메뉴 건너뛰기




Volumn 185, Issue , 2016, Pages 1-10

Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging

Author keywords

Data reduction; Deep learning (DL); Hyperspectral remote sensing; Segmented stacked autoencoder (S SAE)

Indexed keywords

ABSTRACTING; CLASSIFICATION (OF INFORMATION); EXTRACTION; FEATURE EXTRACTION; LEARNING SYSTEMS; REMOTE SENSING; SPECTROSCOPY;

EID: 84961344134     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.11.044     Document Type: Article
Times cited : (358)

References (29)
  • 1
    • 84874545698 scopus 로고    scopus 로고
    • Feature mining for hyperspectral image classification
    • Jia X., Kuo B.-C., Crawford M.M. Feature mining for hyperspectral image classification. Proc. IEEE 2013, 101(3):676-697.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 676-697
    • Jia, X.1    Kuo, B.-C.2    Crawford, M.M.3
  • 2
    • 85032778398 scopus 로고    scopus 로고
    • Effective feature extraction and data reduction in remote sensing using hyperspectral imaging
    • Ren J., Zabalza J., Marshall S., Zheng J. Effective feature extraction and data reduction in remote sensing using hyperspectral imaging. IEEE Sig. Process. Mag. 2014, 31(4):149-154.
    • (2014) IEEE Sig. Process. Mag. , vol.31 , Issue.4 , pp. 149-154
    • Ren, J.1    Zabalza, J.2    Marshall, S.3    Zheng, J.4
  • 4
    • 84987817750 scopus 로고    scopus 로고
    • Deep model for classification of hyperspectral image using restricted Boltzmann machine
    • M.E. Midhun, S.R. Nair, V.T.N. Prabhakar, S.S. Kumar, Deep model for classification of hyperspectral image using restricted Boltzmann machine, in: Proceedings of the ICONIAAC, no. 35, 2014.
    • (2014) Proceedings of the ICONIAAC , Issue.35
    • Midhun, M.E.1    Nair, S.R.2    Prabhakar, V.T.N.3    Kumar, S.S.4
  • 7
    • 0023854011 scopus 로고    scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • Green A.A., Berman M., Switzer P., Craig.M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1998, 26(1):65-74.
    • (1998) IEEE Trans. Geosci. Remote Sens. , vol.26 , Issue.1 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4
  • 8
    • 78049253494 scopus 로고    scopus 로고
    • Empirical mode decomposition of hyperspectral images for support vector machine classification
    • Demir B., Ertürk S. Empirical mode decomposition of hyperspectral images for support vector machine classification. IEEE Trans. Geosci. Remote Sens. 2010, 48(11):4071-4084.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4071-4084
    • Demir, B.1    Ertürk, S.2
  • 9
    • 84901819841 scopus 로고    scopus 로고
    • Singular spectrum analysis for effective feature extraction in hyperspectral imaging
    • Zabalza J., Ren J., Wang Z., Marshall S., Wang J. Singular spectrum analysis for effective feature extraction in hyperspectral imaging. IEEE Geosci. Remote Sens. Lett. 2014, 11(11):1886-1890.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.11 , pp. 1886-1890
    • Zabalza, J.1    Ren, J.2    Wang, Z.3    Marshall, S.4    Wang, J.5
  • 10
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Fauvel M., Benediktsson J.A., Chanussot J., Sveinsson J.R. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46(11):3804-3814.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 11
    • 84901402355 scopus 로고    scopus 로고
    • Hyperspectral image classification through bilayer graph-based learning
    • Gao Y., Ji R., Cui P., Dai Q., Hua G. Hyperspectral image classification through bilayer graph-based learning. IEEE Trans. Image Process. 2014, 23(7):2769-2778.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.7 , pp. 2769-2778
    • Gao, Y.1    Ji, R.2    Cui, P.3    Dai, Q.4    Hua, G.5
  • 12
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Chen Y., Nasrabadi N.M., Tran T.D. Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 2011, 49(10):3973-3985.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 13
    • 85027954351 scopus 로고    scopus 로고
    • Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles
    • Xia J., Dalla Mura M., Chanussot J., Du P., He X. Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53(9):4768-4786.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.9 , pp. 4768-4786
    • Xia, J.1    Dalla Mura, M.2    Chanussot, J.3    Du, P.4    He, X.5
  • 16
    • 0032737410 scopus 로고    scopus 로고
    • Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification
    • Jia X., Richards J.A. Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Trans. Geosci. Remote Sens. 1999, 37(1):538-542.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.1 , pp. 538-542
    • Jia, X.1    Richards, J.A.2
  • 17
    • 84899875503 scopus 로고    scopus 로고
    • Novel Folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing
    • Zabalza J., Ren J., Yang M., Zhang Y., Wang J., Marshall S., Han J. Novel Folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing. ISPRS J. Photogramm. Remote Sens. 2014, 93:112-122.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.93 , pp. 112-122
    • Zabalza, J.1    Ren, J.2    Yang, M.3    Zhang, Y.4    Wang, J.5    Marshall, S.6    Han, J.7
  • 18
    • 84961922735 scopus 로고    scopus 로고
    • Purdue's university multispec site: 12/06/92 AVIRIS image Indian Pine Test Site [Online]
    • Purdue's university multispec site: 12/06/92 AVIRIS image Indian Pine Test Site [Online]. Available: . http://https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.htm.
  • 19
    • 84961877883 scopus 로고    scopus 로고
    • Hyperspectral Remote Sensing Scenes [Online]
    • Hyperspectral Remote Sensing Scenes [Online]. Available: . http://www.ehu.es/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.
  • 20
    • 84865560594 scopus 로고    scopus 로고
    • LIBSVM: library for support vector machines
    • C-C. Chang and C-J. Lin, LIBSVM: library for support vector machines. [Online]. Available: . http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • Chang, C.-C.1    Lin, C.-J.2
  • 21
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: evaluating the statistical significance of differences in classification accuracy
    • Foody G.M. Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70(5):627-633.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1
  • 22
    • 85027941688 scopus 로고    scopus 로고
    • Novel 2D singular spectral analysis for effective feature extraction and data classification in hyperspectral imaging
    • Zabalza J., Ren J., Zheng J., Han J., Zhao H., Li S., Marshall S. Novel 2D singular spectral analysis for effective feature extraction and data classification in hyperspectral imaging. IEEE Trans. Geosci. Remote Sens. 2015, 53(8):4418-4433.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.8 , pp. 4418-4433
    • Zabalza, J.1    Ren, J.2    Zheng, J.3    Han, J.4    Zhao, H.5    Li, S.6    Marshall, S.7
  • 23
    • 84889603215 scopus 로고    scopus 로고
    • Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery
    • Zhao C., Li X., Ren J., Marshall S. Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery. Int. J. Remote Sens. 2013, 34(24):8669-8684.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.24 , pp. 8669-8684
    • Zhao, C.1    Li, X.2    Ren, J.3    Marshall, S.4
  • 25
    • 85028166694 scopus 로고    scopus 로고
    • Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
    • Han J., Zhang D., Cheng G., Guo L., Ren J. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 2015, 53(6):3325-3337.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.6 , pp. 3325-3337
    • Han, J.1    Zhang, D.2    Cheng, G.3    Guo, L.4    Ren, J.5
  • 27
    • 85027923663 scopus 로고    scopus 로고
    • Non-rigid structure from motion via sparse representation
    • Li K., Zhu Y., Yang J., Jiang J. Non-rigid structure from motion via sparse representation. IEEE Trans. Cybern. 2015, 45:1401-1413.
    • (2015) IEEE Trans. Cybern. , vol.45 , pp. 1401-1413
    • Li, K.1    Zhu, Y.2    Yang, J.3    Jiang, J.4
  • 28
    • 84905257545 scopus 로고    scopus 로고
    • Gradient-based subspace phase correlation for fast and effective image alignment
    • Ren J., Vlachos T., Zhang Y., Zheng J., Jiang J. Gradient-based subspace phase correlation for fast and effective image alignment. J. Vis. Commun. Image Represent. 2014, 25(7):1558-1565.
    • (2014) J. Vis. Commun. Image Represent. , vol.25 , Issue.7 , pp. 1558-1565
    • Ren, J.1    Vlachos, T.2    Zhang, Y.3    Zheng, J.4    Jiang, J.5
  • 29
    • 84926497888 scopus 로고    scopus 로고
    • Background prior based salient object detection via deep reconstruction residual
    • Han J., Zhang D., Hu X., Guo L., Ren J., Wu F. Background prior based salient object detection via deep reconstruction residual. IEEE Trans. Circuits Syst. Video Technol. 2014, 25(8):1309-1321.
    • (2014) IEEE Trans. Circuits Syst. Video Technol. , vol.25 , Issue.8 , pp. 1309-1321
    • Han, J.1    Zhang, D.2    Hu, X.3    Guo, L.4    Ren, J.5    Wu, F.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.