메뉴 건너뛰기




Volumn 99, Issue , 2016, Pages 19-27

Supervised remote sensing image segmentation using boosted convolutional neural networks

Author keywords

Artificial neural networks; Image segmentation; Multispectral imaging; Remote sensing

Indexed keywords

CONVOLUTION; FEATURE EXTRACTION; IMAGE RECONSTRUCTION; IMAGE SEGMENTATION; NEURAL NETWORKS;

EID: 84961217641     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2016.01.028     Document Type: Article
Times cited : (50)

References (38)
  • 2
    • 35348873693 scopus 로고    scopus 로고
    • Multicomponent image segmentation using a genetic algorithm and artificial neural network
    • M. Awad, K. Chehdi, and A. Nasri Multicomponent image segmentation using a genetic algorithm and artificial neural network IEEE Geosci. Remote Sens. Lett. 4 4 2007 571 575 10.1109/LGRS.2007.903064
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.4 , pp. 571-575
    • Awad, M.1    Chehdi, K.2    Nasri, A.3
  • 3
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation
    • M. Baatz, and A. Schape Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation Angewandte Geographische Informationsverarbeitung XII 2000 12 23
    • (2000) Angewandte Geographische Informationsverarbeitung XII , pp. 12-23
    • Baatz, M.1    Schape, A.2
  • 4
    • 63949083045 scopus 로고    scopus 로고
    • Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors
    • G. Chander, B. Markham, and D. Helder Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors Remote Sens. Environ. 113 5 2009 893 903
    • (2009) Remote Sens. Environ. , vol.113 , Issue.5 , pp. 893-903
    • Chander, G.1    Markham, B.2    Helder, D.3
  • 5
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • X. Chen, S. Xiang, C. Liu, and C. Pan Vehicle detection in satellite images by hybrid deep convolutional neural networks IEEE Geosci. Remote Sens. Lett. 11 10 2014 1797 1801 10.1109/LGRS.2014.2309695
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.3    Pan, C.4
  • 6
    • 34748845695 scopus 로고    scopus 로고
    • Object-oriented classification for urban land cover mapping with ASTER imagery
    • Y. Chen, P. Shi, T. Fung, J. Wang, and X. Li Object-oriented classification for urban land cover mapping with ASTER imagery Int. J. Remote Sens. 28 20 2007 4645 4651 10.1080/01431160500444731
    • (2007) Int. J. Remote Sens. , vol.28 , Issue.20 , pp. 4645-4651
    • Chen, Y.1    Shi, P.2    Fung, T.3    Wang, J.4    Li, X.5
  • 8
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images with deep neural networks
    • K. Mori, I. Sakuma, Y. Sato, C. Barillot, N. Navab, Lecture Notes in Computer Science Springer Berlin Heidelberg
    • D. Ciresan, A. Giusti, L. Gambardella, and J. Schmidhuber Mitosis detection in breast cancer histology images with deep neural networks K. Mori, I. Sakuma, Y. Sato, C. Barillot, N. Navab, Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science vol. 8150 2013 Springer Berlin Heidelberg 411 418
    • (2013) Medical Image Computing and Computer-Assisted Intervention , vol.8150 , pp. 411-418
    • Ciresan, D.1    Giusti, A.2    Gambardella, L.3    Schmidhuber, J.4
  • 11
    • 84880121350 scopus 로고    scopus 로고
    • The McNemar test for binary matched-pairs data: Mid-p and asymptotic are better than exact conditional
    • M. Fagerland, S. Lydersen, and P. Laake The McNemar test for binary matched-pairs data: mid-p and asymptotic are better than exact conditional BMC Med. Res. Methodol. 13 1 2013 91 10.1186/1471-2288-13-91
    • (2013) BMC Med. Res. Methodol. , vol.13 , Issue.1 , pp. 91
    • Fagerland, M.1    Lydersen, S.2    Laake, P.3
  • 12
    • 77951286543 scopus 로고    scopus 로고
    • Recursive texture fragmentation and reconstruction segmentation algorithm applied to VHR images
    • IEEE Cape Town, South Africa
    • R. Gaetano, G. Scarpa, and G. Poggi Recursive texture fragmentation and reconstruction segmentation algorithm applied to VHR images IEEE International Geoscience and Remote Sensing Symposium vol. 4 2009 IEEE Cape Town, South Africa 101 104 10.1109/IGARSS.2009.5417364
    • (2009) IEEE International Geoscience and Remote Sensing Symposium , vol.4 , pp. 101-104
    • Gaetano, R.1    Scarpa, G.2    Poggi, G.3
  • 13
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li Deep convolutional neural networks for hyperspectral image classification J. Sens. 2015 2015 12 10.1155/2015/258619
    • (2015) J. Sens. , vol.2015 , pp. 12
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 14
    • 37249089673 scopus 로고    scopus 로고
    • Object-based change detection using correlation image analysis and image segmentation
    • J. Im, J. Jensen, and J. Tullis Object-based change detection using correlation image analysis and image segmentation Int. J. Remote Sens. 29 2 2008 399 423 10.1080/01431160601075582
    • (2008) Int. J. Remote Sens. , vol.29 , Issue.2 , pp. 399-423
    • Im, J.1    Jensen, J.2    Tullis, J.3
  • 15
    • 84869054245 scopus 로고    scopus 로고
    • High-resolution urban land-cover classification using a competitive multi-scale object-based approach
    • B. Johnson High-resolution urban land-cover classification using a competitive multi-scale object-based approach Remote Sens. Lett. 4 2 2013 131 140 10.1080/2150704X.2012.705440
    • (2013) Remote Sens. Lett. , vol.4 , Issue.2 , pp. 131-140
    • Johnson, B.1
  • 16
    • 77956942046 scopus 로고    scopus 로고
    • Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization
    • C. Jung, and C. Kim Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization IEEE Trans. Biomed. Eng. 57 10 2010 2600 2604 10.1109/TBME.2010.2060336
    • (2010) IEEE Trans. Biomed. Eng. , vol.57 , Issue.10 , pp. 2600-2604
    • Jung, C.1    Kim, C.2
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Curran Associates, Inc. Stateline, NV
    • A. Krizhevsky, I. Sutskever, and G. Hinton Imagenet classification with deep convolutional neural networks Advances in Neural Information Processing Systems 2012 Curran Associates, Inc. Stateline, NV 1097 1105
    • (2012) Advances in Neural Information Processing Systems , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 18
    • 57849090519 scopus 로고    scopus 로고
    • An efficient multi-scale segmentation for high-resolution remote sensing imagery based on Statistical region merging and minimum heterogeneity rule
    • IEEE Beijing, China
    • H. Li, H. Gu, Y. Han, and J. Yang An efficient multi-scale segmentation for high-resolution remote sensing imagery based on Statistical region merging and minimum heterogeneity rule International Workshop on Earth Observation and Remote Sensing Applications 2008 IEEE Beijing, China 1 6
    • (2008) International Workshop on Earth Observation and Remote Sensing Applications , pp. 1-6
    • Li, H.1    Gu, H.2    Han, Y.3    Yang, J.4
  • 19
    • 34548334676 scopus 로고    scopus 로고
    • Parallel fine spatial resolution satellite sensor image segmentation based on an improved Pulse-Coupled Neural Network
    • L. Li, J. Ma, and Q. Wen Parallel fine spatial resolution satellite sensor image segmentation based on an improved Pulse-Coupled Neural Network Int. J. Remote Sens. 28 18 2007 4191 4198 10.1080/01431160701442047
    • (2007) Int. J. Remote Sens. , vol.28 , Issue.18 , pp. 4191-4198
    • Li, L.1    Ma, J.2    Wen, Q.3
  • 20
    • 84862819703 scopus 로고    scopus 로고
    • Automatic target detection in high-resolution remote sensing images using a contour-based spatial model
    • Y. Li, X. Sun, H. Wang, H. Sun, and X. Li Automatic target detection in high-resolution remote sensing images using a contour-based spatial model IEEE Geosci. Remote Sens. Lett. 9 5 2012 886 890 10.1109/LGRS.2012.2183337
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.5 , pp. 886-890
    • Li, Y.1    Sun, X.2    Wang, H.3    Sun, H.4    Li, X.5
  • 22
    • 80052153041 scopus 로고    scopus 로고
    • Enhanced evaluation of image segmentation results
    • P. Marpu, M. Neubert, H. Herold, and I. Niemeyer Enhanced evaluation of image segmentation results J. Spat. Sci. 55 1 2010 55 68 10.1080/14498596.2010.487850
    • (2010) J. Spat. Sci. , vol.55 , Issue.1 , pp. 55-68
    • Marpu, P.1    Neubert, M.2    Herold, H.3    Niemeyer, I.4
  • 23
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • IEEE British Columbia, Canada
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics IEEE International Conference on Computer Vision vol. 2 2001 IEEE British Columbia, Canada 416 423 10.1109/ICCV.2001.937655
    • (2001) IEEE International Conference on Computer Vision , vol.2 , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 27
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • S. Salzberg On comparing classifiers: pitfalls to avoid and a recommended approach Data Min. Knowl. Discov. 1 3 1997 317 328 10.1023/A:1009752403260
    • (1997) Data Min. Knowl. Discov. , vol.1 , Issue.3 , pp. 317-328
    • Salzberg, S.1
  • 28
    • 84884727061 scopus 로고    scopus 로고
    • Dynamic hierarchical segmentation of remote sensing images
    • A. Petrosino, Lecture Notes in Computer Science Springer Berlin Heidelberg
    • G. Scarpa, G. Masi, R. Gaetano, L. Verdoliva, and G. Poggi Dynamic hierarchical segmentation of remote sensing images A. Petrosino, Image Analysis and Processing Lecture Notes in Computer Science 8156 2013 Springer Berlin Heidelberg 371 380
    • (2013) Image Analysis and Processing , vol.8156 , pp. 371-380
    • Scarpa, G.1    Masi, G.2    Gaetano, R.3    Verdoliva, L.4    Poggi, G.5
  • 29
    • 78049408551 scopus 로고    scopus 로고
    • Evaluation of pooling operations in convolutional architectures for object recognition
    • K. Diamantaras, W. Duch, L. Iliadis, Lecture Notes in Computer Science Springer Berlin Heidelberg
    • D. Scherer, A. Müller, and S. Behnke Evaluation of pooling operations in convolutional architectures for object recognition K. Diamantaras, W. Duch, L. Iliadis, Artificial Neural Networks Lecture Notes in Computer Science 6354 2010 Springer Berlin Heidelberg 92 101
    • (2010) Artificial Neural Networks , vol.6354 , pp. 92-101
    • Scherer, D.1    Müller, A.2    Behnke, S.3
  • 31
    • 0003443519 scopus 로고
    • A summary of image segmentation techniques
    • National Aeronautics and Space Administration Washington, DC NASA TM- 104022
    • L. Spirkovska A summary of image segmentation techniques Technical Memorandum 1993 National Aeronautics and Space Administration Washington, DC NASA TM- 104022.
    • (1993) Technical Memorandum
    • Spirkovska, L.1
  • 33
    • 56549088942 scopus 로고    scopus 로고
    • Texture classification using convolutional neural networks
    • IEEE Hong Kong
    • F. Tivive, and A. Bouzerdoum Texture classification using convolutional neural networks IEEE Region 10 Conference 2006 IEEE Hong Kong 1 4
    • (2006) IEEE Region 10 Conference , pp. 1-4
    • Tivive, F.1    Bouzerdoum, A.2
  • 34
    • 0026123523 scopus 로고
    • Knowledge-based segmentation of Landsat images
    • J. Ton, J. Sticklen, and A. Jain Knowledge-based segmentation of Landsat images IEEE Trans. Geosci. Remote Sens. 29 2 1991 222 232 10.1109/36.73663
    • (1991) IEEE Trans. Geosci. Remote Sens. , vol.29 , Issue.2 , pp. 222-232
    • Ton, J.1    Sticklen, J.2    Jain, A.3
  • 35
    • 40049090853 scopus 로고    scopus 로고
    • Using colour, texture, and hierarchical segmentation for high-resolution remote sensing
    • R. Trias-Sanz, G. Stamon, and J. Louchet Using colour, texture, and hierarchical segmentation for high-resolution remote sensing ISPRS J. Photogramm. Remote Sens. 63 2 2008 156 168 10.1016/j.isprsjprs.2007.08.005
    • (2008) ISPRS J. Photogramm. Remote Sens. , vol.63 , Issue.2 , pp. 156-168
    • Trias-Sanz, R.1    Stamon, G.2    Louchet, J.3
  • 36
    • 0026308543 scopus 로고
    • Cloud detection based on texture segmentation by neural network methods
    • IEEE Singapore
    • A. Visa, K. Valkealahti, and O. Simula Cloud detection based on texture segmentation by neural network methods IEEE International Joint Conference on Neural Networks vol. 2 1991 IEEE Singapore 1001 1006 10.1109/IJCNN.1991.170529
    • (1991) IEEE International Joint Conference on Neural Networks , vol.2 , pp. 1001-1006
    • Visa, A.1    Valkealahti, K.2    Simula, O.3
  • 38
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • W. Zhang, R. Li, H. Deng, L. Wang, W. Lin, S. Ji, and D. Shen Deep convolutional neural networks for multi-modality isointense infant brain image segmentation NeuroImage 108 2015 214 224 10.1016/j.neuroimage.2014.12.061
    • (2015) NeuroImage , vol.108 , pp. 214-224
    • Zhang, W.1    Li, R.2    Deng, H.3    Wang, L.4    Lin, W.5    Ji, S.6    Shen, D.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.