메뉴 건너뛰기




Volumn 10, Issue 2, 2016, Pages

Large patch convolutional neural networks for the scene classification of high spatial resolution imagery

Author keywords

deep convolutional neural networks; high spatial resolution image; large patch sampling; remote sensing; scene classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; IMAGE CLASSIFICATION; IMAGE RESOLUTION; LAND USE; NEURAL NETWORKS; REMOTE SENSING; SEMANTICS;

EID: 84967166415     PISSN: None     EISSN: 19313195     Source Type: Journal    
DOI: 10.1117/1.JRS.10.025006     Document Type: Article
Times cited : (122)

References (50)
  • 1
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • T. Blaschke, "Object based image analysis for remote sensing," ISPRS J. Photogramm. Remote Sens. 65(1), 2-16 (2010).
    • (2010) ISPRS J. Photogramm. Remote Sens. , vol.65 , Issue.1 , pp. 2-16
    • Blaschke, T.1
  • 2
    • 42549151598 scopus 로고    scopus 로고
    • Research on classification of high-resolution remote sensing image
    • X. Zhang, B. Wu, and Q. Li, "Research on classification of high-resolution remote sensing image," Proc. SPIE 6786, 67862Z (2007).
    • (2007) Proc. SPIE , vol.6786 , pp. 67862Z
    • Zhang, X.1    Wu, B.2    Li, Q.3
  • 3
    • 84255182004 scopus 로고    scopus 로고
    • Classification of high spatial resolution remote sensing image using SVM and local spatial statistics Getis-Ord Gi
    • X. Wang, X. Chen, and M. Li, "Classification of high spatial resolution remote sensing image using SVM and local spatial statistics Getis-Ord Gi," Proc. SPIE 8006, 80060N (2011).
    • (2011) Proc. SPIE , vol.8006 , pp. 80060N
    • Wang, X.1    Chen, X.2    Li, M.3
  • 4
    • 42549168493 scopus 로고    scopus 로고
    • High resolution remote sensing image classification with multiple classifiers based on mixed combining rule
    • Z. Chen et al., "High resolution remote sensing image classification with multiple classifiers based on mixed combining rule," Proc. SPIE 6788, 67881J (2007).
    • (2007) Proc. SPIE , vol.6788 , pp. 67881J
    • Chen, Z.1
  • 5
    • 34547469390 scopus 로고    scopus 로고
    • Can high-level concepts fill the semantic gap in video retrieval? A case study with broadcast news
    • A. Hauptmann et al., "Can high-level concepts fill the semantic gap in video retrieval? A case study with broadcast news," IEEE Trans. Multimedia 9, 958-966 (2007).
    • (2007) IEEE Trans. Multimedia , vol.9 , pp. 958-966
    • Hauptmann, A.1
  • 6
    • 84866009594 scopus 로고    scopus 로고
    • Scene classification using a multi-resolution bag-of-features model
    • L. Zhou, Z. Zhou, and D. Hu, "Scene classification using a multi-resolution bag-of-features model," Pattern Recognit. 46(1), 424-433 (2013).
    • (2013) Pattern Recognit. , vol.46 , Issue.1 , pp. 424-433
    • Zhou, L.1    Zhou, Z.2    Hu, D.3
  • 7
    • 75749158448 scopus 로고    scopus 로고
    • Scene categorization via contextual visual words
    • J. Qin and N. H. Yung, "Scene categorization via contextual visual words," Pattern Recognit. 43(5), 1874-1888 (2010).
    • (2010) Pattern Recognit. , vol.43 , Issue.5 , pp. 1874-1888
    • Qin, J.1    Yung, N.H.2
  • 8
    • 85027929099 scopus 로고    scopus 로고
    • Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification
    • F. Hu et al., "Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 2015-2030 (2015).
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.8 , pp. 2015-2030
    • Hu, F.1
  • 9
    • 34047192082 scopus 로고    scopus 로고
    • Which is the best way to organize/classify images by content?
    • A. Bosch, X. Muñoz, and R. Martí, "Which is the best way to organize/classify images by content?," Image Vision Comput. 25(6), 778-791 (2007).
    • (2007) Image Vision Comput. , vol.25 , Issue.6 , pp. 778-791
    • Bosch, A.1    Muñoz, X.2    Martí, R.3
  • 11
    • 3042685989 scopus 로고    scopus 로고
    • Improved scene classification using efficient lowlevel features and semantic cues
    • N. Serrano, A. E. Savakis, and J. Luo, "Improved scene classification using efficient lowlevel features and semantic cues," Pattern Recognit. 37(9), 1773-1784 (2004).
    • (2004) Pattern Recognit. , vol.37 , Issue.9 , pp. 1773-1784
    • Serrano, N.1    Savakis, A.E.2    Luo, J.3
  • 12
    • 84962528662 scopus 로고    scopus 로고
    • The Fisher Kernel coding framework for high spatial resolution scene classification
    • B. Zhao et al., "The Fisher Kernel coding framework for high spatial resolution scene classification," Remote Sens. 8(2), 157 (2016).
    • (2016) Remote Sens. , vol.8 , Issue.2 , pp. 157
    • Zhao, B.1
  • 13
    • 84962585158 scopus 로고    scopus 로고
    • A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery
    • B. Zhao, Y. Zhong, and L. Zhang, "A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery," ISPRS J. Photogramm. Remote Sens. 116, 73-85 (2016).
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.116 , pp. 73-85
    • Zhao, B.1    Zhong, Y.2    Zhang, L.3
  • 14
    • 84947933375 scopus 로고    scopus 로고
    • Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery
    • B. Zhao et al., "Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery," IEEE Trans. Geosci. Remote Sens. 54(4), 2108-2123 (2016).
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.4 , pp. 2108-2123
    • Zhao, B.1
  • 15
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • IEEE
    • S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: spatial pyramid matching for recognizing natural scene categories," in IEEE Conf. on Computer Vision and Pattern Recognition, Vol. 2, pp. 2169-2178, IEEE (2006).
    • (2006) IEEE Conf. on Computer Vision and Pattern Recognition , vol.2 , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 16
    • 37849036011 scopus 로고    scopus 로고
    • Evaluating bag-of-visual-words representations in scene classification
    • ACM
    • J. Yang et al., "Evaluating bag-of-visual-words representations in scene classification," in Proc. of the Int. Workshop on Multimedia Information Retrieval, pp. 197-206, ACM (2007).
    • (2007) Proc. of the Int. Workshop on Multimedia Information Retrieval , pp. 197-206
    • Yang, J.1
  • 20
    • 84868112918 scopus 로고    scopus 로고
    • Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVWand pLSA
    • G. Cheng et al., "Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVWand pLSA," Int. J. Remote Sens. 34(1), 45-59 (2013).
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.1 , pp. 45-59
    • Cheng, G.1
  • 22
    • 50649087214 scopus 로고    scopus 로고
    • Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes
    • IEEE
    • L. Cao and L. Fei-Fei, "Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes," in IEEE 11th Int. Conf. on Computer Vision, pp. 1-8, IEEE (2007).
    • (2007) IEEE 11th Int. Conf. on Computer Vision , pp. 1-8
    • Cao, L.1    Fei-Fei, L.2
  • 23
    • 75449091209 scopus 로고    scopus 로고
    • Semantic annotation of satellite images using latent Dirichlet allocation
    • M. Liénou, H. Maître, and M. Datcu, "Semantic annotation of satellite images using latent Dirichlet allocation," IEEE Geosci. Remote Sens. Lett. 7(1), 28-32 (2010).
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.1 , pp. 28-32
    • Liénou, M.1    Maître, H.2    Datcu, M.3
  • 24
    • 84885021651 scopus 로고    scopus 로고
    • Latent Dirichlet allocation for spatial analysis of satellite images
    • C. Vaduva, I. Gavat, and M. Datcu, "Latent Dirichlet allocation for spatial analysis of satellite images," IEEE Trans. Geosci. Remote Sens. 51(5), 2770-2786 (2013).
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2770-2786
    • Vaduva, C.1    Gavat, I.2    Datcu, M.3
  • 25
    • 85027956142 scopus 로고    scopus 로고
    • Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery
    • Y. Zhong, Q. Zhu, and L. Zhang, "Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery," IEEE Trans. Geosci. Remote Sens. 53, 6207-6222 (2015).
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , pp. 6207-6222
    • Zhong, Y.1    Zhu, Q.2    Zhang, L.3
  • 26
    • 84908032942 scopus 로고    scopus 로고
    • Saliency-guided unsupervised feature learning for scene classification
    • F. Zhang, B. Du, and L. Zhang, "Saliency-guided unsupervised feature learning for scene classification," IEEE Trans. Geosci. Remote Sens. 53(4), 2175-2184 (2015).
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 2175-2184
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 27
    • 84863038460 scopus 로고    scopus 로고
    • Spatial pyramid co-occurrence for image classification
    • IEEE, Barcelona
    • Y. Yang and S. Newsam, "Spatial pyramid co-occurrence for image classification," in IEEE Int. Conf. on Computer Vision (ICCV '11), pp. 1465-1472, IEEE, Barcelona (2011).
    • (2011) IEEE Int. Conf. on Computer Vision (ICCV '11) , pp. 1465-1472
    • Yang, Y.1    Newsam, S.2
  • 29
    • 84941204620 scopus 로고    scopus 로고
    • Gabor-filtering-based completed local binary patterns for land-use scene classification
    • C. Chen et al., "Gabor-filtering-based completed local binary patterns for land-use scene classification," in IEEE Int. Conf. on Multimedia Big Data (BigMM), pp. 324-329 (2015).
    • (2015) IEEE Int. Conf. on Multimedia Big Data (BigMM) , pp. 324-329
    • Chen, C.1
  • 30
    • 84938519282 scopus 로고    scopus 로고
    • Land-use scene classification using multi-scale completed local binary patterns
    • C. Chen et al., "Land-use scene classification using multi-scale completed local binary patterns," Signal Image Video Process. 10(4), 745-752 (2015)
    • (2015) Signal Image Video Process , vol.10 , Issue.4 , pp. 745-752
    • Chen, C.1
  • 31
    • 84881242291 scopus 로고    scopus 로고
    • A hierarchical scheme of multiple feature fusion for high-resolution satellite scene categorization
    • Springer, Switzerland
    • W. Shao et al., "A hierarchical scheme of multiple feature fusion for high-resolution satellite scene categorization," in Computer Vision Systems, pp. 324-333, Springer, Switzerland (2013).
    • (2013) Computer Vision Systems , pp. 324-333
    • Shao, W.1
  • 32
    • 84863271556 scopus 로고    scopus 로고
    • High-resolution satellite scene classification using a sparse coding based multiple feature combination
    • G. Sheng et al., "High-resolution satellite scene classification using a sparse coding based multiple feature combination," Int. J. Remote Sens. 33(8), 2395-2412 (2012).
    • (2012) Int. J. Remote Sens. , vol.33 , Issue.8 , pp. 2395-2412
    • Sheng, G.1
  • 33
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," FNT Mach. Learn. 2(1), 1-127 (2009).
    • (2009) FNT Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 34
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature 521(7553), 436-444 (2015).
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 35
    • 84966941275 scopus 로고    scopus 로고
    • Deep learning for remote sensing image understanding
    • L. Zhang et al., "Deep learning for remote sensing image understanding," J. Sensors 501, 173691 (2015).
    • (2015) J. Sensors , vol.501 , pp. 173691
    • Zhang, L.1
  • 37
    • 84959213942 scopus 로고    scopus 로고
    • CuDNN: Efficient primitives for deep learning
    • arXiv preprint arXiv:1410.0759
    • S. Chetlur et al., "CuDNN: efficient primitives for deep learning," CoRR, arXiv preprint arXiv:1410.0759 (2014).
    • (2014) CoRR
    • Chetlur, S.1
  • 41
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • arXiv preprint arXiv:1409.1556
    • K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," CoRR, arXiv preprint arXiv:1409.1556 (2014).
    • (2014) CoRR
    • Simonyan, K.1    Zisserman, A.2
  • 42
    • 85020214070 scopus 로고    scopus 로고
    • Land use classification in remote sensing images by convolutional neural networks
    • arXiv preprint arXiv:1508.00092
    • M. Castelluccio et al., "Land use classification in remote sensing images by convolutional neural networks," CoRR, arXiv preprint arXiv:1508.00092 (2015).
    • (2015) CoRR
    • Castelluccio, M.1
  • 43
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
    • D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex," J. Physiol. 160(1), 106-154 (1962).
    • (1962) J. Physiol. , vol.160 , Issue.1 , pp. 106-154
    • Hubel, D.H.1    Wiesel, T.N.2
  • 44
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima, "Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biol. Cybern. 36(4), 193-202 (1980).
    • (1980) Biol. Cybern. , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 45
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • N. Srivastava et al., "Dropout: a simple way to prevent neural networks from overfitting," J. Mach. Learn. Res. 15(1), 1929-1958 (2014).
    • (2014) J. Mach. Learn. Res. , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1
  • 46
    • 84906508687 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • Springer
    • K. He et al., "Spatial pyramid pooling in deep convolutional networks for visual recognition," in Computer Vision-ECCV 2014, pp. 346-361, Springer (2014).
    • (2014) Computer Vision-ECCV 2014 , pp. 346-361
    • He, K.1
  • 47
    • 84908678178 scopus 로고    scopus 로고
    • Network in network
    • abs/1312.4400
    • M. Lin, Q. Chen, and S. Yan, "Network in network," CoRR, abs/1312.4400 (2013).
    • (2013) CoRR
    • Lin, M.1    Chen, Q.2    Yan, S.3
  • 49
    • 84890425279 scopus 로고    scopus 로고
    • Unsupervised feature learning for aerial scene classification
    • A. M. Cheriyadat, "Unsupervised feature learning for aerial scene classification," IEEE Trans. Geosci. Remote Sens. 52(1), 439-451 (2014).
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 439-451
    • Cheriyadat, A.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.