메뉴 건너뛰기




Volumn 54, Issue 10, 2016, Pages 6232-6251

Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks

Author keywords

Convolutional neural network (CNN); deep learning; feature extraction (FE); Hyperspectral image (HSI) classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; EXTRACTION; FEATURE EXTRACTION; IMAGE PROCESSING; INDEPENDENT COMPONENT ANALYSIS; NEURAL NETWORKS; SPACE PLATFORMS; SPECTROSCOPY; TARGET TRACKING;

EID: 84978805819     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2016.2584107     Document Type: Article
Times cited : (2494)

References (51)
  • 2
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers, " IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 3
    • 84888349041 scopus 로고    scopus 로고
    • Hyperspectral remote sensing data analysis and future challenges
    • Feb.
    • J. B. Dias et al., "Hyperspectral remote sensing data analysis and future challenges, " IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2, pp. 6-36, Feb. 2013.
    • (2013) IEEE Geosci. Remote Sens. Mag. , vol.1 , Issue.2 , pp. 6-36
    • Dias, J.B.1
  • 4
    • 84874545698 scopus 로고    scopus 로고
    • Feature mining for hyperspectral image classification
    • Mar.
    • X. Jia, B. Kuo, M. M. Crawford, "Feature mining for hyperspectral image classification, " Proc. IEEE, vol. 101, no. 3, pp. 676-679, Mar. 2013.
    • (2013) Proc IEEE , vol.101 , Issue.3 , pp. 676-679
    • Jia, X.1    Kuo, B.2    Crawford, M.M.3
  • 5
    • 84858078312 scopus 로고    scopus 로고
    • Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles
    • May
    • G. Licciardi, P. R. Marpu, J. Chanussot, J. A. Benediktsson, "Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles, " IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 447-451, May 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.3 , pp. 447-451
    • Licciardi, G.1    Marpu, P.R.2    Chanussot, J.3    Benediktsson, J.A.4
  • 6
    • 82155191285 scopus 로고    scopus 로고
    • Hyperspectral image classification with independent component discriminant analysis
    • Dec.
    • A. Villa, J. A. Benediktsson, J. Chanussot, C. Jutten, "Hyperspectral image classification with independent component discriminant analysis, " IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 4865-4876, Dec. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.12 , pp. 4865-4876
    • Villa, A.1    Benediktsson, J.A.2    Chanussot, J.3    Jutten, C.4
  • 7
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hyperspectral images with regularized linear discriminant analysis
    • Mar.
    • T. V. Bandos, L. Bruzzone, G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis, " IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862-873, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 8
    • 0036821665 scopus 로고    scopus 로고
    • Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction
    • Oct.
    • L. M. Bruce, C. H. Koger, J. Li, "Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction, " IEEE Trans. Geosci. Remote Sens., vol. 40, no. 10, pp. 2331-2338, Oct. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.10 , pp. 2331-2338
    • Bruce, L.M.1    Koger, C.H.2    Li, J.3
  • 9
    • 0033224771 scopus 로고    scopus 로고
    • Hyperspectral data analysis and supervised feature reduction via projection pursuit
    • Nov.
    • L. O. Jimenez and D. A. Landgrebe, "Hyperspectral data analysis and supervised feature reduction via projection pursuit, " IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2653-2667, Nov. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.6 , pp. 2653-2667
    • Jimenez, L.O.1    Landgrebe, D.A.2
  • 10
    • 85032751123 scopus 로고    scopus 로고
    • Manifold-learningbased feature extraction for classification of hyperspectral data: A review of advances in manifold learning
    • Jan.
    • D. Lunga, S. Prasad, M. M. Crawford, O. Ersoy, "Manifold-learningbased feature extraction for classification of hyperspectral data: A review of advances in manifold learning, " IEEE Signal Process. Mag., vol. 31, no. 1, pp. 55-66, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 55-66
    • Lunga, D.1    Prasad, S.2    Crawford, M.M.3    Ersoy, O.4
  • 11
    • 53849126897 scopus 로고    scopus 로고
    • Investigation of nonlinearity in hyperspectral imagery using surrogate data methods
    • Oct.
    • T. Han, D. Goodenough, "Investigation of nonlinearity in hyperspectral imagery using surrogate data methods, " IEEE Trans. Geosci. Remote Sens., vol. 46, no. 10, pp. 2840-2847, Oct. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.10 , pp. 2840-2847
    • Han, T.1    Goodenough, D.2
  • 12
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Dec.
    • B. Tenenbaum, V. Silva, C. Langford, "A global geometric framework for nonlinear dimensionality reduction, " Science, vol. 290, no. 5500, pp. 2319-2323, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, B.1    Silva, V.2    Langford, C.3
  • 13
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Dec.
    • S. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding, " Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.K.2
  • 14
    • 39049167499 scopus 로고    scopus 로고
    • Improved manifold coordinate representations of large-scale hyperspectral scenes
    • Oct.
    • C. M. Bachmann, T. L. Ainsworth, R. A. Fusina, "Improved manifold coordinate representations of large-scale hyperspectral scenes, " IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2786-2803, Oct. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2786-2803
    • Bachmann, C.M.1    Ainsworth, T.L.2    Fusina, R.A.3
  • 16
    • 63149143190 scopus 로고    scopus 로고
    • Kernel nonparametric weighted feature extraction for hyperspectral image classification
    • Apr.
    • B. C. Kuo, C. H. Li, J. M. Yang, "Kernel nonparametric weighted feature extraction for hyperspectral image classification, " IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1139-1155, Apr. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.4 , pp. 1139-1155
    • Kuo, B.C.1    Li, C.H.2    Yang, J.M.3
  • 18
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar.
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images, " Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 19
    • 77958017904 scopus 로고    scopus 로고
    • SVM-and MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, J. A. Benediktsson, "SVM-and MRF-based method for accurate classification of hyperspectral images, " IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 20
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov.
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, J. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles, " IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.4
  • 21
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • Feb.
    • J. Li, J. M. Bioucas-Dias, A. Plaza, "Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning, " IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 844-856, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 22
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct.
    • Y. Chen, N. M. Nasrabadi, T. D. Tran, "Hyperspectral image classification using dictionary-based sparse representation, " IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 23
    • 84896329631 scopus 로고    scopus 로고
    • Remotely sensed image classification using sparse representations of morphological attribute profiles
    • Aug.
    • B. Song, J. Li, J. M. Bioucas-Dias, J. A. Benediktsson, "Remotely sensed image classification using sparse representations of morphological attribute profiles, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 5122-5136, Aug. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.8 , pp. 5122-5136
    • Song, B.1    Li, J.2    Bioucas-Dias, J.M.3    Benediktsson, J.A.4
  • 24
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning. A review and new perspectives
    • Aug.
    • Y. Bengio, A. Courville, P. Vincent, "Representation learning. A review and new perspectives, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 25
    • 84879847917 scopus 로고    scopus 로고
    • Deep hierarchies in primate visual cortex what can we learn for computer vision?
    • Aug.
    • N. Kruger et al., "Deep hierarchies in primate visual cortex what can we learn for computer vision?" IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1847-1871, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1847-1871
    • Kruger, N.1
  • 26
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Lake Tahoe, NV, USA
    • A. Krizhevsky, I. Sutskever, G. Hinton, "ImageNet classification with deep convolutional neural networks, " in Proc. Neural Inf. Process. Syst., Lake Tahoe, NV, USA, 2012, pp. 1106-1114.
    • (2012) Proc. Neural Inf. Process. Syst. , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 27
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Jul.
    • G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, Jul. 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 28
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, "Gradient-based learning applied to document recognition, " Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 30
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on deep belief network
    • Jun.
    • Y. Chen, X. Zhao, X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 1-12, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 1-12
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 31
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Mar.
    • A. Romero, C. Gatta, G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1349-1362, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 33
    • 84975276799 scopus 로고    scopus 로고
    • ImageNet: A large-scale hierarchical image database
    • Miami, FL, USA
    • J. Deng and F. Li, "ImageNet: A large-scale hierarchical image database, " in Proc. CVPR, Miami, FL, USA, 2009, pp. 248-255.
    • (2009) Proc. CVPR , pp. 248-255
    • Deng, J.1    Li, F.2
  • 34
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Jul.
    • G. E. Hinton, S. Osindero, Y. Teh, "A fast learning algorithm for deep belief nets, " Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 35
    • 77955997114 scopus 로고    scopus 로고
    • Deep belief networks are compact universal approximators
    • Aug.
    • N. LeRoux and Y. Bengio, "Deep belief networks are compact universal approximators, " Neural Comput., vol. 22, no. 8, pp. 2192-2207, Aug. 2010.
    • (2010) Neural Comput. , vol.22 , Issue.8 , pp. 2192-2207
    • LeRoux, N.1    Bengio, Y.2
  • 37
    • 84971671959 scopus 로고    scopus 로고
    • Learning contextual dependence with convolutional hierarchical recurrent neural networks
    • Jul.
    • Z. Zuo et al., "Learning contextual dependence with convolutional hierarchical recurrent neural networks, " IEEE Trans. Image Process., vol. 25, no. 7, pp. 2983-2996, Jul. 2016.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.7 , pp. 2983-2996
    • Zuo, Z.1
  • 38
    • 84937522268 scopus 로고    scopus 로고
    • Going deeper with convolutions
    • Boston, MA, USA
    • C. Szegedy et al., "Going deeper with convolutions, " in Proc. IEEE CVPR, Boston, MA, USA, 2015, pp. 1-9.
    • (2015) Proc IEEE CVPR , pp. 1-9
    • Szegedy, C.1
  • 39
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition, " in Proc. ICLR, 2015, pp. 1-14.
    • (2015) Proc. ICLR , pp. 1-14
    • Simonyan, K.1    Zisserman, A.2
  • 40
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Columbus, OH, USA
    • R. Girshick, J. Donahue, T. Darrell, J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation, " in Proc. IEEE CVPR, Columbus, OH, USA, 2014, pp. 581-587.
    • (2014) Proc IEEE CVPR , pp. 581-587
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 41
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for non-orthogonal problems
    • Jan.
    • A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for non-orthogonal problems, " Technimetrics, vol. 12, no. 1, pp. 55-67, Jan. 1970.
    • (1970) Technimetrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 42
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • Haifa, Israel
    • V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines, " in Proc. Int. Conf. Mach. Learn., Haifa, Israel, 2010, pp. 807-814.
    • (2010) Proc. Int. Conf. Mach. Learn. , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 43
    • 85010054420 scopus 로고    scopus 로고
    • Improving neural networks by preventing coadaptation of feature detectors
    • G. E. Hinton et al., "Improving neural networks by preventing coadaptation of feature detectors, " Comput. Sci., vol. 3, no. 4, pp. 212-223, 2012.
    • (2012) Comput. Sci. , vol.3 , Issue.4 , pp. 212-223
    • Hinton, G.E.1
  • 44
    • 84899410000 scopus 로고    scopus 로고
    • Approximate l-fold crossvalidation with least squares SVM and kernel ridge regression
    • Miami, FL, USA, Dec.
    • R. E. Edwards, H. Zhang, L. E. Parker, "Approximate l-fold crossvalidation with least squares SVM and kernel ridge regression, " in Proc. 12th ICMLA, Miami, FL, USA, Dec. 2013, pp. 58-64.
    • (2013) Proc. 12th ICMLA , pp. 58-64
    • Edwards, R.E.1    Zhang, H.2    Parker, L.E.3
  • 45
    • 84948395351 scopus 로고
    • Remote sensing: The quantitative approach
    • Jun.
    • W. Hofmann, "Remote sensing: The quantitative approach, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 3, no. 6, pp. 713-714, Jun. 1981.
    • (1981) IEEE Trans. Pattern Anal. Mach. Intell. , vol.3 , Issue.6 , pp. 713-714
    • Hofmann, W.1
  • 47
    • 36248930957 scopus 로고    scopus 로고
    • LLE-PLS nonlinear modeling method for near infrared spectroscopy and its application
    • Oct.
    • H. Yang, F. Qin, Y. Wang, "LLE-PLS nonlinear modeling method for near infrared spectroscopy and its application, " Spectrosc. Spectral Anal., vol. 27, no. 10, pp. 1955-1958, Oct. 2007.
    • (2007) Spectrosc. Spectral Anal. , vol.27 , Issue.10 , pp. 1955-1958
    • Yang, H.1    Qin, F.2    Wang, Y.3
  • 48
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Mar.
    • C. Chang and C. Lin, "LIBSVM: A library for support vector machines, " ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27, Mar. 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.1    Lin, C.2
  • 49
    • 85027940869 scopus 로고    scopus 로고
    • Multimodal classification of remote sensing images: A review and future directions
    • Nov.
    • L. G. Chova, D. Tuia, G. Moser, G. C. Valls, "Multimodal classification of remote sensing images: A review and future directions, " Proc. IEEE, vol. 103, no. 9, pp. 1560-1584, Nov. 2015.
    • (2015) Proc IEEE , vol.103 , Issue.9 , pp. 1560-1584
    • Chova, L.G.1    Tuia, D.2    Moser, G.3    Valls, G.C.4
  • 50
    • 84947865496 scopus 로고    scopus 로고
    • Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
    • Dec.
    • C. Tao, H. Pan, Y. Li, Z. Zou, "Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification, " IEEE Geosci. Remote Sens. Lett., vol. 12, no. 12, pp. 2438-2442, Dec. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.12 , pp. 2438-2442
    • Tao, C.1    Pan, H.2    Li, Y.3    Zou, Z.4
  • 51
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Mar.
    • J. A. Benediktsson, J. A. Palmason, J. R. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles, " IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.