-
1
-
-
73249139477
-
Object based image analysis for remote sensing
-
T. Blaschke, "Object based image analysis for remote sensing," ISPRS J. Photogramm. Remote Sens. 65(1), 2-16 (2010).
-
(2010)
ISPRS J. Photogramm. Remote Sens.
, vol.65
, Issue.1
, pp. 2-16
-
-
Blaschke, T.1
-
2
-
-
42549151598
-
Research on classification of high-resolution remote sensing image
-
X. Zhang, B. Wu, and Q. Li, "Research on classification of high-resolution remote sensing image," Proc. SPIE 6786, 67862Z (2007).
-
(2007)
Proc. SPIE
, vol.6786
, pp. 67862Z
-
-
Zhang, X.1
Wu, B.2
Li, Q.3
-
3
-
-
84255182004
-
Classification of high spatial resolution remote sensing image using SVM and local spatial statistics Getis-Ord Gi
-
X. Wang, X. Chen, and M. Li, "Classification of high spatial resolution remote sensing image using SVM and local spatial statistics Getis-Ord Gi," Proc. SPIE 8006, 80060N (2011).
-
(2011)
Proc. SPIE
, vol.8006
, pp. 80060N
-
-
Wang, X.1
Chen, X.2
Li, M.3
-
4
-
-
42549168493
-
High resolution remote sensing image classification with multiple classifiers based on mixed combining rule
-
Z. Chen et al., "High resolution remote sensing image classification with multiple classifiers based on mixed combining rule," Proc. SPIE 6788, 67881J (2007).
-
(2007)
Proc. SPIE
, vol.6788
, pp. 67881J
-
-
Chen, Z.1
-
5
-
-
34547469390
-
Can high-level concepts fill the semantic gap in video retrieval? A case study with broadcast news
-
A. Hauptmann et al., "Can high-level concepts fill the semantic gap in video retrieval? A case study with broadcast news," IEEE Trans. Multimedia 9, 958-966 (2007).
-
(2007)
IEEE Trans. Multimedia
, vol.9
, pp. 958-966
-
-
Hauptmann, A.1
-
6
-
-
84866009594
-
Scene classification using a multi-resolution bag-of-features model
-
L. Zhou, Z. Zhou, and D. Hu, "Scene classification using a multi-resolution bag-of-features model," Pattern Recognit. 46(1), 424-433 (2013).
-
(2013)
Pattern Recognit.
, vol.46
, Issue.1
, pp. 424-433
-
-
Zhou, L.1
Zhou, Z.2
Hu, D.3
-
7
-
-
75749158448
-
Scene categorization via contextual visual words
-
J. Qin and N. H. Yung, "Scene categorization via contextual visual words," Pattern Recognit. 43(5), 1874-1888 (2010).
-
(2010)
Pattern Recognit.
, vol.43
, Issue.5
, pp. 1874-1888
-
-
Qin, J.1
Yung, N.H.2
-
8
-
-
85027929099
-
Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification
-
F. Hu et al., "Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 2015-2030 (2015).
-
(2015)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.8
, pp. 2015-2030
-
-
Hu, F.1
-
9
-
-
34047192082
-
Which is the best way to organize/classify images by content?
-
A. Bosch, X. Muñoz, and R. Martí, "Which is the best way to organize/classify images by content?," Image Vision Comput. 25(6), 778-791 (2007).
-
(2007)
Image Vision Comput.
, vol.25
, Issue.6
, pp. 778-791
-
-
Bosch, A.1
Muñoz, X.2
Martí, R.3
-
10
-
-
84966523772
-
On image classification: City vs. Landscape
-
IEEE
-
A. Vailaya, A. Jain, and H. J. Zhang, "On image classification: city vs. landscape," in Proc. IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 3-8, IEEE (1998).
-
(1998)
Proc. IEEE Workshop on Content-Based Access of Image and Video Libraries
, pp. 3-8
-
-
Vailaya, A.1
Jain, A.2
Zhang, H.J.3
-
11
-
-
3042685989
-
Improved scene classification using efficient lowlevel features and semantic cues
-
N. Serrano, A. E. Savakis, and J. Luo, "Improved scene classification using efficient lowlevel features and semantic cues," Pattern Recognit. 37(9), 1773-1784 (2004).
-
(2004)
Pattern Recognit.
, vol.37
, Issue.9
, pp. 1773-1784
-
-
Serrano, N.1
Savakis, A.E.2
Luo, J.3
-
12
-
-
84962528662
-
The Fisher Kernel coding framework for high spatial resolution scene classification
-
B. Zhao et al., "The Fisher Kernel coding framework for high spatial resolution scene classification," Remote Sens. 8(2), 157 (2016).
-
(2016)
Remote Sens.
, vol.8
, Issue.2
, pp. 157
-
-
Zhao, B.1
-
13
-
-
84962585158
-
A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery
-
B. Zhao, Y. Zhong, and L. Zhang, "A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery," ISPRS J. Photogramm. Remote Sens. 116, 73-85 (2016).
-
(2016)
ISPRS J. Photogramm. Remote Sens.
, vol.116
, pp. 73-85
-
-
Zhao, B.1
Zhong, Y.2
Zhang, L.3
-
14
-
-
84947933375
-
Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery
-
B. Zhao et al., "Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery," IEEE Trans. Geosci. Remote Sens. 54(4), 2108-2123 (2016).
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.4
, pp. 2108-2123
-
-
Zhao, B.1
-
15
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
IEEE
-
S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: spatial pyramid matching for recognizing natural scene categories," in IEEE Conf. on Computer Vision and Pattern Recognition, Vol. 2, pp. 2169-2178, IEEE (2006).
-
(2006)
IEEE Conf. on Computer Vision and Pattern Recognition
, vol.2
, pp. 2169-2178
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
16
-
-
37849036011
-
Evaluating bag-of-visual-words representations in scene classification
-
ACM
-
J. Yang et al., "Evaluating bag-of-visual-words representations in scene classification," in Proc. of the Int. Workshop on Multimedia Information Retrieval, pp. 197-206, ACM (2007).
-
(2007)
Proc. of the Int. Workshop on Multimedia Information Retrieval
, pp. 197-206
-
-
Yang, J.1
-
19
-
-
33745858268
-
Scene classification via pLSA
-
Springer
-
A. Bosch, A. Zisserman, and X. Muñoz, "Scene classification via pLSA," in Computer Vision-ECCV 2006, pp. 517-530, Springer (2006).
-
(2006)
Computer Vision-ECCV 2006
, pp. 517-530
-
-
Bosch, A.1
Zisserman, A.2
Muñoz, X.3
-
20
-
-
84868112918
-
Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVWand pLSA
-
G. Cheng et al., "Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVWand pLSA," Int. J. Remote Sens. 34(1), 45-59 (2013).
-
(2013)
Int. J. Remote Sens.
, vol.34
, Issue.1
, pp. 45-59
-
-
Cheng, G.1
-
21
-
-
0141607824
-
Latent dirichlet allocation
-
D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent Dirichlet allocation," J. Mach. Learn. Res. 3, 993-1022 (2003).
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 993-1022
-
-
Blei, D.M.1
Ng, A.Y.2
Jordan, M.I.3
-
22
-
-
50649087214
-
Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes
-
IEEE
-
L. Cao and L. Fei-Fei, "Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes," in IEEE 11th Int. Conf. on Computer Vision, pp. 1-8, IEEE (2007).
-
(2007)
IEEE 11th Int. Conf. on Computer Vision
, pp. 1-8
-
-
Cao, L.1
Fei-Fei, L.2
-
23
-
-
75449091209
-
Semantic annotation of satellite images using latent Dirichlet allocation
-
M. Liénou, H. Maître, and M. Datcu, "Semantic annotation of satellite images using latent Dirichlet allocation," IEEE Geosci. Remote Sens. Lett. 7(1), 28-32 (2010).
-
(2010)
IEEE Geosci. Remote Sens. Lett.
, vol.7
, Issue.1
, pp. 28-32
-
-
Liénou, M.1
Maître, H.2
Datcu, M.3
-
24
-
-
84885021651
-
Latent Dirichlet allocation for spatial analysis of satellite images
-
C. Vaduva, I. Gavat, and M. Datcu, "Latent Dirichlet allocation for spatial analysis of satellite images," IEEE Trans. Geosci. Remote Sens. 51(5), 2770-2786 (2013).
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, Issue.5
, pp. 2770-2786
-
-
Vaduva, C.1
Gavat, I.2
Datcu, M.3
-
25
-
-
85027956142
-
Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery
-
Y. Zhong, Q. Zhu, and L. Zhang, "Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery," IEEE Trans. Geosci. Remote Sens. 53, 6207-6222 (2015).
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, pp. 6207-6222
-
-
Zhong, Y.1
Zhu, Q.2
Zhang, L.3
-
26
-
-
84908032942
-
Saliency-guided unsupervised feature learning for scene classification
-
F. Zhang, B. Du, and L. Zhang, "Saliency-guided unsupervised feature learning for scene classification," IEEE Trans. Geosci. Remote Sens. 53(4), 2175-2184 (2015).
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.4
, pp. 2175-2184
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
-
27
-
-
84863038460
-
Spatial pyramid co-occurrence for image classification
-
IEEE, Barcelona
-
Y. Yang and S. Newsam, "Spatial pyramid co-occurrence for image classification," in IEEE Int. Conf. on Computer Vision (ICCV '11), pp. 1465-1472, IEEE, Barcelona (2011).
-
(2011)
IEEE Int. Conf. on Computer Vision (ICCV '11)
, pp. 1465-1472
-
-
Yang, Y.1
Newsam, S.2
-
29
-
-
84941204620
-
Gabor-filtering-based completed local binary patterns for land-use scene classification
-
C. Chen et al., "Gabor-filtering-based completed local binary patterns for land-use scene classification," in IEEE Int. Conf. on Multimedia Big Data (BigMM), pp. 324-329 (2015).
-
(2015)
IEEE Int. Conf. on Multimedia Big Data (BigMM)
, pp. 324-329
-
-
Chen, C.1
-
30
-
-
84938519282
-
Land-use scene classification using multi-scale completed local binary patterns
-
C. Chen et al., "Land-use scene classification using multi-scale completed local binary patterns," Signal Image Video Process. 10(4), 745-752 (2015)
-
(2015)
Signal Image Video Process
, vol.10
, Issue.4
, pp. 745-752
-
-
Chen, C.1
-
31
-
-
84881242291
-
A hierarchical scheme of multiple feature fusion for high-resolution satellite scene categorization
-
Springer, Switzerland
-
W. Shao et al., "A hierarchical scheme of multiple feature fusion for high-resolution satellite scene categorization," in Computer Vision Systems, pp. 324-333, Springer, Switzerland (2013).
-
(2013)
Computer Vision Systems
, pp. 324-333
-
-
Shao, W.1
-
32
-
-
84863271556
-
High-resolution satellite scene classification using a sparse coding based multiple feature combination
-
G. Sheng et al., "High-resolution satellite scene classification using a sparse coding based multiple feature combination," Int. J. Remote Sens. 33(8), 2395-2412 (2012).
-
(2012)
Int. J. Remote Sens.
, vol.33
, Issue.8
, pp. 2395-2412
-
-
Sheng, G.1
-
33
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI," FNT Mach. Learn. 2(1), 1-127 (2009).
-
(2009)
FNT Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
34
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature 521(7553), 436-444 (2015).
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
35
-
-
84966941275
-
Deep learning for remote sensing image understanding
-
L. Zhang et al., "Deep learning for remote sensing image understanding," J. Sensors 501, 173691 (2015).
-
(2015)
J. Sensors
, vol.501
, pp. 173691
-
-
Zhang, L.1
-
36
-
-
84937128961
-
Torch7: A MATLAB-like environment for machine learning
-
R. Collobert, K. Kavukcuoglu, and C. Farabet, "Torch7: a MATLAB-like environment for machine learning," in BigLearn, NIPS Workshop, (EPFL-CONF-192376) (2011).
-
(2011)
BigLearn, NIPS Workshop, (EPFL-CONF-192376)
-
-
Collobert, R.1
Kavukcuoglu, K.2
Farabet, C.3
-
37
-
-
84959213942
-
CuDNN: Efficient primitives for deep learning
-
arXiv preprint arXiv:1410.0759
-
S. Chetlur et al., "CuDNN: efficient primitives for deep learning," CoRR, arXiv preprint arXiv:1410.0759 (2014).
-
(2014)
CoRR
-
-
Chetlur, S.1
-
41
-
-
84933585162
-
Very deep convolutional networks for large-scale image recognition
-
arXiv preprint arXiv:1409.1556
-
K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," CoRR, arXiv preprint arXiv:1409.1556 (2014).
-
(2014)
CoRR
-
-
Simonyan, K.1
Zisserman, A.2
-
42
-
-
85020214070
-
Land use classification in remote sensing images by convolutional neural networks
-
arXiv preprint arXiv:1508.00092
-
M. Castelluccio et al., "Land use classification in remote sensing images by convolutional neural networks," CoRR, arXiv preprint arXiv:1508.00092 (2015).
-
(2015)
CoRR
-
-
Castelluccio, M.1
-
43
-
-
33645410496
-
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
-
D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex," J. Physiol. 160(1), 106-154 (1962).
-
(1962)
J. Physiol.
, vol.160
, Issue.1
, pp. 106-154
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
44
-
-
0019152630
-
Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
K. Fukushima, "Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biol. Cybern. 36(4), 193-202 (1980).
-
(1980)
Biol. Cybern.
, vol.36
, Issue.4
, pp. 193-202
-
-
Fukushima, K.1
-
45
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava et al., "Dropout: a simple way to prevent neural networks from overfitting," J. Mach. Learn. Res. 15(1), 1929-1958 (2014).
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
-
46
-
-
84906508687
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
Springer
-
K. He et al., "Spatial pyramid pooling in deep convolutional networks for visual recognition," in Computer Vision-ECCV 2014, pp. 346-361, Springer (2014).
-
(2014)
Computer Vision-ECCV 2014
, pp. 346-361
-
-
He, K.1
-
47
-
-
84908678178
-
Network in network
-
abs/1312.4400
-
M. Lin, Q. Chen, and S. Yan, "Network in network," CoRR, abs/1312.4400 (2013).
-
(2013)
CoRR
-
-
Lin, M.1
Chen, Q.2
Yan, S.3
-
49
-
-
84890425279
-
Unsupervised feature learning for aerial scene classification
-
A. M. Cheriyadat, "Unsupervised feature learning for aerial scene classification," IEEE Trans. Geosci. Remote Sens. 52(1), 439-451 (2014).
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.1
, pp. 439-451
-
-
Cheriyadat, A.M.1
-
50
-
-
84897487847
-
No more pesky learning rates
-
arXiv preprint arXiv:1206.1106
-
T. Schaul, S. Zhang, and Y. LeCun, "No more pesky learning rates," in Proceedings of the 30th International Conference on Machine Learning, pp. 343-351, arXiv preprint arXiv:1206.1106 (2012).
-
(2012)
Proceedings of the 30th International Conference on Machine Learning
, pp. 343-351
-
-
Schaul, T.1
Zhang, S.2
LeCun, Y.3
|