-
1
-
-
84897544737
-
-
F.Bastien, P.Lamblin, R.Pascanu, J.Bergstra, I.Goodfellow, A.Bergeron, N.Bouchard, D.Warde-Farley, and Y.Bengio. 2012. “Theano:New Features and Speed Improvements.” In Paper presented at the NIPS 2012 Deep Learning Workshop, Lake Tahoe, December 8.
-
(2012)
Theano: New Features and Speed Improvements
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.5
Bergeron, A.6
Bouchard, N.7
Warde-Farley, D.8
Bengio, Y.9
-
2
-
-
84857819132
-
-
J.Bergstra, O.Breuleux, F.Bastien, P.Lamblin, R.Pascanu, G.Desjardins, J.Turian, D.Warde-Farley, and Y.Bengio. 2010. “Theano:A CPU and GPU Math Expression Compiler.” Paper presented at the Proceedings of the Python for Scientific Computing Conference (SciPy), Austin, TX, June 28–July 3.
-
(2010)
Theano: A CPU and GPU Math Expression Compiler
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Turian, J.7
Warde-Farley, D.8
Bengio, Y.9
-
4
-
-
84905925092
-
Deep Learning-Based Classification of Hyperspectral Data
-
Y.Chen, Z.Lin, X.Zhao, G.Wang, and Y.Gu. 2014. “Deep Learning-Based Classification of Hyperspectral Data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (6):2094–2107. doi:10.1109/JSTARS.2014.2329330.
-
(2014)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, vol.7
, Issue.6
, pp. 2094-2107
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
6
-
-
84961970561
-
A Survey on Object Detection in Optical Remote Sensing Images
-
G.Cheng, and J.Han. 2016. “A Survey on Object Detection in Optical Remote Sensing Images.” ISPRS Journal of Photogrammetry and Remote Sensing 117:11–28. doi:10.1016/j.isprsjprs.2016.03.014.
-
(2016)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.117
, pp. 11-28
-
-
Cheng, G.1
Han, J.2
-
7
-
-
85028158057
-
Effective and Efficient Midlevel Visual Elements-Oriented Land-Use Classification Using VHR Remote Sensing Images
-
G.Cheng, J.Han, L.Guo, Z.Liu, S.Bu, and J.Ren. 2015. “Effective and Efficient Midlevel Visual Elements-Oriented Land-Use Classification Using VHR Remote Sensing Images.” IEEE Transactions on Geoscience and Remote Sensing 53 (8):4238–4249. doi:10.1109/TGRS.2015.2393857.
-
(2015)
IEEE Transactions on Geoscience and Remote Sensing
, vol.53
, Issue.8
, pp. 4238-4249
-
-
Cheng, G.1
Han, J.2
Guo, L.3
Liu, Z.4
Bu, S.5
Ren, J.6
-
8
-
-
84909977972
-
Multi-Class Geospatial Object Detection and Geographic Image Classification Based on Collection of Part Detectors
-
G.Cheng, J.Han, P.Zhou, and L.Guo. 2014. “Multi-Class Geospatial Object Detection and Geographic Image Classification Based on Collection of Part Detectors.” ISPRS Journal of Photogrammetry and Remote Sensing 98:119–132. doi:10.1016/j.isprsjprs.2014.10.002.
-
(2014)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.98
, pp. 119-132
-
-
Cheng, G.1
Han, J.2
Zhou, P.3
Guo, L.4
-
9
-
-
0027525734
-
Artificial Neural Networks for Land-Cover Classification and Mapping
-
D.L.Civco, 1993. “Artificial Neural Networks for Land-Cover Classification and Mapping.” International Journal of Geographical Information Science 7 (2):173–186. doi:10.1080/02693799308901949.
-
(1993)
International Journal of Geographical Information Science
, vol.7
, Issue.2
, pp. 173-186
-
-
Civco, D.L.1
-
11
-
-
84055222005
-
Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition
-
G.E.Dahl, D.Yu, L.Deng, and A.Acero. 2012. “Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition.” IEEE Transactions on Audio, Speech, and Language Processing 20 (1):30–42. doi:10.1109/TASL.2011.2134090.
-
(2012)
IEEE Transactions on Audio, Speech, and Language Processing
, vol.20
, Issue.1
, pp. 30-42
-
-
Dahl, G.E.1
Yu, D.2
Deng, L.3
Acero, A.4
-
12
-
-
84890482429
-
-
J.Gehring, Y.Miao, F.Metze, and A.Waibel. 2013. “Extracting Deep Bottleneck Features Using Stacked Auto-Encoders.” Paper presented at the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, May 26–31.
-
(2013)
Extracting Deep Bottleneck Features Using Stacked Auto-Encoders
-
-
Gehring, J.1
Miao, Y.2
Metze, F.3
Waibel, A.4
-
13
-
-
84872359932
-
Finer Resolution Observation and Monitoring of Global Land Cover: First Mapping Results with Landsat TM and ETM+ Data
-
P.Gong, J.Wang, L.Yu, Y.C.Zhao, Y.Y.Zhao, L.Liang, Z.G.Niu, et al. 2013. “Finer Resolution Observation and Monitoring of Global Land Cover:First Mapping Results with Landsat TM and ETM+ Data.” International Journal of Remote Sensing 34:2607–2654. doi:10.1080/01431161.2012.748992.
-
(2013)
International Journal of Remote Sensing
, vol.34
, pp. 2607-2654
-
-
Gong, P.1
Wang, J.2
Yu, L.3
Zhao, Y.C.4
Zhao, Y.Y.5
Liang, L.6
Niu, Z.G.7
-
14
-
-
85028166694
-
Object Detection in Optical Remote Sensing Images Based on Weakly Supervised Learning and High-Level Feature Learning
-
J.Han, D.Zhang, G.Cheng, L.Guo, and J.Ren. 2015. “Object Detection in Optical Remote Sensing Images Based on Weakly Supervised Learning and High-Level Feature Learning.” IEEE Transactions on Geoscience and Remote Sensing 53 (6):3325–3337. doi:10.1109/TGRS.2014.2374218.
-
(2015)
IEEE Transactions on Geoscience and Remote Sensing
, vol.53
, Issue.6
, pp. 3325-3337
-
-
Han, J.1
Zhang, D.2
Cheng, G.3
Guo, L.4
Ren, J.5
-
15
-
-
85032751458
-
Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups
-
G.Hinton, L.Deng, D.Yu, G.E.Dahl, A.-R.Mohamed, N.Jaitly, A.Senior, et al. 2012. “Deep Neural Networks for Acoustic Modeling in Speech Recognition:The Shared Views of Four Research Groups.” IEEE Signal Processing Magazine 29 (6):82–97. doi:10.1109/MSP.2012.2205597.
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.-R.5
Jaitly, N.6
Senior, A.7
-
19
-
-
84990854141
-
An All-Season Sample Database for Improving Land-Cover Mapping of Africa with Two Classification Schemes
-
C.Li, P.Gong, J.Wang, C.Yuan, T.Y.Hu, Q.Wang, L.Yu, et al. 2016. “An All-Season Sample Database for Improving Land-Cover Mapping of Africa with Two Classification Schemes.” International Journal of Remote Sensing 37 (19):4623–4647. doi:10.1080/01431161.2016.1213923.
-
(2016)
International Journal of Remote Sensing
, vol.37
, Issue.19
, pp. 4623-4647
-
-
Li, C.1
Gong, P.2
Wang, J.3
Yuan, C.4
Hu, T.Y.5
Wang, Q.6
Yu, L.7
-
20
-
-
84894607481
-
Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery
-
C.Li, J.Wang, L.Wang, L.Hu, and P.Gong. 2014. “Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery.” Remote Sensing 6 (2):964–983. doi:10.3390/rs6020964.
-
(2014)
Remote Sensing
, vol.6
, Issue.2
, pp. 964-983
-
-
Li, C.1
Wang, J.2
Wang, L.3
Hu, L.4
Gong, P.5
-
21
-
-
84939208923
-
Urban Land Use and Land Cover Classification Using Remotely Sensed SAR Data through Deep Belief Networks
-
Q.Lv, Y.Dou, X.Niu, J.Xu, J.Xu, and F.Xia. 2015. “Urban Land Use and Land Cover Classification Using Remotely Sensed SAR Data through Deep Belief Networks.” Journal of Sensors 501:538063.
-
(2015)
Journal of Sensors
, vol.501
, pp. 538063
-
-
Lv, Q.1
Dou, Y.2
Niu, X.3
Xu, J.4
Xu, J.5
Xia, F.6
-
22
-
-
80051654263
-
-
A.R.Mohamed, T.N.Sainath, G.Dahl, B.Ramabhadran, G.E.Hinton, and M.Picheny. 2011. “Deep Belief Networks Using Discriminative Features for Phone Recognition.” Paper presented at the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, May 22–27.
-
(2011)
Deep Belief Networks Using Discriminative Features for Phone Recognition
-
-
Mohamed, A.R.1
Sainath, T.N.2
Dahl, G.3
Ramabhadran, B.4
Hinton, G.E.5
Picheny, M.6
-
23
-
-
80555140075
-
Scikit-Learn: Machine Learning in Python
-
F.Pedregosa, G.Varoquaux, A.Gramfort, V.Michel, B.Thirion, O.Grisel, M.Blondel, et al. 2011. “Scikit-Learn:Machine Learning in Python.” The Journal of Machine Learning Research 12:2825–2830.
-
(2011)
The Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
-
24
-
-
0018877134
-
Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy
-
J.E.Shore, and R.W.Johnson. 1980. “Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy.” IEEE Transactions on Information Theory 26 (1):26–37. doi:10.1109/TIT.1980.1056144.
-
(1980)
IEEE Transactions on Information Theory
, vol.26
, Issue.1
, pp. 26-37
-
-
Shore, J.E.1
Johnson, R.W.2
-
26
-
-
79551480483
-
Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
-
P.Vincent, H.Larochelle, I.Lajoie, Y.Bengio, and P.A.Manzagol. 2010. “Stacked Denoising Autoencoders:Learning Useful Representations in a Deep Network with a Local Denoising Criterion.” The Journal of Machine Learning Research 11:3371–3408.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.A.5
-
27
-
-
33747136902
-
Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery
-
H.Xu, 2006. “Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery.” International Journal of Remote Sensing 27 (14):3025–3033. doi:10.1080/01431160600589179.
-
(2006)
International Journal of Remote Sensing
, vol.27
, Issue.14
, pp. 3025-3033
-
-
Xu, H.1
-
28
-
-
84904971625
-
Meta-Discoveries from a Synthesis of Satellite-Based Land Cover Mapping Research
-
L.Yu, L.Liang, J.Wang, Y.Zhao, Q.Cheng, L.Hu, S.Liu, et al. 2014a. “Meta-Discoveries from a Synthesis of Satellite-Based Land Cover Mapping Research.” International Journal of Remote Sensing 35 (13):4573–4588. doi:10.1080/01431161.2014.930206.
-
(2014)
International Journal of Remote Sensing
, vol.35
, Issue.13
, pp. 4573-4588
-
-
Yu, L.1
Liang, L.2
Wang, J.3
Zhao, Y.4
Cheng, Q.5
Hu, L.6
Liu, S.7
-
29
-
-
84879047611
-
Improving 30 Meter Global Land Cover Map FROM-GLC with Time Series MODIS and Auxiliary Datasets: A Segmentation Based Approach
-
L.Yu, J.Wang, and P.Gong. 2013. “Improving 30 Meter Global Land Cover Map FROM-GLC with Time Series MODIS and Auxiliary Datasets:A Segmentation Based Approach.” International Journal of Remote Sensing 34 (16):5851–5867. doi:10.1080/01431161.2013.798055.
-
(2013)
International Journal of Remote Sensing
, vol.34
, Issue.16
, pp. 5851-5867
-
-
Yu, L.1
Wang, J.2
Gong, P.3
-
30
-
-
84919949888
-
A Multi-Resolution Global Land Cover Dataset through Multisource Data Aggregation
-
L.Yu, J.Wang, X.Li, C.Li, Y.Zhao, and P.Gong. 2014b. “A Multi-Resolution Global Land Cover Dataset through Multisource Data Aggregation.” Science China Earth Sciences 57 (10):2317–2329. doi:10.1007/s11430-014-4919-z.
-
(2014)
Science China Earth Sciences
, vol.57
, Issue.10
, pp. 2317-2329
-
-
Yu, L.1
Wang, J.2
Li, X.3
Li, C.4
Zhao, Y.5
Gong, P.6
-
31
-
-
84937137588
-
On Combining Multiscale Deep Learning Features for the Classification of Hyperspectral Remote Sensing Imagery
-
W.Zhao, Z.Guo, J.Yue, X.Zhang, and L.Luo. 2015. “On Combining Multiscale Deep Learning Features for the Classification of Hyperspectral Remote Sensing Imagery.” International Journal of Remote Sensing 36 (13):3368–3379. doi:10.1080/2150704X.2015.1062157.
-
(2015)
International Journal of Remote Sensing
, vol.36
, Issue.13
, pp. 3368-3379
-
-
Zhao, W.1
Guo, Z.2
Yue, J.3
Zhang, X.4
Luo, L.5
|