메뉴 건너뛰기




Volumn , Issue , 2016, Pages 217-225

Learning what and where to draw

Author keywords

[No Author keywords available]

Indexed keywords

BIRDS; LOCATION; STEREO VISION;

EID: 85018890661     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (688)

References (27)
  • 1
    • 84959243017 scopus 로고    scopus 로고
    • Evaluation of output embeddings for fine-grained image classification
    • Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of Output Embeddings for Fine-Grained Image Classification. In CVPR, 2015.
    • (2015) CVPR
    • Akata, Z.1    Reed, S.2    Walter, D.3    Lee, H.4    Schiele, B.5
  • 2
    • 84911448580 scopus 로고    scopus 로고
    • 2d human pose estimation: New benchmark and state of the art analysis
    • June
    • M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose estimation: New benchmark and state of the art analysis. In CVPR, June 2014.
    • (2014) CVPR
    • Andriluka, M.1    Pishchulin, L.2    Gehler, P.3    Schiele, B.4
  • 4
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 2015.
    • (2015) NIPS
    • Denton, E.L.1    Chintala, S.2    Fergus, R.3
  • 5
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • A. Dosovitskiy, J. Tobias Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Dosovitskiy, A.1    Tobias Springenberg, J.2    Brox, T.3
  • 10
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 11
    • 84952349298 scopus 로고    scopus 로고
    • Unifying visual-semantic embeddings with multimodal neural language models
    • R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying visual-semantic embeddings with multimodal neural language models. In ACL, 2014.
    • (2014) ACL
    • Kiros, R.1    Salakhutdinov, R.2    Zemel, R.S.3
  • 13
    • 84862524901 scopus 로고    scopus 로고
    • The neural autoregressive distribution estimator
    • H. Larochelle and I. Murray. The neural autoregressive distribution estimator. In AISTATS, 2011.
    • (2011) AISTATS
    • Larochelle, H.1    Murray, I.2
  • 15
    • 84965178314 scopus 로고    scopus 로고
    • Action-conditional video prediction using deep networks in atari games
    • J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh. Action-conditional video prediction using deep networks in atari games. In NIPS, 2015.
    • (2015) NIPS
    • Oh, J.1    Guo, X.2    Lee, H.3    Lewis, R.L.4    Singh, S.5
  • 17
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 19
    • 84986250442 scopus 로고    scopus 로고
    • Learning deep representations for fine-grained visual descriptions
    • S. Reed, Z. Akata, H. Lee, and B. Schiele. Learning deep representations for fine-grained visual descriptions. In CVPR, 2016a.
    • (2016) CVPR
    • Reed, S.1    Akata, Z.2    Lee, H.3    Schiele, B.4
  • 21
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 24
    • 84965111399 scopus 로고    scopus 로고
    • Generative image modeling using spatial lstms
    • L. Theis and M. Bethge. Generative image modeling using spatial lstms. In NIPS, 2015.
    • (2015) NIPS
    • Theis, L.1    Bethge, M.2
  • 27
    • 84965161391 scopus 로고    scopus 로고
    • Weakly-supervised disentangling with recurrent transformations for 3d view synthesis
    • J. Yang, S. Reed, M.-H. Yang, and H. Lee. Weakly-supervised disentangling with recurrent transformations for 3d view synthesis. In NIPS, 2015.
    • (2015) NIPS
    • Yang, J.1    Reed, S.2    Yang, M.-H.3    Lee, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.