-2324 (1998).
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
-
28
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
G. Tesauro, D. Touretzky, and T. Leed, Eds.
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Advances in Neural Information Processing Systems, G. Tesauro, D. Touretzky, and T. Leed, Eds., pp. 1097-1105 (2012).
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
35
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science 313(5786), 504-507 (2006).
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
39
-
-
85032869099
-
-
(03 August)
-
"Recurrent neural networks," https://www.tensorflow.org/tutorials/recurrent (03 August 2017).
-
(2017)
Recurrent Neural Networks
-
-
-
40
-
-
85022190521
-
A tutorial on deep learning part 2: Autoencoders, convolutional neural networks and recurrent neural networks
-
Q. V. Le, "A tutorial on deep learning part 2: autoencoders, convolutional neural networks and recurrent neural networks," Google Brain, pp. 1-20 (2015).
-
(2015)
Google Brain
, pp. 1-20
-
-
Le, Q.V.1
-
44
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
O. Russakovsky et al., "ImageNet large scale visual recognition challenge," Int. J. Comput. Vision 115(3), 211-252 (2015).
-
(2015)
Int. J. Comput. Vision
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
-
46
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
G. Cybenko, "Approximation by superpositions of a sigmoidal function," Math. Control Signals Syst. 2(4), 303-314 (1989).
-
(1989)
Math. Control Signals Syst.
, vol.2
, Issue.4
, pp. 303-314
-
-
Cybenko, G.1
-
50
-
-
84957926960
-
A survey of randomized algorithms for training neural networks
-
L. Zhang and P. N. Suganthan, "A survey of randomized algorithms for training neural networks," Inf. Sci. 364, 146-155 (2016).
-
(2016)
Inf. Sci.
, vol.364
, pp. 146-155
-
-
Zhang, L.1
Suganthan, P.N.2
-
52
-
-
50549197532
-
Some methods of speeding up the convergence of iteration methods
-
B. T. Polyak, "Some methods of speeding up the convergence of iteration methods," USSR Comput. Math. Math. Phys. 4(5), 1-17 (1964).
-
(1964)
USSR Comput. Math. Math. Phys.
, vol.4
, Issue.5
, pp. 1-17
-
-
Polyak, B.T.1
-
53
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization," J. Mach. Learn. Res. 12, 2121-2159 (2011).
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
54
-
-
84893343292
-
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
-
T. Tieleman and G. Hinton, "Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude," COURSERA: Neural Networks Mach. Learn. 4(2), 26-31 (2012).
-
(2012)
COURSERA: Neural Networks Mach. Learn.
, vol.4
, Issue.2
, pp. 26-31
-
-
Tieleman, T.1
Hinton, G.2
-
56
-
-
84910651844
-
Deep learning in neural networks: An overview
-
J. Schmidhuber, "Deep learning in neural networks: an overview," Neural Networks 61, 85-117 (2015).
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
57
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput. 18(7), 1527-1554 (2006).
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
58
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Y. Bengio et al., "Greedy layer-wise training of deep networks," Adv. Neural Inf. Process. Syst. 19, 153 (2007).
-
(2007)
Adv. Neural Inf. Process. Syst.
, vol.19
, pp. 153
-
-
Bengio, Y.1
-
59
-
-
84877755914
-
A better way to pretrain deep boltzmann machines
-
F. Pereira et al., Eds., Curran Associates, Inc.
-
R. R. Salakhutdinov and G. E. Hinton, "A better way to pretrain deep Boltzmann machines," in Advances in Neural Information Processing Systems, F. Pereira et al., Eds., pp. 2447-2455, Curran Associates, Inc. (2012).
-
(2012)
Advances in Neural Information Processing Systems
, pp. 2447-2455
-
-
Salakhutdinov, R.R.1
Hinton, G.E.2
-
61
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Trans. Neural Networks 5(2), 157-166 (1994).
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
65
-
-
84930575472
-
Remote sensing big data computing: Challenges and opportunities
-
Special section: a note on new trends in data-aware scheduling and resource provisioning in modern HPC systems
-
Y. Ma et al., "Remote sensing big data computing: challenges and opportunities," Future Gener. Comput. Syst. 51, 47-60 (2015)Special section: a note on new trends in data-aware scheduling and resource provisioning in modern HPC systems.
-
(2015)
Future Gener. Comput. Syst.
, vol.51
, pp. 47-60
-
-
Ma, Y.1
-
66
-
-
84994297166
-
Big data for remote sensing: Challenges and opportunities
-
M. Chi et al., "Big data for remote sensing: challenges and opportunities," Proc. IEEE 104, 2207-2219 (2016).
-
(2016)
Proc. IEEE
, vol.104
, pp. 2207-2219
-
-
Chi, M.1
-
67
-
-
71149105669
-
Large-scale deep unsupervised learning using graphics processors
-
ACM, New York
-
R. Raina, A. Madhavan, and A. Y. Ng, "Large-scale deep unsupervised learning using graphics processors," in Proc. of the 26th Annual Int. Conf. on Machine Learning (ICML 2009), pp. 873-880, ACM, New York (2009).
-
(2009)
Proc. of the 26th Annual Int. Conf. on Machine Learning (ICML 2009)
, pp. 873-880
-
-
Raina, R.1
Madhavan, A.2
Ng, A.Y.3
-
68
-
-
84881039921
-
Flexible, high performance convolutional neural networks for image classification
-
AAAI Press
-
D. C. Cireşan et al., "Flexible, high performance convolutional neural networks for image classification," in Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011), Vol. 2, pp. 1237-1242, AAAI Press (2011).
-
(2011)
Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011)
, vol.2
, pp. 1237-1242
-
-
Cireşan, D.C.1
-
69
-
-
78049408551
-
Evaluation of pooling operations in convolutional architectures for object recognition
-
Springer-Verlag, Berlin, Heidelberg
-
D. Scherer, A. Müller, and S. Behnke, "Evaluation of pooling operations in convolutional architectures for object recognition," in Proc. of the 20th Int. Conf. on Artificial Neural Networks: Part III (ICANN 2010), pp. 92-101, Springer-Verlag, Berlin, Heidelberg (2010).
-
(2010)
Proc. of the 20th Int. Conf. on Artificial Neural Networks: Part III (ICANN 2010)
, pp. 92-101
-
-
Scherer, D.1
Müller, A.2
Behnke, S.3
-
70
-
-
84867614591
-
Scalable stacking and learning for building deep architectures
-
L. Deng, D. Yu, and J. Platt, "Scalable stacking and learning for building deep architectures," in 2012 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 2133-2136 (2012).
-
(2012)
2012 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 2133-2136
-
-
Deng, L.1
Yu, D.2
Platt, J.3
-
71
-
-
84879301618
-
Tensor deep stacking networks
-
B. Hutchinson, L. Deng, and D. Yu, "Tensor deep stacking networks," IEEE Trans. Pattern Anal. Mach. Intell. 35, 1944-1957 (2013).
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 1944-1957
-
-
Hutchinson, B.1
Deng, L.2
Yu, D.3
-
77
-
-
85013977220
-
Deep learning applications and challenges in big data analytics
-
M. M. Najafabadi et al., "Deep learning applications and challenges in big data analytics," J. Big Data 2(1), 1-21 (2015).
-
(2015)
J. Big Data
, vol.2
, Issue.1
, pp. 1-21
-
-
Najafabadi, M.M.1
-
78
-
-
84923318381
-
Big data deep learning: Challenges and perspectives
-
X.-W. Chen and X. Len, "Big data deep learning: challenges and perspectives," IEEE Access 2, 514-525 (2014).
-
(2014)
IEEE Access
, vol.2
, pp. 514-525
-
-
Chen, X.-W.1
Len, X.2
-
79
-
-
85013974691
-
A survey of open source tools for machine learning with big data in the hadoop ecosystem
-
S. Landset et al., "A survey of open source tools for machine learning with big data in the Hadoop ecosystem," J. Big Data 2(1), 24 (2015).
-
(2015)
J. Big Data
, vol.2
, Issue.1
, pp. 24
-
-
Landset, S.1
-
80
-
-
84913590208
-
Deep learning for content-based image retrieval: A comprehensive study
-
J. Wan et al., "Deep learning for content-based image retrieval: a comprehensive study," in Proc. of the 22nd ACM Int. Conf. on Multimedia, pp. 157-166 (2014).
-
(2014)
Proc. of the 22nd ACM Int. Conf. on Multimedia
, pp. 157-166
-
-
Wan, J.1
-
81
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia et al., "Caffe: convolutional architecture for fast feature embedding," in ACM Int. Conf. on Multimedia, pp. 675-678 (2014).
-
(2014)
ACM Int. Conf. on Multimedia
, pp. 675-678
-
-
Jia, Y.1
-
84
-
-
85006010727
-
GVNN: Neural network library for geometric computer vision
-
Springer International
-
A. Handa et al., "GVNN: neural network library for geometric computer vision," in Computer Vision Workshop (ECCV 2016), pp. 67-82, Springer International (2016).
-
(2016)
Computer Vision Workshop (ECCV 2016)
, pp. 67-82
-
-
Handa, A.1
-
85
-
-
84971640658
-
-
F. Chollet, "Keras," https://github.com/fchollet/keras (2015).
-
(2015)
Keras
-
-
Chollet, F.1
-
88
-
-
85032866929
-
-
(18 February)
-
"Deep learning with torch: the 60-minute Blitz," https://github.com/soumith/cvpr2015/blob/master/Deep Learning with Torchipynb (18 February 2017).
-
(2017)
Deep Learning with Torch: The 60-minute Blitz
-
-
-
89
-
-
81855221241
-
Sequential deep learning for human action recognition
-
Springer
-
M. Baccouche et al., "Sequential deep learning for human action recognition," in Int. Workshop on Human Behavior Understanding, pp. 29-39, Springer (2011).
-
(2011)
Int. Workshop on Human Behavior Understanding
, pp. 29-39
-
-
Baccouche, M.1
-
91
-
-
84973865953
-
Learning spatiotemporal features with 3D convolutional networks
-
D. Tran et al., "Learning spatiotemporal features with 3D convolutional networks," in IEEE Int. Conf. on Computer Vision (ICCV 2015), pp. 4489-4497 (2015).
-
(2015)
IEEE Int. Conf. on Computer Vision (ICCV 2015)
, pp. 4489-4497
-
-
Tran, D.1
-
92
-
-
85019099168
-
Temporal segment networks: Towards good practices for deep action recognition
-
L. Wang et al., "Temporal segment networks: towards good practices for deep action recognition," in European Conf. on Computer Vision, pp. 20-36 (2016).
-
(2016)
European Conf. on Computer Vision
, pp. 20-36
-
-
Wang, L.1
-
93
-
-
84055222005
-
Context-dependent pre-trained deep neural networks for largevocabulary speech recognition
-
G. E. Dahl et al., "Context-dependent pre-trained deep neural networks for largevocabulary speech recognition," IEEE Trans. Audio Speech Lang. Process. 20(1), 30-42 (2012).
-
(2012)
IEEE Trans. Audio Speech Lang. Process
, vol.20
, Issue.1
, pp. 30-42
-
-
Dahl, G.E.1
-
94
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups," IEEE Signal Process. Mag. 29(6), 82-97 (2012).
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
-
95
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
IEEE
-
A. Graves, A.-R. Mohamed, and G. Hinton, "Speech recognition with deep recurrent neural networks," in IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2013), pp. 6645-6649, IEEE (2013).
-
(2013)
IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2013)
, pp. 6645-6649
-
-
Graves, A.1
Mohamed, A.-R.2
Hinton, G.3
-
101
-
-
85016280072
-
Phi-LSTM: A phrase-based hierarchical LSTM model for image captioning
-
Y. H. Tan and C. S. Chan, "phi-LSTM: a phrase-based hierarchical LSTM model for image captioning," in 13th Asian Conf. on Computer Vision (ACCV), pp. 101-117 (2016).
-
(2016)
13th Asian Conf. on Computer Vision (ACCV)
, pp. 101-117
-
-
Tan, Y.H.1
Chan, C.S.2
-
103
-
-
84903779279
-
Searching for exotic particles in high-energy physics with deep learning
-
P. Baldi, P. Sadowski, and D. Whiteson, "Searching for exotic particles in high-energy physics with deep learning," Nat. Commun. 5, 4308 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 4308
-
-
Baldi, P.1
Sadowski, P.2
Whiteson, D.3
-
104
-
-
84965122247
-
Galileo: Perceiving physical object properties by integrating a physics engine with deep learning
-
C. Cortes et al., Eds., Curran Associates, Inc.
-
J. Wu et al., "Galileo: perceiving physical object properties by integrating a physics engine with deep learning," in Advances in Neural Information Processing Systems, C. Cortes et al., Eds., pp. 127-135, Curran Associates, Inc. (2015).
-
(2015)
Advances in Neural Information Processing Systems
, pp. 127-135
-
-
Wu, J.1
-
105
-
-
84885929616
-
A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
-
Springer
-
A. A. Cruz-Roa et al., "A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection," in Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, pp. 403-410, Springer (2013).
-
(2013)
Int. Conf. on Medical Image Computing and Computer-Assisted Intervention
, pp. 403-410
-
-
Cruz-Roa, A.A.1
-
106
-
-
84925878230
-
Using deep learning to enhance cancer diagnosis and classification
-
R. Fakoor et al., "Using deep learning to enhance cancer diagnosis and classification," in Proc. of the Int. Conf. on Machine Learning (2013).
-
(2013)
Proc. of the Int. Conf. on Machine Learning
-
-
Fakoor, R.1
-
107
-
-
84968542311
-
Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
-
K. Sirinukunwattana et al., "Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images," IEEE Trans. Med. Imaging 35(5), 1196-1206 (2016).
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1196-1206
-
-
Sirinukunwattana, K.1
-
108
-
-
84894359867
-
A review of unsupervised feature learning and deep learning for time-series modeling
-
M. Längkvist, L. Karlsson, and A. Loutfi, "A review of unsupervised feature learning and deep learning for time-series modeling," Pattern Recognit. Lett. 42, 11-24 (2014).
-
(2014)
Pattern Recognit. Lett.
, vol.42
, pp. 11-24
-
-
Längkvist, M.1
Karlsson, L.2
Loutfi, A.3
-
109
-
-
85016118286
-
Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis
-
S. Sarkar et al., "Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis," in Annual Conf. of the Prognostics and Health Management (2015).
-
(2015)
Annual Conf. of the Prognostics and Health Management
-
-
Sarkar, S.1
-
110
-
-
84899568094
-
Time series forecasting using a deep belief network with restricted boltzmann machines
-
T. Kuremoto et al., "Time series forecasting using a deep belief network with restricted Boltzmann machines," Neurocomputing 137, 47-56 (2014).
-
(2014)
Neurocomputing
, vol.137
, pp. 47-56
-
-
Kuremoto, T.1
-
113
-
-
85018890661
-
Learning what and where to draw
-
D. D. Lee et al., Eds., Curran Associates, Inc.
-
S. E. Reed et al., "Learning what and where to draw," in Advances in Neural Information Processing Systems, D. D. Lee et al., Eds., pp. 217-225, Curran Associates, Inc. (2016).
-
(2016)
Advances in Neural Information Processing Systems
, pp. 217-225
-
-
Reed, S.E.1
-
119
-
-
84924408055
-
Droid-sec: Deep learning in android malware detection
-
Z. Yuan et al., "Droid-sec: deep learning in android malware detection," ACM SIGCOMM Comput. Commun. Rev. 44(4), 371-372 (2014).
-
(2014)
ACM SIGCOMM Comput. Commun. Rev.
, vol.44
, Issue.4
, pp. 371-372
-
-
Yuan, Z.1
-
120
-
-
77958488310
-
Deep machine learning-A new frontier in artificial intelligence research
-
I. Arel, D. C. Rose, and T. P. Karnowski, "Deep machine learning-a new frontier in artificial intelligence research," IEEE Comput. Intell. Mag. 5(4), 13-18 (2010).
-
(2010)
IEEE Comput. Intell. Mag.
, vol.5
, Issue.4
, pp. 13-18
-
-
Arel, I.1
Rose, D.C.2
Karnowski, T.P.3
-
121
-
-
85010651075
-
A survey of deep neural network architectures and their applications
-
W. Liu et al., "A survey of deep neural network architectures and their applications," Neurocomputing 234, 11-26 (2017).
-
(2017)
Neurocomputing
, vol.234
, pp. 11-26
-
-
Liu, W.1
-
123
-
-
85032782045
-
Deep learning and its applications to signal and information processing [exploratory DSP]
-
D. Yu and L. Deng, "Deep learning and its applications to signal and information processing [exploratory DSP]," IEEE Signal Process. Mag. 28(1), 145-154 (2011).
-
(2011)
IEEE Signal Process. Mag.
, vol.28
, Issue.1
, pp. 145-154
-
-
Yu, D.1
Deng, L.2
-
125
-
-
84903724014
-
Deep learning: Methods and applications
-
L. Deng and D. Yu, "Deep learning: methods and applications," Found. Trends Signal Process. 7(3-4), 197-387 (2013).
-
(2013)
Found. Trends Signal Process
, vol.7
, Issue.3-4
, pp. 197-387
-
-
Deng, L.1
Yu, D.2
-
130
-
-
85019157984
-
Point cloud labeling using 3D convolutional neural network
-
J. Huang and S. You, "Point cloud labeling using 3D convolutional neural network," in Int. Conf. on Pattern Recognition (2016).
-
(2016)
Int. Conf. on Pattern Recognition
-
-
Huang, J.1
You, S.2
-
131
-
-
84990032596
-
Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation
-
W. Kehl et al., "Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation," in European Conf. on Computer Vision, pp. 205-220 (2016).
-
(2016)
European Conf. on Computer Vision
, pp. 205-220
-
-
Kehl, W.1
-
132
-
-
84959254410
-
Beyond spatial pooling: Fine-grained representation learning in multiple domains
-
C. Li, A. Reiter, and G. D. Hager, "Beyond spatial pooling: fine-grained representation learning in multiple domains," in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Vol. 2, pp. 4913-4922 (2015).
-
(2015)
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
, vol.2
, pp. 4913-4922
-
-
Li, C.1
Reiter, A.2
Hager, G.D.3
-
134
-
-
84945188860
-
Projective feature learning for 3D shapes with multi-view depth images
-
Wiley Online Library
-
Z. Xie et al., "Projective feature learning for 3D shapes with multi-view depth images," in Computer Graphics Forum, Vol. 34(7), pp. 1-11, Wiley Online Library (2015).
-
(2015)
Computer Graphics Forum
, vol.34
, Issue.7
, pp. 1-11
-
-
Xie, Z.1
-
135
-
-
84973888858
-
DeepDriving: Learning affordance for direct perception in autonomous driving
-
C. Chen, "DeepDriving: learning affordance for direct perception in autonomous driving," in Proc. of the IEEE Int. Conf. on Computer Vision, pp. 2722-2730 (2015).
-
(2015)
Proc. of the IEEE Int. Conf. on Computer Vision
, pp. 2722-2730
-
-
Chen, C.1
-
137
-
-
85044923280
-
A system for large-scale automatic traffic sign recognition and mapping
-
A. Chigorin and A. Konushin, "A system for large-scale automatic traffic sign recognition and mapping," in CMRT13-City Models, Roads and Traffic 2013, pp. 13-17 (2013).
-
(2013)
CMRT13-City Models, Roads and Traffic 2013
, pp. 13-17
-
-
Chigorin, A.1
Konushin, A.2
-
139
-
-
84960407578
-
Traffic sign recognition using extreme learning classifier with deep convolutional features
-
Suzhou, China
-
Y. Zeng et al., "Traffic sign recognition using extreme learning classifier with deep convolutional features," in Int. Conf. on Intelligence Science and Big Data Engineering (IScIDE '15), Suzhou, China (2015).
-
(2015)
Int. Conf. on Intelligence Science and Big Data Engineering (IScIDE '15)
-
-
Zeng, Y.1
-
140
-
-
84962512661
-
Detection of seals in remote sensing images using features extracted from deep convolutional neural networks
-
A.-B. Salberg, "Detection of seals in remote sensing images using features extracted from deep convolutional neural networks," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS'15), pp. 1893-1896 (2015).
-
(2015)
IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS'15)
, pp. 1893-1896
-
-
Salberg, A.-B.1
-
141
-
-
85016510342
-
Transferred deep learning for anomaly detection in hyperspectral imagery
-
W. Li, G. Wu, and Q. Du, "Transferred deep learning for anomaly detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett. 14(5), 597-601 (2017).
-
(2017)
IEEE Geosci. Remote Sens. Lett.
, vol.14
, Issue.5
, pp. 597-601
-
-
Li, W.1
Wu, G.2
Du, Q.3
-
142
-
-
84943387057
-
Deep belief networks for false alarm rejection in forward-looking groundpenetrating radar
-
J. Becker et al., "Deep belief networks for false alarm rejection in forward-looking groundpenetrating radar," Proc. SPIE 9454, 94540W (2015).
-
(2015)
Proc. SPIE
, vol.9454
, pp. 94540
-
-
Becker, J.1
-
143
-
-
84962606109
-
Target classification in oceanographic SAR images with deep neural networks: Architecture and initial results
-
IEEE
-
C. Bentes, D. Velotto, and S. Lehner, "Target classification in oceanographic SAR images with deep neural networks: architecture and initial results," in IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS '15), pp. 3703-3706, IEEE (2015).
-
(2015)
IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS '15)
, pp. 3703-3706
-
-
Bentes, C.1
Velotto, D.2
Lehner, S.3
-
144
-
-
84982141319
-
Detecting buried explosive hazards with handheld GPR and deep learning
-
L. E. Besaw, "Detecting buried explosive hazards with handheld GPR and deep learning," Proc. SPIE 9823, 98230N (2016).
-
(2016)
Proc. SPIE
, vol.9823
, pp. 98230
-
-
Besaw, L.E.1
-
145
-
-
84905695247
-
Deep learning algorithms for detecting explosive hazards in ground penetrating radar data
-
L. E. Besaw and P. J. Stimac, "Deep learning algorithms for detecting explosive hazards in ground penetrating radar data," Proc. SPIE 9072, 90720Y (2014).
-
(2014)
Proc. SPIE
, vol.9072
, pp. 90720
-
-
Besaw, L.E.1
Stimac, P.J.2
-
146
-
-
84976407137
-
SAR ATR based on displacement-and rotation-insensitive CNN
-
K. Du et al., "SAR ATR based on displacement-and rotation-insensitive CNN," Remote Sens. Lett. 7(9), 895-904 (2016).
-
(2016)
Remote Sens. Lett.
, vol.7
, Issue.9
, pp. 895-904
-
-
Du, K.1
-
148
-
-
84948680884
-
Deep convolutional neural networks for ATR from SAR imagery
-
D. A. E. Morgan, "Deep convolutional neural networks for ATR from SAR imagery," Proc. SPIE 9475, 94750F (2015).
-
(2015)
Proc. SPIE
, vol.9475
, pp. 94750
-
-
Morgan, D.A.E.1
-
150
-
-
84885830182
-
Recognition of SAR target based on multilayer auto-encoder and SNN
-
Z. Sun, L. Xue, and Y. Xu, "Recognition of SAR target based on multilayer auto-encoder and SNN," Int. J. Innovative Comput. Inf. Control 9(11), 4331-4341 (2013).
-
(2013)
Int. J. Innovative Comput. Inf. Control
, vol.9
, Issue.11
, pp. 4331-4341
-
-
Sun, Z.1
Xue, L.2
Xu, Y.3
-
152
-
-
79952027705
-
A multifeature tensor for remote-sensing target recognition
-
L. Zhang et al., "A multifeature tensor for remote-sensing target recognition," IEEE Geosci. Remote Sens. Lett. 8(2), 374-378 (2011).
-
(2011)
IEEE Geosci. Remote Sens. Lett.
, vol.8
, Issue.2
, pp. 374-378
-
-
Zhang, L.1
-
153
-
-
84940765289
-
A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery
-
L. Zhang, Z. Shi, and J. Wu, "A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(10), 4895-4909 (2015).
-
(2015)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.8
, Issue.10
, pp. 4895-4909
-
-
Zhang, L.1
Shi, Z.2
Wu, J.3
-
155
-
-
84930804691
-
Change detection in synthetic aperture radar images based on deep neural networks
-
M. Gong, Z. Zhou, and J. Ma, "Change detection in synthetic aperture radar images based on deep neural networks," IEEE Trans. Neural Networks Learn. Syst. 27(1), 125-138 (2016).
-
(2016)
IEEE Trans. Neural Networks Learn. Syst.
, vol.27
, Issue.1
, pp. 125-138
-
-
Gong, M.1
Zhou, Z.2
Ma, J.3
-
156
-
-
34548224594
-
An innovative neural-net method to detect temporal changes in highresolution optical satellite imagery
-
F. Pacifici et al., "An innovative neural-net method to detect temporal changes in highresolution optical satellite imagery," IEEE Trans. Geosci. Remote Sens. 45(9), 2940-2952 (2007).
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, Issue.9
, pp. 2940-2952
-
-
Pacifici, F.1
-
158
-
-
84908476182
-
Deep learning to classify difference image for image change detection
-
IEEE
-
J. Zhao et al., "Deep learning to classify difference image for image change detection," in Int. Joint Conf. on Neural Networks (IJCNN '14), pp. 411-417, IEEE (2014).
-
(2014)
Int. Joint Conf. on Neural Networks (IJCNN '14)
, pp. 411-417
-
-
Zhao, J.1
-
160
-
-
84894082731
-
Differential evolution extreme learning machine for the classification of hyperspectral images
-
Y. Bazi et al., "Differential evolution extreme learning machine for the classification of hyperspectral images," IEEE Trans. Geosci. Remote Sens. 11(6), 1066-1070 (2014).
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.11
, Issue.6
, pp. 1066-1070
-
-
Bazi, Y.1
-
161
-
-
85007427844
-
Deep convolutional networks with superpixel segmentation for hyperspectral image classification
-
J. Cao, Z. Chen, and B. Wang, "Deep convolutional networks with superpixel segmentation for hyperspectral image classification," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 3310-3313 (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 3310-3313
-
-
Cao, J.1
Chen, Z.2
Wang, B.3
-
162
-
-
85007427844
-
Graph-based deep convolutional networks with superpixel segmentation for hyperspectral image classification
-
J. Cao, Z. Chen, and B. Wang, "Graph-based deep convolutional networks with superpixel segmentation for hyperspectral image classification," in 2016 IEEE Geoscience and Remote Sensing Symposium (IGARSS), pp. 3310-3313 (2016).
-
(2016)
2016 IEEE Geoscience and Remote Sensing Symposium (IGARSS)
, pp. 3310-3313
-
-
Cao, J.1
Chen, Z.2
Wang, B.3
-
163
-
-
84912029121
-
Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine
-
C. Chen, W. Li, and H. Su et al., "Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine," Remote Sens. 6(6), 5795-5814 (2014).
-
(2014)
Remote Sens.
, vol.6
, Issue.6
, pp. 5795-5814
-
-
Chen, C.1
Li, W.2
Su, H.3
-
164
-
-
85007486834
-
Scene classification of high resolution remote sensing images using convolutional neural networks
-
G. Cheng et al., "Scene classification of high resolution remote sensing images using convolutional neural networks," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 767-770 (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 767-770
-
-
Cheng, G.1
-
165
-
-
33947699893
-
Use of neural networks for automatic classification from high-resolution images
-
F. Del Frate et al., "Use of neural networks for automatic classification from high-resolution images," IEEE Trans. Geosci. Remote Sens. 45(4), 800-809 (2007).
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, Issue.4
, pp. 800-809
-
-
Del Frate, F.1
-
167
-
-
85000450755
-
Semi-supervised classification of hyperspectral imagery based on stacked autoencoders
-
10033
-
Q. Fu et al., "Semi-supervised classification of hyperspectral imagery based on stacked autoencoders," Proc. SPIE 10033, 100332B (2016).
-
(2016)
Proc. SPIE
, pp. 100332
-
-
Fu, Q.1
-
168
-
-
84947126879
-
High-resolution SAR image classification via deep convolutional autoencoders
-
J. Geng et al., "High-resolution SAR image classification via deep convolutional autoencoders," IEEE Trans. Geosci. Remote Sens. Lett. 12(11), 2351-2355 (2015).
-
(2015)
IEEE Trans. Geosci. Remote Sens. Lett.
, vol.12
, Issue.11
, pp. 2351-2355
-
-
Geng, J.1
-
169
-
-
85007022366
-
Scene classification based on a hierarchical convolutional sparse autoencoder for high spatial resolution imagery
-
X. Han et al., "Scene classification based on a hierarchical convolutional sparse autoencoder for high spatial resolution imagery," Int. J. Remote Sens. 38(2), 514-536 (2017).
-
(2017)
Int. J. Remote Sens.
, vol.38
, Issue.2
, pp. 514-536
-
-
Han, X.1
-
170
-
-
85007463494
-
Hyperspectral image classification based on deep stacking network
-
M. He et al., "Hyperspectral image classification based on deep stacking network," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 3286-3289 (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 3286-3289
-
-
He, M.1
-
171
-
-
84962483072
-
Polarimetric SAR images classification using deep belief networks with learning features
-
B. Hou et al., "Polarimetric SAR images classification using deep belief networks with learning features," in IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS), pp. 2366-2369 (2015).
-
(2015)
IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS)
, pp. 2366-2369
-
-
Hou, B.1
-
172
-
-
84939141053
-
Deep convolutional neural networks for hyperspectral image classification
-
W. Hu et al., "Deep convolutional neural networks for hyperspectral image classification," J. Sens. 2015, 1-12 (2015).
-
(2015)
J. Sens.
, vol.2015
, pp. 1-12
-
-
Hu, W.1
-
173
-
-
85000501173
-
Very high resolution images classification by fine tuning deep convolutional neural networks
-
10033
-
M. Iftene, Q. Liu, and Y. Wang, "Very high resolution images classification by fine tuning deep convolutional neural networks," Proc. SPIE 10033, 100332D (2016).
-
(2016)
Proc. SPIE
, pp. 100332
-
-
Iftene, M.1
Liu, Q.2
Wang, Y.3
-
174
-
-
85007506834
-
Convolutional neural network based classification for hyperspectral data
-
P. Jia et al., "Convolutional neural network based classification for hyperspectral data," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 5075-5078 (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 5075-5078
-
-
Jia, P.1
-
176
-
-
84971612769
-
Classification and segmentation of satellite orthoimagery using convolutional neural networks
-
M. Längkvist et al., "Classification and segmentation of satellite orthoimagery using convolutional neural networks," Remote Sens. 8(4), 329 (2016).
-
(2016)
Remote Sens.
, vol.8
, Issue.4
, pp. 329
-
-
Längkvist, M.1
-
178
-
-
85032866885
-
Active learning for hyperspectral image classification with a stacked autoencoders based neural network
-
J. Li, "Active learning for hyperspectral image classification with a stacked autoencoders based neural network," in IEEE Int. Conf. on Image Processing (ICIP '16), pp. 1062-1065 (2016).
-
(2016)
IEEE Int. Conf. on Image Processing (ICIP '16)
, pp. 1062-1065
-
-
Li, J.1
-
181
-
-
84995529466
-
Hyperspectral image classification using deep pixel-pair features
-
W. Li et al., "Hyperspectral image classification using deep pixel-pair features," IEEE Trans. Geosci. Remote Sens. 55(2), 844-853 (2017).
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.2
, pp. 844-853
-
-
Li, W.1
-
182
-
-
84998910231
-
Hyperspectral image reconstruction by deep convolutional neural network for classification
-
Y. Li, W. Xie, and H. Li, "Hyperspectral image reconstruction by deep convolutional neural network for classification," Pattern Recognit. 63, 371-383 (2017).
-
(2017)
Pattern Recognit
, vol.63
, pp. 371-383
-
-
Li, Y.1
Xie, W.2
Li, H.3
-
184
-
-
84937140953
-
Hyperspectral classification via deep networks and superpixel segmentation
-
Y. Liu et al., "Hyperspectral classification via deep networks and superpixel segmentation," Int. J. Remote Sens. 36(13), 3459-3482 (2015).
-
(2015)
Int. J. Remote Sens.
, vol.36
, Issue.13
, pp. 3459-3482
-
-
Liu, Y.1
-
185
-
-
84956603880
-
Hyperspectral classification via learnt features
-
Y. Liu et al., "Hyperspectral classification via learnt features," in Int. Conf. on Image Processing (ICIP '15), pp. 1-5 (2015).
-
(2015)
Int. Conf. on Image Processing (ICIP '15)
, pp. 1-5
-
-
Liu, Y.1
-
186
-
-
84988373662
-
Active deep learning for classification of hyperspectral images
-
P. Liu, H. Zhang, and K. B. Eom, "Active deep learning for classification of hyperspectral images," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(2), 712-724 (2017).
-
(2017)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.10
, Issue.2
, pp. 712-724
-
-
Liu, P.1
Zhang, H.2
Eom, K.B.3
-
187
-
-
84959139728
-
Spectral-spatial classification of hyperspectral image based on deep auto-encoder
-
X. Ma, H. Wang, and J. Geng, "Spectral-spatial classification of hyperspectral image based on deep auto-encoder," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4073-4085 (2016).
-
(2016)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.9
, Issue.9
, pp. 4073-4085
-
-
Ma, X.1
Wang, H.2
Geng, J.3
-
188
-
-
85007508508
-
Hyperspectral image classification with small training set by deep network and relative distance prior
-
IEEE
-
X. Ma et al., "Hyperspectral image classification with small training set by deep network and relative distance prior," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 3282-3285, IEEE (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 3282-3285
-
-
Ma, X.1
-
189
-
-
84943420300
-
Infrared ultraspectral signature classification based on a restricted boltzmann machine with sparse and prior constraints
-
X. Mei et al., "Infrared ultraspectral signature classification based on a restricted Boltzmann machine with sparse and prior constraints," Int. J. Remote Sens. 36(18), 4724-4747 (2015).
-
(2015)
Int. J. Remote Sens.
, vol.36
, Issue.18
, pp. 4724-4747
-
-
Mei, X.1
-
190
-
-
85007420689
-
Integrating spectral and spatial information into deep convolutional neural networks for hyperspectral classification
-
S. Mei et al., "Integrating spectral and spatial information into deep convolutional neural networks for hyperspectral classification," in IEEE Geoscience and Remote Sensing Symp. (IGARSS'15), pp. 5067-5070 (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS'15)
, pp. 5067-5070
-
-
Mei, S.1
-
191
-
-
84962541943
-
Automatic fusion and classification using random forests and features extracted with deep learning
-
A. Merentitis and C. Debes, "Automatic fusion and classification using random forests and features extracted with deep learning," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '15), pp. 2943-2946 (2015).
-
(2015)
IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '15)
, pp. 2943-2946
-
-
Merentitis, A.1
Debes, C.2
-
192
-
-
84979775123
-
Towards better exploiting convolutional neural networks for remote sensing scene classification
-
K. Nogueira, O. A. B. Penatti, and J. A. dos Santos, "Towards better exploiting convolutional neural networks for remote sensing scene classification," Pattern Recognit. 61, 539-556 (2017).
-
(2017)
Pattern Recognit
, vol.61
, pp. 539-556
-
-
Nogueira, K.1
Penatti, O.A.B.2
Dos Santos, J.A.3
-
193
-
-
85012965527
-
R-VCANet: A new deep-learning-based hyperspectral image classification method
-
B. Pan, Z. Shi, and X. Xu, "R-VCANet: a new deep-learning-based hyperspectral image classification method," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(5), 1975-1986 (2017).
-
(2017)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.10
, Issue.5
, pp. 1975-1986
-
-
Pan, B.1
Shi, Z.2
Xu, X.3
-
194
-
-
85034983308
-
Benchmarking deep learning frameworks for the classification of very high resolution satellite multispectral data
-
M. Papadomanolaki et al., "Benchmarking deep learning frameworks for the classification of very high resolution satellite multispectral data," in ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 3, no. 7, pp. 83-88 (2016).
-
(2016)
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences
, vol.3
, Issue.7
, pp. 83-88
-
-
Papadomanolaki, M.1
-
195
-
-
85011339638
-
Classification of remote sensed images using random forests and deep learning framework
-
10004
-
S. Piramanayagam et al., "Classification of remote sensed images using random forests and deep learning framework," Proc. SPIE 10004, 100040L (2016).
-
(2016)
Proc. SPIE
, pp. 100040
-
-
Piramanayagam, S.1
-
196
-
-
85005808178
-
Object-oriented ensemble classification for polarimetric SAR imagery using restricted boltzmann machines
-
F. Qin, J. Guo, and W. Sun, "Object-oriented ensemble classification for polarimetric SAR imagery using restricted Boltzmann machines," Remote Sens. Lett. 8(3), 204-213 (2017).
-
(2017)
Remote Sens. Lett.
, vol.8
, Issue.3
, pp. 204-213
-
-
Qin, F.1
Guo, J.2
Sun, W.3
-
197
-
-
41549147912
-
An active learning approach to hyperspectral data classification
-
S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens. 46(4), 1231-1242 (2008).
-
(2008)
IEEE Trans. Geosci. Remote Sens.
, vol.46
, Issue.4
, pp. 1231-1242
-
-
Rajan, S.1
Ghosh, J.2
Crawford, M.M.3
-
198
-
-
84907474375
-
Semisupervised hyperspectral classification using task-driven dictionary learning with laplacian regularization
-
Z. Wang, N. M. Nasrabadi, and T. S. Huang, "Semisupervised hyperspectral classification using task-driven dictionary learning with Laplacian regularization," IEEE Trans. Geosci. Remote Sens. 53(3), 1161-1173 (2015).
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.3
, pp. 1161-1173
-
-
Wang, Z.1
Nasrabadi, N.M.2
Huang, T.S.3
-
199
-
-
85007415863
-
Hyperspectral image classification using two-channel deep convolutional neural network
-
J. Yang et al., "Hyperspectral image classification using two-channel deep convolutional neural network," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 5079-5082 (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 5079-5082
-
-
Yang, J.1
-
200
-
-
84994519156
-
Convolutional neural networks for hyperspectral image classification
-
S. Yu, S. Jia, and C. Xu, "Convolutional neural networks for hyperspectral image classification," Neurocomputing 219, 88-98 (2017).
-
(2017)
Neurocomputing
, vol.219
, pp. 88-98
-
-
Yu, S.1
Jia, S.2
Xu, C.3
-
201
-
-
84976347344
-
A deep learning framework for hyperspectral image classification using spatial pyramid pooling
-
J. Yue, S. Mao, and M. Li, "A deep learning framework for hyperspectral image classification using spatial pyramid pooling," Remote Sens. Lett. 7(9), 875-884 (2016).
-
(2016)
Remote Sens. Lett.
, vol.7
, Issue.9
, pp. 875-884
-
-
Yue, J.1
Mao, S.2
Li, M.3
-
202
-
-
84930423638
-
Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
-
J. Yue et al., "Spectral-spatial classification of hyperspectral images using deep convolutional neural networks," Remote Sens. Lett. 6(6), 468-477 (2015).
-
(2015)
Remote Sens. Lett.
, vol.6
, Issue.6
, pp. 468-477
-
-
Yue, J.1
-
203
-
-
85007462360
-
Multilabel classification of UAV images with convolutional neural networks
-
IEEE
-
A. Zeggada and F. Melgani, "Multilabel classification of UAV images with convolutional neural networks," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 5083-5086, IEEE (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 5083-5086
-
-
Zeggada, A.1
Melgani, F.2
-
204
-
-
84945898896
-
Scene classification via a gradient boosting randomconvolutional network framework
-
F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting randomconvolutional network framework," IEEE Trans. Geosci. Remote Sens. 54(3), 1793-1802 (2016).
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.3
, pp. 1793-1802
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
-
205
-
-
85011966281
-
Spectral-spatial classification of hyperspectral imagery using a dualchannel convolutional neural network
-
H. Zhang et al., "Spectral-spatial classification of hyperspectral imagery using a dualchannel convolutional neural network," Remote Sens. Lett. 8(5), 438-447 (2017).
-
(2017)
Remote Sens. Lett.
, vol.8
, Issue.5
, pp. 438-447
-
-
Zhang, H.1
-
206
-
-
84956620231
-
Learning multiscale and deep representations for classifying remotely sensed imagery
-
W. Zhao and S. Du, "Learning multiscale and deep representations for classifying remotely sensed imagery," ISPRS J. Photogramm. Remote Sens. 113, 155-165 (2016).
-
(2016)
ISPRS J. Photogramm. Remote Sens.
, vol.113
, pp. 155-165
-
-
Zhao, W.1
Du, S.2
-
207
-
-
84967166415
-
Large patch convolutional neural networks for the scene classification of high spatial resolution imagery
-
Y. Zhong, F. Fei, and L. Zhang, "Large patch convolutional neural networks for the scene classification of high spatial resolution imagery," J. Appl. Remote Sens. 10(2), 025006 (2016).
-
(2016)
J. Appl. Remote Sens.
, vol.10
, Issue.2
, pp. 025006
-
-
Zhong, Y.1
Fei, F.2
Zhang, L.3
-
208
-
-
84994662729
-
SatCNN: Satellite image dataset classification using agile convolutional neural networks
-
Y. Zhong et al., "SatCNN: satellite image dataset classification using agile convolutional neural networks," Remote Sens. Lett. 8(2), 136-145 (2017).
-
(2017)
Remote Sens. Lett.
, vol.8
, Issue.2
, pp. 136-145
-
-
Zhong, Y.1
-
209
-
-
85007490436
-
Deep fusion of hyperspectral and LiDAR data for thematic classification
-
Y. Chen et al., "Deep fusion of hyperspectral and LiDAR data for thematic classification," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 3591-3594 (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 3591-3594
-
-
Chen, Y.1
-
210
-
-
85007610585
-
Bands sensitive convolutional network for hyperspectral image classification
-
ACM
-
L. Ran et al., "Bands sensitive convolutional network for hyperspectral image classification," in Proc. of the Int. Conf. on Internet Multimedia Computing and Service, pp. 268-272, ACM (2016).
-
(2016)
Proc. of the Int. Conf. on Internet Multimedia Computing and Service
, pp. 268-272
-
-
Ran, L.1
-
211
-
-
84961344134
-
Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
-
J. Zabalza et al., "Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging," Neurocomputing 185, 1-10 (2016).
-
(2016)
Neurocomputing
, vol.185
, pp. 1-10
-
-
Zabalza, J.1
-
212
-
-
84984939548
-
Geological disaster recognition on optical remote sensing images using deep learning
-
Y. Liu and L. Wu, "Geological disaster recognition on optical remote sensing images using deep learning," Procedia Comput. Sci. 91, 566-575 (2016).
-
(2016)
Procedia Comput. Sci.
, vol.91
, pp. 566-575
-
-
Liu, Y.1
Wu, L.2
-
213
-
-
84867963090
-
Design of deep belief networks for short-term prediction of drought index using data in the huaihe river basin
-
J. Chen, Q. Jin, and J. Chao, "Design of deep belief networks for short-term prediction of drought index using data in the Huaihe river basin," Math. Prob. Eng. 2012, 235929 (2012).
-
(2012)
Math. Prob. Eng.
, vol.2012
, pp. 235929
-
-
Chen, J.1
Jin, Q.2
Chao, J.3
-
214
-
-
84889840127
-
A neural network-based estimate of the seasonal to inter-annual variability of the atlantic ocean carbon sink
-
P. Landschützer et al., "A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink," Biogeosciences 10(11), 7793-7815 (2013).
-
(2013)
Biogeosciences
, vol.10
, Issue.11
, pp. 7793-7815
-
-
Landschützer, P.1
-
215
-
-
85007504703
-
Cloud detection of remote sensing images by deep learning
-
IEEE
-
M. Shi et al., "Cloud detection of remote sensing images by deep learning," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 701-704, IEEE (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 701-704
-
-
Shi, M.1
-
216
-
-
84965121965
-
Convolutional LSTM network: A machine learning approach for precipitation nowcasting
-
C. Cortes et al., Eds., Curran Associates, Inc.
-
X. Shi et al., "Convolutional LSTM network: a machine learning approach for precipitation nowcasting," in Advances in Neural Information Processing Systems, C. Cortes et al., Eds., pp. 802-810, Curran Associates, Inc. (2015).
-
(2015)
Advances in Neural Information Processing Systems
, pp. 802-810
-
-
Shi, X.1
-
218
-
-
84946811871
-
Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks
-
Y. Kim and T. Moon, "Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks," IEEE Geosci. Remote Sens. Lett. 13(1), 1-5 (2015).
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.13
, Issue.1
, pp. 1-5
-
-
Kim, Y.1
Moon, T.2
-
220
-
-
84971631219
-
Deep convolutional neural networks for pedestrian detection
-
D. Tomè et al., "Deep convolutional neural networks for pedestrian detection," Signal Process. Image Commun. 47, 482-489 (2016).
-
(2016)
Signal Process. Image Commun.
, vol.47
, pp. 482-489
-
-
Tomè, D.1
-
221
-
-
85007417752
-
A universal remote sensing image quality improvement method with deep learning
-
Y. Wei et al., "A universal remote sensing image quality improvement method with deep learning," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 6950-6953 (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 6950-6953
-
-
Wei, Y.1
-
222
-
-
85010888144
-
Systematic infrared image quality improvement using deep learning based techniques
-
10008
-
H. Zhang et al., "Systematic infrared image quality improvement using deep learning based techniques," Proc. SPIE 10008, 100080P (2016).
-
(2016)
Proc. SPIE
, pp. 100080
-
-
Zhang, H.1
-
223
-
-
85007451874
-
Using deep neural networks for synthetic aperture radar image registration
-
D. Quan et al., "Using deep neural networks for synthetic aperture radar image registration," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 2799-2802 (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 2799-2802
-
-
Quan, D.1
-
224
-
-
84982237011
-
A self-improving convolution neural network for the classification of hyperspectral data
-
P. Ghamisi, Y. Chen, and X. X. Zhu, "A self-improving convolution neural network for the classification of hyperspectral data," IEEE Geosci. Remote Sens. Lett. 13(10), 1537-1541 (2016).
-
(2016)
IEEE Geosci. Remote Sens. Lett.
, vol.13
, Issue.10
, pp. 1537-1541
-
-
Ghamisi, P.1
Chen, Y.2
Zhu, X.X.3
-
225
-
-
85007439465
-
Deep learning approach for large scale land cover mapping based on remote sensing data fusion
-
IEEE
-
N. Kussul et al., "Deep learning approach for large scale land cover mapping based on remote sensing data fusion," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 198-201, IEEE (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 198-201
-
-
Kussul, N.1
-
226
-
-
84993997577
-
Stacked autoencoder-based deep learning for remote-sensing image classification: A case study of african land-cover mapping
-
W. Li et al., "Stacked autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping," Int. J. Remote Sens. 37(23), 5632-5646 (2016).
-
(2016)
Int. J. Remote Sens.
, vol.37
, Issue.23
, pp. 5632-5646
-
-
Li, W.1
-
227
-
-
85007496315
-
Terrain classification with polarimetric SAR based on deep sparse filtering network
-
H. Liu et al., "Terrain classification with polarimetric SAR based on deep sparse filtering network," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 64-67 (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 64-67
-
-
Liu, H.1
-
228
-
-
84962569483
-
Deep supervised learning for hyper-spectral data classification through convolutional neural networks
-
K. Makantasis et al., "Deep supervised learning for hyper-spectral data classification through convolutional neural networks," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), pp. 4959-4962 (2015).
-
(2015)
IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS)
, pp. 4959-4962
-
-
Makantasis, K.1
-
230
-
-
85028158057
-
Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images
-
G. Cheng et al., "Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images," IEEE Trans. Geosci. Remote Sens. 53(8), 4238-4249 (2015).
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.8
, pp. 4238-4249
-
-
Cheng, G.1
-
231
-
-
84947868906
-
Multiview deep learning for land-use classification
-
F. P. S. Luus et al., "Multiview deep learning for land-use classification," IEEE Geosci. Remote Sens. Lett. 12(12), 2448-2452 (2015).
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.12
, Issue.12
, pp. 2448-2452
-
-
Luus, F.P.S.1
-
232
-
-
84939208923
-
Urban land use and land cover classification using remotely sensed SAR data through deep belief networks
-
Q. Lv et al., "Urban land use and land cover classification using remotely sensed SAR data through deep belief networks," J. Sens. 2015, 1-10 (2015).
-
(2015)
J. Sens.
, vol.2015
, pp. 1-10
-
-
Lv, Q.1
-
233
-
-
84988038682
-
Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning
-
X. Ma, H. Wang, and J. Wang, "Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning," ISPRS J. Photogramm. Remote Sens. 120, 99-107 (2016).
-
(2016)
ISPRS J. Photogramm. Remote Sens.
, vol.120
, pp. 99-107
-
-
Ma, X.1
Wang, H.2
Wang, J.3
-
235
-
-
84978388572
-
Using convolutional features and a sparse autoencoder for land-use scene classification
-
E. Othman et al., "Using convolutional features and a sparse autoencoder for land-use scene classification," Int. J. Remote Sens. 37(10), 2149-2167 (2016).
-
(2016)
Int. J. Remote Sens.
, vol.37
, Issue.10
, pp. 2149-2167
-
-
Othman, E.1
-
237
-
-
84940417789
-
Unsupervised deep feature extraction for remote sensing image classification
-
A. Romero, C. Gatta, and G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification," IEEE Trans. Geosci. Remote Sens. 54(3), 1349-1362 (2016).
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.3
, pp. 1349-1362
-
-
Romero, A.1
Gatta, C.2
Camps-Valls, G.3
-
238
-
-
85007467133
-
Active learning based autoencoder for hyperspectral imagery classification
-
Y. Sun et al., "Active learning based autoencoder for hyperspectral imagery classification," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 469-472 (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 469-472
-
-
Sun, Y.1
-
240
-
-
84945964878
-
3D object recognition using convolutional neural networks with transfer learning between input channels
-
Springer International
-
L. Alexandre, "3D object recognition using convolutional neural networks with transfer learning between input channels," in 13th Int. Conf. on Intelligent Autonomous Systems, pp. 889-898, Springer International (2016).
-
(2016)
13th Int. Conf. on Intelligent Autonomous Systems
, pp. 889-898
-
-
Alexandre, L.1
-
242
-
-
84965102370
-
3D object proposals for accurate object class detection
-
C. Cortes et al., Eds., Curran Associates, Inc.
-
X. Chen and Y. Zhu, "3D object proposals for accurate object class detection," in Advances in Neural Information Processing Systems, C. Cortes et al., Eds., pp. 424-432, Curran Associates, Inc. (2015).
-
(2015)
Advances in Neural Information Processing Systems
, pp. 424-432
-
-
Chen, X.1
Zhu, Y.2
-
243
-
-
85027047340
-
Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
-
G. Cheng, P. Zhou, and J. Han, "Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images," IEEE Trans. Geosci. Remote Sens. 54(12), 7405-7415 (2016).
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.12
, pp. 7405-7415
-
-
Cheng, G.1
Zhou, P.2
Han, J.3
-
245
-
-
84940765932
-
Object recognition in remote sensing images using sparse deep belief networks
-
W. Diao et al., "Object recognition in remote sensing images using sparse deep belief networks," Remote Sens. Lett. 6(10), 745-754 (2015).
-
(2015)
Remote Sens. Lett.
, vol.6
, Issue.10
, pp. 745-754
-
-
Diao, W.1
-
246
-
-
85011301713
-
Multiview RGB-D dataset for object instance detection
-
G. Georgakis et al., "Multiview RGB-D dataset for object instance detection," in IEEE Fourth Int. Conf. on 3D Vision (3DV '16), pp. 426-434 (2016).
-
(2016)
IEEE Fourth Int. Conf. on 3D Vision (3DV '16)
, pp. 426-434
-
-
Georgakis, G.1
-
249
-
-
84997282964
-
Shape-based object extraction in high-resolution remote-sensing images using deep boltzmann machine
-
Q. Wu et al., "Shape-based object extraction in high-resolution remote-sensing images using deep Boltzmann machine," Int. J. Remote Sens. 37(24), 6012-6022 (2016).
-
(2016)
Int. J. Remote Sens.
, vol.37
, Issue.24
, pp. 6012-6022
-
-
Wu, Q.1
-
252
-
-
84993982662
-
Pansharpening by convolutional neural networks
-
G. Masi et al., "Pansharpening by convolutional neural networks," Remote Sens. 8(7), 594 (2016).
-
(2016)
Remote Sens.
, vol.8
, Issue.7
, pp. 594
-
-
Masi, G.1
-
253
-
-
85027937409
-
A new pan-sharpening method with deep neural networks
-
W. Huang et al., "A new pan-sharpening method with deep neural networks," IEEE Geosci. Remote Sens. Lett. 12(5), 1037-1041 (2015).
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.12
, Issue.5
, pp. 1037-1041
-
-
Huang, W.1
-
254
-
-
84952810861
-
Automated detection of impact craters and volcanic rootless cones in mars satellite imagery using convolutional neural networks and support vector machines
-
L. Palafox, A. Alvarez, and C. Hamilton, "Automated detection of impact craters and volcanic rootless cones in mars satellite imagery using convolutional neural networks and support vector machines," in 46th Lunar and Planetary Science Conf., pp. 1-2 (2015).
-
(2015)
46th Lunar and Planetary Science Conf.
, pp. 1-2
-
-
Palafox, L.1
Alvarez, A.2
Hamilton, C.3
-
255
-
-
85009807662
-
Plant identification using deep neural networks via optimization of transfer learning parameters
-
M. M. Ghazi, B. Yanikoglu, and E. Aptoula, "Plant identification using deep neural networks via optimization of transfer learning parameters," Neurocomputing 235, 228-235 (2017).
-
(2017)
Neurocomputing
, vol.235
, pp. 228-235
-
-
Ghazi, M.M.1
Yanikoglu, B.2
Aptoula, E.3
-
256
-
-
84942588784
-
Deep learning-based tree classification using mobile LiDAR data
-
H. Guan et al., "Deep learning-based tree classification using mobile LiDAR data," Remote Sens. Lett. 6(11), 864-873 (2015).
-
(2015)
Remote Sens. Lett.
, vol.6
, Issue.11
, pp. 864-873
-
-
Guan, H.1
-
257
-
-
0037696635
-
Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn
-
P. K. Goel et al., "Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn," Comput. Electron. Agric. 39(2), 67-93 (2003).
-
(2003)
Comput. Electron. Agric.
, vol.39
, Issue.2
, pp. 67-93
-
-
Goel, P.K.1
-
259
-
-
84994176955
-
Augmenting a convolutional neural network with local histograms-A case study in crop classification from high-resolution UAV imagery
-
J. Rebetez et al., "Augmenting a convolutional neural network with local histograms-a case study in crop classification from high-resolution UAV imagery," in European Symp. on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 515-520 (2016).
-
(2016)
European Symp. on Artificial Neural Networks, Computational Intelligence and Machine Learning
, pp. 515-520
-
-
Rebetez, J.1
-
260
-
-
84978378744
-
Deep neural networks based recognition of plant diseases by leaf image classification
-
S. Sladojevic et al., "Deep neural networks based recognition of plant diseases by leaf image classification," Comput. Intell. Neurosci. 2016, 1-11 (2016).
-
(2016)
Comput. Intell. Neurosci.
, vol.2016
, pp. 1-11
-
-
Sladojevic, S.1
-
262
-
-
85007453563
-
Road network extraction via deep learning and line integral convolution
-
IEEE
-
P. Li et al., "Road network extraction via deep learning and line integral convolution," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 1599-1602, IEEE (2016).
-
(2016)
IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 1599-1602
-
-
Li, P.1
-
264
-
-
84934294672
-
Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine
-
J. Wang et al., "Road network extraction: a neural-dynamic framework based on deep learning and a finite state machine," Int. J. Remote Sens. 36(12), 3144-3169 (2015).
-
(2015)
Int. J. Remote Sens.
, vol.36
, Issue.12
, pp. 3144-3169
-
-
Wang, J.1
-
265
-
-
84924232972
-
Automated extraction of 3D trees from mobile LiDAR point clouds
-
Y. Yu et al., "Automated extraction of 3D trees from mobile LiDAR point clouds," in ISPRS Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 40, No. 5, pp. 629-632 (2014).
-
(2014)
ISPRS Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
, vol.40
, Issue.5
, pp. 629-632
-
-
Yu, Y.1
-
266
-
-
85028232652
-
Automated extraction of urban road manhole covers using mobile laser scanning data
-
Y. Yu, H. Guan, and Z. Ji, "Automated extraction of urban road manhole covers using mobile laser scanning data," IEEE Trans. Intell. Transp. Syst. 16(4), 2167-2181 (2015).
-
(2015)
IEEE Trans. Intell. Transp. Syst.
, vol.16
, Issue.4
, pp. 2167-2181
-
-
Yu, Y.1
Guan, H.2
Ji, Z.3
-
267
-
-
85007429390
-
Fully convolutional networks for building and road extraction: Preliminary results
-
Z. Zhong et al., "Fully convolutional networks for building and road extraction: preliminary results," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 1591-1594 (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 1591-1594
-
-
Zhong, Z.1
-
268
-
-
67649219352
-
Learning long-range vision for autonomous off-road driving
-
R. Hadsell et al., "Learning long-range vision for autonomous off-road driving," J. Field Rob. 26(2), 120-144 (2009).
-
(2009)
J. Field Rob.
, vol.26
, Issue.2
, pp. 120-144
-
-
Hadsell, R.1
-
269
-
-
85007436568
-
Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis
-
IEEE
-
L. Mou and X. X. Zhu, "Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 1823-1826, IEEE (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 1823-1826
-
-
Mou, L.1
Zhu, X.X.2
-
270
-
-
84944068115
-
Scene recognition by manifold regularized deep learning architecture
-
Y. Yuan, L. Mou, and X. Lu, "Scene recognition by manifold regularized deep learning architecture," IEEE Trans. Neural Networks Learn. Syst. 26(10), 2222-2233 (2015).
-
(2015)
IEEE Trans. Neural Networks Learn. Syst.
, vol.26
, Issue.10
, pp. 2222-2233
-
-
Yuan, Y.1
Mou, L.2
Lu, X.3
-
275
-
-
84962489522
-
Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks
-
A. Lagrange et al., "Benchmarking classification of earth-observation data: from learning explicit features to convolutional networks," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '15), pp. 4173-4176 (2015).
-
(2015)
IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '15)
, pp. 4173-4176
-
-
Lagrange, A.1
-
276
-
-
84949921276
-
Deep learning earth observation classification using ImageNet pretrained networks
-
D. Marmanis et al., "Deep learning earth observation classification using ImageNet pretrained networks," IEEE Geosci. Remote Sens. Lett. 13(1), 105-109 (2016).
-
(2016)
IEEE Geosci. Remote Sens. Lett.
, vol.13
, Issue.1
, pp. 105-109
-
-
Marmanis, D.1
-
281
-
-
84869762769
-
Deep learning in very high resolution remote sensing image information mining communication concept
-
IEEE
-
C. Vaduva, I. Gavat, and M. Datcu, "Deep learning in very high resolution remote sensing image information mining communication concept," in Proc. of the 20th European Signal Processing Conf. (EUSIPCO '12), pp. 2506-2510, IEEE (2012).
-
(2012)
Proc. of the 20th European Signal Processing Conf. (EUSIPCO '12)
, pp. 2506-2510
-
-
Vaduva, C.1
Gavat, I.2
Datcu, M.3
-
282
-
-
84994217941
-
Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks
-
M. Volpi and D. Tuia, "Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks," IEEE Trans. Geosci. Remote Sens. 55(2), 881-893 (2017).
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.2
, pp. 881-893
-
-
Volpi, M.1
Tuia, D.2
-
284
-
-
85007496775
-
CRF learning with CNN features for hyperspectral image segmentation
-
F. I. Alam et al., "CRF learning with CNN features for hyperspectral image segmentation," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 6890-6893 (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 6890-6893
-
-
Alam, F.I.1
-
286
-
-
84962719370
-
A supervised hierarchical segmentation of remote-sensing images using a committee of multi-scale convolutional neural networks
-
E. Basaeed et al., "A supervised hierarchical segmentation of remote-sensing images using a committee of multi-scale convolutional neural networks," Int. J. Remote Sens. 37(7), 1671-1691 (2016).
-
(2016)
Int. J. Remote Sens.
, vol.37
, Issue.7
, pp. 1671-1691
-
-
Basaeed, E.1
-
287
-
-
84961217641
-
Supervised remote sensing image segmentation using boosted convolutional neural networks
-
E. Basaeed, H. Bhaskar, and M. Al-Mualla, "Supervised remote sensing image segmentation using boosted convolutional neural networks," Knowl. Based Syst. 99, 19-27 (2016).
-
(2016)
Knowl. Based Syst.
, vol.99
, pp. 19-27
-
-
Basaeed, E.1
Bhaskar, H.2
Al-Mualla, M.3
-
288
-
-
85007451779
-
DCAP: A deep convolution architecture for prediction of urban growth
-
IEEE
-
S. Pal, S. Chowdhury, and S. K. Ghosh, "DCAP: a deep convolution architecture for prediction of urban growth," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 1812-1815, IEEE (2016).
-
(2016)
IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 1812-1815
-
-
Pal, S.1
Chowdhury, S.2
Ghosh, S.K.3
-
289
-
-
84962609582
-
Deep hierarchical representation and segmentation of high resolution remote sensing images
-
J. Wang et al., "Deep hierarchical representation and segmentation of high resolution remote sensing images," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '15), pp. 4320-4323 (2015).
-
(2015)
IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS '15)
, pp. 4320-4323
-
-
Wang, J.1
-
290
-
-
85007489737
-
Very deep learning for ship discrimination in synthetic aperture radar imagery
-
IEEE
-
C. P. Schwegmann et al., "Very deep learning for ship discrimination in synthetic aperture radar imagery," in IEEE Geoscience and Remote Sensing Symp. (IGARSS '16), pp. 104-107, IEEE (2016).
-
(2016)
IEEE Geoscience and Remote Sensing Symp. (IGARSS '16)
, pp. 104-107
-
-
Schwegmann, C.P.1
-
291
-
-
84907463801
-
Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
-
J. Tang et al., "Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine," IEEE Trans. Geosci. Remote Sens. 53(3), 1174-1185 (2015).
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.3
, pp. 1174-1185
-
-
Tang, J.1
-
293
-
-
84906509108
-
Deep network cascade for image super-resolution
-
Z. Cui et al., "Deep network cascade for image super-resolution," Lect. Notes Comput. Sci. 8693, 49-64 (2014).
-
(2014)
Lect. Notes Comput. Sci.
, vol.8693
, pp. 49-64
-
-
Cui, Z.1
-
294
-
-
84962128851
-
Image super-resolution using deep convolutional networks
-
C. Dong et al., "Image super-resolution using deep convolutional networks," IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295-307 (2016).
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.38
, Issue.2
, pp. 295-307
-
-
Dong, C.1
-
295
-
-
85016967048
-
Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived SST data
-
A. Ducournau and R. Fablet, "Deep learning for ocean remote sensing: an application of convolutional neural networks for super-resolution on satellite-derived SST data," in 9th Workshop on Pattern Recognition in Remote Sensing (2016).
-
(2016)
9th Workshop on Pattern Recognition in Remote Sensing
-
-
Ducournau, A.1
Fablet, R.2
-
296
-
-
84978081674
-
Single-image super resolution for multispectral remote sensing data using convolutional neural networks
-
L. Liebel and M. Körner, "Single-image super resolution for multispectral remote sensing data using convolutional neural networks," in XXIII ISPRS Congress Proc., pp. 883-890 (2016).
-
(2016)
XXIII ISPRS Congress Proc.
, pp. 883-890
-
-
Liebel, L.1
Körner, M.2
-
297
-
-
84907500988
-
Deep architecture for traffic flow prediction: Deep belief networks with multitask learning
-
W. Huang et al., "Deep architecture for traffic flow prediction: deep belief networks with multitask learning," IEEE Trans. Intell. Transp. Syst. 15(5), 2191-2201 (2014).
-
(2014)
IEEE Trans. Intell. Transp. Syst.
, vol.15
, Issue.5
, pp. 2191-2201
-
-
Huang, W.1
-
298
-
-
85027926799
-
Traffic flow prediction with big data: A deep learning approach
-
Y. Lv et al., "Traffic flow prediction with big data: a deep learning approach," IEEE Trans. Intell. Transp. Syst. 16(2), 865-873 (2015).
-
(2015)
IEEE Trans. Intell. Transp. Syst.
, vol.16
, Issue.2
, pp. 865-873
-
-
Lv, Y.1
-
300
-
-
84949678222
-
DeepFish: Accurate underwater live fish recognition with a deep architecture
-
H. Qin et al., "DeepFish: accurate underwater live fish recognition with a deep architecture," Neurocomputing 187, 49-58 (2016).
-
(2016)
Neurocomputing
, vol.187
, pp. 49-58
-
-
Qin, H.1
-
301
-
-
85032863582
-
When underwater imagery analysis meets deep learning: A solution at the age of big visual data
-
H. Qin et al., "When underwater imagery analysis meets deep learning: a solution at the age of big visual data," in 7th Int. Symp. on Image and Signal Processing and Analysis (ISPA '15), pp. 259-264 (2015).
-
(2015)
7th Int. Symp. on Image and Signal Processing and Analysis (ISPA '15)
, pp. 259-264
-
-
Qin, H.1
-
302
-
-
85006848531
-
Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks
-
D. P. Williams, "Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks," in Proc. 23rd Int. Conf. on Pattern Recognition (ICPR) (2016).
-
(2016)
Proc. 23rd Int. Conf. on Pattern Recognition (ICPR)
-
-
Williams, D.P.1
-
306
-
-
85007496838
-
Building extraction from multi-source remote sensing images via deep deconvolution neural networks
-
IEEE
-
Z. Huang et al., "Building extraction from multi-source remote sensing images via deep deconvolution neural networks," in Geoscience and Remote Sensing Symp. (IGARSS), pp. 1835-1838, IEEE (2016).
-
(2016)
Geoscience and Remote Sensing Symp. (IGARSS)
, pp. 1835-1838
-
-
Huang, Z.1
-
308
-
-
84926617496
-
Building and road detection from large aerial imagery
-
S. Saito and Y. Aoki, "Building and road detection from large aerial imagery," Proc. SPIE 9405, 94050K (2015).
-
(2015)
Proc. SPIE
, vol.9405
, pp. 94050
-
-
Saito, S.1
Aoki, Y.2
-
309
-
-
84962523390
-
Building detection in very high resolution multispectral data with deep learning features
-
M. Vakalopoulou et al., "Building detection in very high resolution multispectral data with deep learning features," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2015), pp. 1873-1876 (2015).
-
(2015)
IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2015)
, pp. 1873-1876
-
-
Vakalopoulou, M.1
-
311
-
-
84979608665
-
Classification of urban aerial data based on pixel labelling with deep convolutional neural networks and logistic regression
-
W. Yao, P. Poleswki, and P. Krzystek, "Classification of urban aerial data based on pixel labelling with deep convolutional neural networks and logistic regression," Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B7, 405-410 (2016).
-
(2016)
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
, vol.XLI-B7
, pp. 405-410
-
-
Yao, W.1
Poleswki, P.2
Krzystek, P.3
-
312
-
-
85007492103
-
CNN based suburban building detection using monocular high resolution google earth images
-
IEEE
-
Q. Zhang et al., "CNN based suburban building detection using monocular high resolution Google Earth images," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2016), pp. 661-664, IEEE (2016).
-
(2016)
IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2016)
, pp. 661-664
-
-
Zhang, Q.1
-
313
-
-
85007448558
-
A CNN based functional zone classification method for aerial images
-
IEEE
-
Z. Zhang et al., "A CNN based functional zone classification method for aerial images," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2016), pp. 5449-5452, IEEE (2016).
-
(2016)
IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2016)
, pp. 5449-5452
-
-
Zhang, Z.1
-
314
-
-
84978805832
-
Robust vehicle detection by combining deep features with exemplar classification
-
L. Cao et al., "Robust vehicle detection by combining deep features with exemplar classification," Neurocomputing 215, 225-231 (2016).
-
(2016)
Neurocomputing
, vol.215
, pp. 225-231
-
-
Cao, L.1
-
315
-
-
84901322878
-
Vehicle detection in satellite images by hybrid deep convolutional neural networks
-
X. Chen et al., "Vehicle detection in satellite images by hybrid deep convolutional neural networks," IEEE Geosci. Remote Sens. Lett. 11(10), 1797-1801 (2014).
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.10
, pp. 1797-1801
-
-
Chen, X.1
-
316
-
-
85032860578
-
A novel vehicle classification model for urban traffic surveillance using the deep neural network model
-
K. Goyal and D. Kaur, "A novel vehicle classification model for urban traffic surveillance using the deep neural network model," Int. J. Educ. Manage. Eng. 6(1), 18-31 (2016).
-
(2016)
Int. J. Educ. Manage. Eng.
, vol.6
, Issue.1
, pp. 18-31
-
-
Goyal, K.1
Kaur, D.2
-
318
-
-
85006833221
-
Vehicle detection in urban point clouds with orthogonal-view convolutional neural network
-
J. Huang and S. You, "Vehicle detection in urban point clouds with orthogonal-view convolutional neural network," in 2016 IEEE Int. Conf. on Image Processing (ICIP), pp. 2593-2597 (2016).
-
(2016)
2016 IEEE Int. Conf. on Image Processing (ICIP)
, pp. 2593-2597
-
-
Huang, J.1
You, S.2
-
320
-
-
84962248343
-
Deep neural networks-based vehicle detection in satellite images
-
IEEE
-
Q. Jiang et al., "Deep neural networks-based vehicle detection in satellite images," in Int. Symp. on Bioelectronics and Bioinformatics (ISBB), pp. 184-187, IEEE (2015).
-
(2015)
Int. Symp. on Bioelectronics and Bioinformatics (ISBB)
, pp. 184-187
-
-
Jiang, Q.1
-
321
-
-
84992036292
-
Application of deep learning to the problem of vehicle detection in UAV images
-
IEEE
-
G. V. Konoplich, E. O. Putin, and A. A. Filchenkov, "Application of deep learning to the problem of vehicle detection in UAV images," in XIX IEEE Int. Conf. on Soft Computing and Measurements (SCM), pp. 4-6, IEEE (2016).
-
(2016)
XIX IEEE Int. Conf. on Soft Computing and Measurements (SCM)
, pp. 4-6
-
-
Konoplich, G.V.1
Putin, E.O.2
Filchenkov, A.A.3
-
323
-
-
84983341548
-
Online vehicle detection using deep neural networks and lidar based preselected image patches
-
S. Lange, F. Ulbrich, and D. Goehring, "Online vehicle detection using deep neural networks and lidar based preselected image patches," in Proc. IEEE Intelligent Vehicles Symp., pp. 954-959 (2016).
-
(2016)
Proc. IEEE Intelligent Vehicles Symp.
, pp. 954-959
-
-
Lange, S.1
Ulbrich, F.2
Goehring, D.3
-
325
-
-
84901815784
-
A vehicle detection algorithm based on deep belief network
-
H. Wang, Y. Cai, and L. Chen, "A vehicle detection algorithm based on deep belief network," Sci. World J. 2014, 647380 (2014).
-
(2014)
Sci. World J.
, vol.2014
, pp. 647380
-
-
Wang, H.1
Cai, Y.2
Chen, L.3
-
326
-
-
84983287336
-
Appearance-based brake-lights recognition using deep learning and vehicle detection
-
IEEE
-
J.-G. Wang et al., "Appearance-based brake-lights recognition using deep learning and vehicle detection," in Intelligent Vehicles Symp., pp. 815-820, IEEE (2016).
-
(2016)
Intelligent Vehicles Symp.
, pp. 815-820
-
-
Wang, J.-G.1
-
327
-
-
84953270625
-
Night-time vehicle sensing in far infrared image with deep learning
-
H. Wang et al., "Night-time vehicle sensing in far infrared image with deep learning," J. Sens. 2016, 3403451 (2015).
-
(2015)
J. Sens.
, vol.2016
, pp. 3403451
-
-
Wang, H.1
-
329
-
-
70350618080
-
Cyclone track forecasting based on satellite images using artificial neural networks
-
R. Kovordányi and C. Roy, "Cyclone track forecasting based on satellite images using artificial neural networks," ISPRS J. Photogramm. Remote Sens. 64(6), 513-521 (2009).
-
(2009)
ISPRS J. Photogramm. Remote Sens.
, vol.64
, Issue.6
, pp. 513-521
-
-
Kovordányi, R.1
Roy, C.2
-
330
-
-
84954059623
-
Improved cloud phase retrieval approaches for China's FY-3A/VIRR multi-channel data using artificial neural networks
-
C. Yang and J. Guo, "Improved cloud phase retrieval approaches for China's FY-3A/VIRR multi-channel data using artificial neural networks," Optik 127(4), 1797-1803 (2016).
-
(2016)
Optik
, vol.127
, Issue.4
, pp. 1797-1803
-
-
Yang, C.1
Guo, J.2
-
331
-
-
85027942618
-
Spectral-spatial classification of hyperspectral data based on deep belief network
-
Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 2381-2392 (2015).
-
(2015)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.8
, Issue.6
, pp. 2381-2392
-
-
Chen, Y.1
Zhao, X.2
Jia, X.3
-
332
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
J. M. P. Nascimento and J. M. B. Dias, "Vertex component analysis: a fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens. 43(4), 898-910 (2005).
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.M.P.1
Dias, J.M.B.2
-
333
-
-
84959533227
-
PCANet: A simple deep learning baseline for image classification?
-
T. H. Chan et al., "PCANet: a simple deep learning baseline for image classification?," IEEE Trans. Image Process. 24(12), 5017-5032 (2015).
-
(2015)
IEEE Trans. Image Process
, vol.24
, Issue.12
, pp. 5017-5032
-
-
Chan, T.H.1
-
334
-
-
84978805819
-
Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
-
Y. Chen et al., "Deep feature extraction and classification of hyperspectral images based on convolutional neural networks," IEEE Trans. Geosci. Remote Sens. 54(10), 6232-6251 (2016).
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.10
, pp. 6232-6251
-
-
Chen, Y.1
-
335
-
-
84906332834
-
DeCAF: A deep convolutional activation feature for generic visual recognition
-
J. Donahue et al., "DeCAF: a deep convolutional activation feature for generic visual recognition," ICML 32, 647-655 (2014).
-
(2014)
ICML
, vol.32
, pp. 647-655
-
-
Donahue, J.1
-
336
-
-
85011277882
-
CNN-based object segmentation in urban lidar with missing points
-
IEEE
-
A. Zelener and I. Stamos, "CNN-based object segmentation in urban lidar with missing points," in Fourth Int. Conf. on 3D Vision (3DV), pp. 417-425, IEEE (2016).
-
(2016)
Fourth Int. Conf. on 3D Vision (3DV)
, pp. 417-425
-
-
Zelener, A.1
Stamos, I.2
-
338
-
-
84906274934
-
Hyperspectral band selection based on the aggregation of proximity measures for automated target detection
-
J. E. Ball, D. T. Anderson, and S. Samiappan, "Hyperspectral band selection based on the aggregation of proximity measures for automated target detection," Proc. SPIE 9088, 908814 (2014).
-
(2014)
Proc. SPIE
, vol.9088
, pp. 908814
-
-
Ball, J.E.1
Anderson, D.T.2
Samiappan, S.3
-
339
-
-
56749172068
-
Level set hyperspectral image classification using best band analysis
-
J. E. Ball and L. M. Bruce, "Level set hyperspectral image classification using best band analysis," IEEE Trans. Geosci. Remote Sens. 45(10), 3022-3027 (2007).
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, Issue.10
, pp. 3022-3027
-
-
Ball, J.E.1
Bruce, L.M.2
-
340
-
-
78650919905
-
Level set hyperspectral image segmentation using spectral information divergence-based best band selection
-
IEEE
-
J. E. Ball et al., "Level set hyperspectral image segmentation using spectral information divergence-based best band selection," in IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2007), pp. 4053-4056, IEEE (2007).
-
(2007)
IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2007)
, pp. 4053-4056
-
-
Ball, J.E.1
-
341
-
-
84864740145
-
Spectral unmixing cluster validity index for multiple sets of endmembers
-
D. T. Anderson and A. Zare, "Spectral unmixing cluster validity index for multiple sets of endmembers," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(4), 1282-1295 (2012).
-
(2012)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.5
, Issue.4
, pp. 1282-1295
-
-
Anderson, D.T.1
Zare, A.2
-
342
-
-
0034432355
-
Comparison of approaches for determining end-members in hyperspectral data
-
IEEE
-
M. E. Winter, "Comparison of approaches for determining end-members in hyperspectral data," in Aerospace Conf. Proc., pp. 305-313, IEEE (2000).
-
(2000)
Aerospace Conf. Proc.
, pp. 305-313
-
-
Winter, M.E.1
-
343
-
-
80051768153
-
Learning sparse codes for hyperspectral imagery
-
A. S. Charles, B. A. Olshausen, and C. J. Rozell, "Learning sparse codes for hyperspectral imagery," IEEE J. Sel. Top. Signal Process. 5(5), 963-978 (2011).
-
(2011)
IEEE J. Sel. Top. Signal Process
, vol.5
, Issue.5
, pp. 963-978
-
-
Charles, A.S.1
Olshausen, B.A.2
Rozell, C.J.3
-
345
-
-
34547226008
-
Hyperspectral pixel unmixing via spectral band selection and DC-insensitive singular value decomposition
-
J. E. Ball, L. M. Bruce, and N. H. Younan, "Hyperspectral pixel unmixing via spectral band selection and DC-insensitive singular value decomposition," IEEE Geosci. Remote Sens. Lett. 4(3), 382-386 (2007).
-
(2007)
IEEE Geosci. Remote Sens. Lett.
, vol.4
, Issue.3
, pp. 382-386
-
-
Ball, J.E.1
Bruce, L.M.2
Younan, N.H.3
-
346
-
-
0031105739
-
Introduction neural networks in remote sensing
-
P. M. Atkinson and A. Tatnall, "Introduction neural networks in remote sensing," Int. J. Remote Sens. 18(4), 699-709 (1997).
-
(1997)
Int. J. Remote Sens.
, vol.18
, Issue.4
, pp. 699-709
-
-
Atkinson, P.M.1
Tatnall, A.2
-
347
-
-
84939177511
-
On understanding big data impacts in remotely sensed image classification using support vector machine methods
-
G. Cavallaro et al., "On understanding big data impacts in remotely sensed image classification using support vector machine methods," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(10), 4634-4646 (2015).
-
(2015)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.8
, Issue.10
, pp. 4634-4646
-
-
Cavallaro, G.1
-
348
-
-
0036779091
-
Image processing with neural networks-A review
-
M. Egmont-Petersen, D. DeRidder, and H. Handels, "Image processing with neural networks-a review," Pattern Recognit. 35, 2279-2301 (2002).
-
(2002)
Pattern Recognit
, vol.35
, pp. 2279-2301
-
-
Egmont-Petersen, M.1
DeRidder, D.2
Handels, H.3
-
349
-
-
84908682236
-
Trends in extreme learning machines: A review
-
G. Huang et al., "Trends in extreme learning machines: a review," Neural Networks 61, 32-48 (2015).
-
(2015)
Neural Networks
, vol.61
, pp. 32-48
-
-
Huang, G.1
-
350
-
-
84874545698
-
Feature mining for hyperspectral image classification
-
X. Jia, B.-C. Kuo, and M. M. Crawford, "Feature mining for hyperspectral image classification," Proc. IEEE 101(3), 676-697 (2013).
-
(2013)
Proc. IEEE
, vol.101
, Issue.3
, pp. 676-697
-
-
Jia, X.1
Kuo, B.-C.2
Crawford, M.M.3
-
351
-
-
33947591833
-
A survey of image classification methods and techniques for improving classification performance
-
D. Lu and Q. Weng, "A survey of image classification methods and techniques for improving classification performance," Int. J. Remote Sens. 28(5), 823-870 (2007).
-
(2007)
Int. J. Remote Sens.
, vol.28
, Issue.5
, pp. 823-870
-
-
Lu, D.1
Weng, Q.2
-
352
-
-
85013167685
-
Hyperspectral image analysis using deep learning-A review
-
IEEE
-
H. Petersson, D. Gustafsson, and D. Bergstrom, "Hyperspectral image analysis using deep learning-a review," in 6th Int. Conf. on Image Processing Theory Tools and Applications (IPTA), pp. 1-6, IEEE (2016).
-
(2016)
6th Int. Conf. on Image Processing Theory Tools and Applications (IPTA)
, pp. 1-6
-
-
Petersson, H.1
Gustafsson, D.2
Bergstrom, D.3
-
353
-
-
67650436064
-
Recent advances in techniques for hyperspectral image processing
-
A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ. 113, S110-S122 (2009).
-
(2009)
Remote Sens. Environ.
, vol.113
, pp. S110-S122
-
-
Plaza, A.1
-
354
-
-
85014972207
-
A review of road extraction from remote sensing images
-
W. Wang et al., "A review of road extraction from remote sensing images," J. Traffic Transp. Eng. 3(3), 271-282 (2016).
-
(2016)
J. Traffic Transp. Eng.
, vol.3
, Issue.3
, pp. 271-282
-
-
Wang, W.1
-
355
-
-
85017874614
-
-
(20 November)
-
"IEEE GRSS data fusion contest," http://www.grss-ieee.org/community/technicalcommittees/data-fusion/ (20 November 2016).
-
(2016)
IEEE GRSS Data Fusion Contest
-
-
-
356
-
-
85032872209
-
-
(20 November)
-
"Indian Pines dataset," http://dynamo.ecn.purdue.edu/biehl/MultiSpec (20 November 2016).
-
(2016)
Indian Pines Dataset
-
-
-
357
-
-
85032873209
-
-
(20 November)
-
"Kennedy Space Center," http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral-Remote-Sensing-Scenes#Kennedy-Space-Center-.28KSC.29 (20 November 2016).
-
(2016)
Kennedy Space Center
-
-
-
358
-
-
85032873309
-
-
(20 November)
-
"Pavia dataset," http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral-Remote-Sensing-Scenes#Pavia-Centre-and-University (20 November 2016).
-
(2016)
Pavia Dataset
-
-
-
359
-
-
85032864780
-
-
(20 November)
-
"Salinas dataset," http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral-Remote-Sensing-Scenes#Salinas (20 November 2016).
-
(2016)
Salinas Dataset
-
-
-
360
-
-
85032874466
-
-
(20 November)
-
"Washington DC Mall," https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html (20 November 2016).
-
(2016)
Washington DC Mall
-
-
-
361
-
-
84961970561
-
A survey on object detection in optical remote sensing images
-
G. Cheng and J. Han, "A survey on object detection in optical remote sensing images," ISPRS J. Photogramm. Remote Sens. 117, 11-28 (2016).
-
(2016)
ISPRS J. Photogramm. Remote Sens.
, vol.117
, pp. 11-28
-
-
Cheng, G.1
Han, J.2
-
362
-
-
84905925092
-
Deep learning-based classification of hyperspectral data
-
Y. Chen et al., "Deep learning-based classification of hyperspectral data," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2094-2107 (2014).
-
(2014)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.7
, Issue.6
, pp. 2094-2107
-
-
Chen, Y.1
-
363
-
-
84962910954
-
Hyperspectral image classification with convolutional neural networks
-
ACM
-
V. Slavkovikj et al., "Hyperspectral image classification with convolutional neural networks," in Proc. of the 23rd ACM Int. Conf. on Multimedia, pp. 1159-1162, ACM (2015).
-
(2015)
Proc. of the 23rd ACM Int. Conf. on Multimedia
, pp. 1159-1162
-
-
Slavkovikj, V.1
-
364
-
-
84947865496
-
Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
-
C. Tao et al., "Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification," IEEE Geosci. Remote Sens. Lett. 12(12), 2438-2442 (2015).
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.12
, Issue.12
, pp. 2438-2442
-
-
Tao, C.1
-
365
-
-
84867711674
-
Learning invariant feature hierarchies
-
Springer
-
Y. LeCun, "Learning invariant feature hierarchies," in Computer Vision (ECCV 2012), pp. 496-505, Springer (2012).
-
(2012)
Computer Vision (ECCV 2012)
, pp. 496-505
-
-
LeCun, Y.1
-
366
-
-
85007613389
-
Kernel methods in remote sensing: A review
-
M. Pal, "Kernel methods in remote sensing: a review," ISH J. Hydraul. Eng. 15(Suppl. 1), 194-215 (2009).
-
(2009)
ISH J. Hydraul. Eng.
, vol.15
, pp. 194-215
-
-
Pal, M.1
-
367
-
-
46349084770
-
The application of remote sensing techniques to sugarcane (Saccharum spp. Hybrid) production: A review of the literature
-
E. M. Abdel-Rahman and F. B. Ahmed, "The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature," Int. J. Remote Sens. 29(13), 3753-3767 (2008).
-
(2008)
Int. J. Remote Sens.
, vol.29
, Issue.13
, pp. 3753-3767
-
-
Abdel-Rahman, E.M.1
Ahmed, F.B.2
-
368
-
-
84962670222
-
Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data
-
I. Ali et al., "Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data," Remote Sens. 7(12), 16398-16421 (2015).
-
(2015)
Remote Sens.
, vol.7
, Issue.12
, pp. 16398-16421
-
-
Ali, I.1
-
369
-
-
77952881448
-
Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review
-
E. Adam, O. Mutanga, and D. Rugege, "Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review," Wetlands Ecol. Manage. 18(3), 281-296 (2010).
-
(2010)
Wetlands Ecol. Manage
, vol.18
, Issue.3
, pp. 281-296
-
-
Adam, E.1
Mutanga, O.2
Rugege, D.3
-
370
-
-
0036814955
-
Satellite remote sensing of wetlands
-
S. L. Ozesmi and M. E. Bauer, "Satellite remote sensing of wetlands," Wetlands Ecol. Manage. 10(5), 381-402 (2002).
-
(2002)
Wetlands Ecol. Manage
, vol.10
, Issue.5
, pp. 381-402
-
-
Ozesmi, S.L.1
Bauer, M.E.2
-
371
-
-
34047245996
-
A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling
-
W. A. Dorigo et al., "A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling," Int. J. Appl. Earth Obs. Geoinf. 9(2), 165-193 (2007).
-
(2007)
Int. J. Appl. Earth Obs. Geoinf.
, vol.9
, Issue.2
, pp. 165-193
-
-
Dorigo, W.A.1
-
372
-
-
84910139108
-
Earth observation satellite sensors for biodiversity monitoring: Potentials and bottlenecks
-
C. Kuenzer et al., "Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks," Int. J. Remote Sens. 35(18), 6599-6647 (2014).
-
(2014)
Int. J. Remote Sens.
, vol.35
, Issue.18
, pp. 6599-6647
-
-
Kuenzer, C.1
-
373
-
-
78249275535
-
Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists
-
K. Wang et al., "Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists," Sensors 10(11), 9647-9667 (2010).
-
(2010)
Sensors
, vol.10
, Issue.11
, pp. 9647-9667
-
-
Wang, K.1
-
374
-
-
84983070439
-
Review of studies on tree species classification from remotely sensed data
-
F. E. Fassnacht et al., "Review of studies on tree species classification from remotely sensed data," Remote Sens. Environ. 186, 64-87 (2016).
-
(2016)
Remote Sens. Environ.
, vol.186
, pp. 64-87
-
-
Fassnacht, F.E.1
-
378
-
-
77949524387
-
Visualizing higher-layer features of a deep network
-
D. Erhan et al., "Visualizing higher-layer features of a deep network," Univ. Montreal 1341, 3 (2009).
-
(2009)
Univ. Montreal
, vol.1341
, pp. 3
-
-
Erhan, D.1
-
379
-
-
84861161549
-
Very high-resolution remote sensing: Challenges and opportunities
-
J. A. Benediktsson, J. Chanussot, and W.W. Moon, "Very high-resolution remote sensing: challenges and opportunities," Proc. IEEE 100(6), 1907-1910 (2012).
-
(2012)
Proc. IEEE
, vol.100
, Issue.6
, pp. 1907-1910
-
-
Benediktsson, J.A.1
Chanussot, J.2
Moon, W.W.3
-
380
-
-
84951972263
-
Social media as an information source for rapid flood inundation mapping
-
J. Fohringer et al., "Social media as an information source for rapid flood inundation mapping," Nat. Hazards Earth Syst. Sci. 15(12), 2725-2738 (2015).
-
(2015)
Nat. Hazards Earth Syst. Sci.
, vol.15
, Issue.12
, pp. 2725-2738
-
-
Fohringer, J.1
-
381
-
-
84906100197
-
Spectral clustering for sensing urban land use using twitter activity
-
V. Frias-Martinez and E. Frias-Martinez, "Spectral clustering for sensing urban land use using Twitter activity," Eng. Appl. Artif. Intell. 35, 237-245 (2014).
-
(2014)
Eng. Appl. Artif. Intell.
, vol.35
, pp. 237-245
-
-
Frias-Martinez, V.1
Frias-Martinez, E.2
-
382
-
-
0345404396
-
The self-organizing map
-
T. Kohonen, "The self-organizing map," Neurocomputing 21(1), 1-6 (1998).
-
(1998)
Neurocomputing
, vol.21
, Issue.1
, pp. 1-6
-
-
Kohonen, T.1
-
383
-
-
84903152550
-
Real-time crisis mapping of natural disasters using social media
-
S. E. Middleton, L. Middleton, and S. Modafferi, "Real-time crisis mapping of natural disasters using social media," IEEE Intell. Syst. 29(2), 9-17 (2014).
-
(2014)
IEEE Intell. Syst.
, vol.29
, Issue.2
, pp. 9-17
-
-
Middleton, S.E.1
Middleton, L.2
Modafferi, S.3
-
385
-
-
84859139864
-
The convergence of GIS and social media: Challenges for GIScience
-
D. Sui and M. Goodchild, "The convergence of GIS and social media: challenges for GIScience," Int. J. Geogr. Inf. Sci. 25(11), 1737-1748 (2011).
-
(2011)
Int. J. Geogr. Inf. Sci.
, vol.25
, Issue.11
, pp. 1737-1748
-
-
Sui, D.1
Goodchild, M.2
-
386
-
-
85017642241
-
Efficient multiple kernel classification using feature and decision level fusion
-
A. J. Pinar et al., "Efficient multiple kernel classification using feature and decision level fusion," IEEE Trans. Fuzzy Syst. PP(99), 1-1 (2016).
-
(2016)
IEEE Trans. Fuzzy Syst.
, vol.PP
, Issue.99
, pp. 1
-
-
Pinar, A.J.1
-
387
-
-
84906250605
-
Extension of the fuzzy integral for general fuzzy set-valued information
-
D. T. Anderson et al., "Extension of the fuzzy integral for general fuzzy set-valued information," IEEE Trans. Fuzzy Syst. 22, 1625-1639 (2014).
-
(2014)
IEEE Trans. Fuzzy Syst.
, vol.22
, pp. 1625-1639
-
-
Anderson, D.T.1
-
388
-
-
85026561848
-
Hyperspectral and lidar data fusion using extinction profiles and deep convolutional neural network
-
P. Ghamisi, B. Hfle, and X. X. Zhu, "Hyperspectral and lidar data fusion using extinction profiles and deep convolutional neural network," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. PP(99), 1-14 (2016).
-
(2016)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.PP
, Issue.99
, pp. 1-14
-
-
Ghamisi, P.1
Hfle, B.2
Zhu, X.X.3
-
390
-
-
84872335272
-
Long-range pedestrian detection using stereo and a cascade of convolutional network classifiers
-
Z. Kira et al., "Long-range pedestrian detection using stereo and a cascade of convolutional network classifiers," in IEEE Int. Conf. on Intelligent Robots and Systems, pp. 2396-2403 (2012).
-
(2012)
IEEE Int. Conf. on Intelligent Robots and Systems
, pp. 2396-2403
-
-
Kira, Z.1
-
391
-
-
85009255948
-
The ISPRS benchmark on urban object classification and 3D building reconstruction
-
F. Rottensteiner et al., "The ISPRS benchmark on urban object classification and 3D building reconstruction," ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. I-3, 293-298 (2012).
-
(2012)
ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
, vol.I-3
, pp. 293-298
-
-
Rottensteiner, F.1
-
392
-
-
84867134807
-
Sparse filtering
-
J. Shawe-Taylor et al., Eds., Curran Associates, Inc.
-
J. Ngiam et al., "Sparse filtering," in Advances in Neural Information Processing Systems, J. Shawe-Taylor et al., Eds., pp. 1125-1133, Curran Associates, Inc. (2011).
-
(2011)
Advances in Neural Information Processing Systems
, pp. 1125-1133
-
-
Ngiam, J.1
-
393
-
-
84983110889
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Springer
-
Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," in European Conf. on Computational Learning Theory, pp. 23-37, Springer (1995).
-
(1995)
European Conf. on Computational Learning Theory
, pp. 23-37
-
-
Freund, Y.1
Schapire, R.E.2
-
394
-
-
84954181255
-
Three-class change detection in synthetic aperture radar images based on deep belief network
-
Springer
-
Q. Zhao et al., "Three-class change detection in synthetic aperture radar images based on deep belief network," in Bio-Inspired Computing-Theories and Applications, pp. 696-705, Springer (2015).
-
(2015)
Bio-Inspired Computing-Theories and Applications
, pp. 696-705
-
-
Zhao, Q.1
-
395
-
-
85027954143
-
A critical synthesis of remotely sensed optical image change detection techniques
-
A. P. Tewkesbury et al., "A critical synthesis of remotely sensed optical image change detection techniques," Remote Sens. Environ. 160, 1-14 (2015).
-
(2015)
Remote Sens. Environ.
, vol.160
, pp. 1-14
-
-
Tewkesbury, A.P.1
-
396
-
-
13844255632
-
Oil spill detection by satellite remote sensing
-
C. Brekke and A. H. S. Solberg, "Oil spill detection by satellite remote sensing," Remote Sens. Environ. 95(1), 1-13 (2005).
-
(2005)
Remote Sens. Environ.
, vol.95
, Issue.1
, pp. 1-13
-
-
Brekke, C.1
Solberg, A.H.S.2
-
397
-
-
0032648673
-
Automatic object extraction from aerial imagery a survey focusing on buildings
-
H. Mayer, "Automatic object extraction from aerial imagery a survey focusing on buildings," Comput. Vision Image Understanding 74(2), 138-149 (1999).
-
(1999)
Comput. Vision Image Understanding
, vol.74
, Issue.2
, pp. 138-149
-
-
Mayer, H.1
-
398
-
-
79954622955
-
Endmember variability in spectral mixture analysis: A review
-
B. Somers et al., "Endmember variability in spectral mixture analysis: a review," Remote Sens. Environ. 115(7), 1603-1616 (2011).
-
(2011)
Remote Sens. Environ.
, vol.115
, Issue.7
, pp. 1603-1616
-
-
Somers, B.1
-
399
-
-
84976403023
-
Domain adaptation for the classification of remote sensing data: An overview of recent advances
-
D. Tuia, C. Persello, and L. Bruzzone, "Domain adaptation for the classification of remote sensing data: an overview of recent advances," IEEE Geosci. Remote Sens. Mag. 4(2), 41-57 (2016).
-
(2016)
IEEE Geosci. Remote Sens. Mag.
, vol.4
, Issue.2
, pp. 41-57
-
-
Tuia, D.1
Persello, C.2
Bruzzone, L.3
-
400
-
-
77956031473
-
A survey on transfer learning
-
S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng. 22(10), 1345-1359 (2010).
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
402
-
-
79955119681
-
Gabor descriptors for aerial image classification
-
Springer
-
V. Risojevic, S. Momic, and Z. Babic, "Gabor descriptors for aerial image classification," in Int. Conf. on Adaptive and Natural Computing Algorithms, pp. 51-60, Springer (2011).
-
(2011)
Int. Conf. on Adaptive and Natural Computing Algorithms
, pp. 51-60
-
-
Risojevic, V.1
Momic, S.2
Babic, Z.3
-
404
-
-
84863271556
-
High-resolution satellite scene classification using a sparse coding based multiple feature combination
-
G. Sheng et al., "High-resolution satellite scene classification using a sparse coding based multiple feature combination," Int. J. Remote Sens. 33(8), 2395-2412 (2012).
-
(2012)
Int. J. Remote Sens.
, vol.33
, Issue.8
, pp. 2395-2412
-
-
Sheng, G.1
-
405
-
-
85023164668
-
How deep learning extracts and learns leaf features for plant classification
-
S. H. Lee et al., "How deep learning extracts and learns leaf features for plant classification," Pattern Recognit. 71, 1-13 (2017).
-
(2017)
Pattern Recognit
, vol.71
, pp. 1-13
-
-
Lee, S.H.1
-
407
-
-
84956626642
-
Deep-plant: Plant identification with convolutional neural networks
-
S. H. Lee et al., "Deep-plant: plant identification with convolutional neural networks," in IEEE Int. Conf. on Image Processing (ICIP 2015), pp. 452-456 (2015).
-
(2015)
IEEE Int. Conf. on Image Processing (ICIP 2015)
, pp. 452-456
-
-
Lee, S.H.1
-
408
-
-
84983343679
-
Deep transfer learning for automatic target classification: MWIR to LWIR
-
Z. Ding, N. Nasrabadi, and Y. Fu, "Deep transfer learning for automatic target classification: MWIR to LWIR," Proc. SPIE 9844, 984408 (2016).
-
(2016)
Proc. SPIE
, vol.9844
, pp. 984408
-
-
Ding, Z.1
Nasrabadi, N.2
Fu, Y.3
-
411
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
D. Erhan, A. Courville, and P. Vincent, "Why does unsupervised pre-training help deep learning?," J. Mach. Learn. Res. 11, 625-660 (2010).
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Courville, A.2
Vincent, P.3
-
412
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
-
K. He et al., "Delving deep into rectifiers: surpassing human-level performance on ImageNet classification," in Proc. of the IEEE Int. Conf. on Computer Vision, pp. 1026-1034 (2015).
-
(2015)
Proc. of the IEEE Int. Conf. on Computer Vision
, pp. 1026-1034
-
-
He, K.1
-
413
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava et al., "Dropout: a simple way to prevent neural networks from overfitting," J. Mach. Learn. Res. 15(1), 1929-1958 (2014).
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
|