메뉴 건너뛰기




Volumn 37, Issue 23, 2016, Pages 5632-5646

Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping

Author keywords

[No Author keywords available]

Indexed keywords

DECISION TREES; DEEP NEURAL NETWORKS; IMAGE CLASSIFICATION; LEARNING ALGORITHMS; MAXIMUM LIKELIHOOD; NEURAL NETWORKS; REMOTE SENSING; SAMPLING; SUPPORT VECTOR MACHINES;

EID: 84993997577     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2016.1246775     Document Type: Article
Times cited : (165)

References (31)
  • 6
    • 84961970561 scopus 로고    scopus 로고
    • A Survey on Object Detection in Optical Remote Sensing Images
    • G.Cheng, and J.Han. 2016. “A Survey on Object Detection in Optical Remote Sensing Images.” ISPRS Journal of Photogrammetry and Remote Sensing 117:11–28. doi:10.1016/j.isprsjprs.2016.03.014.
    • (2016) ISPRS Journal of Photogrammetry and Remote Sensing , vol.117 , pp. 11-28
    • Cheng, G.1    Han, J.2
  • 7
    • 85028158057 scopus 로고    scopus 로고
    • Effective and Efficient Midlevel Visual Elements-Oriented Land-Use Classification Using VHR Remote Sensing Images
    • G.Cheng, J.Han, L.Guo, Z.Liu, S.Bu, and J.Ren. 2015. “Effective and Efficient Midlevel Visual Elements-Oriented Land-Use Classification Using VHR Remote Sensing Images.” IEEE Transactions on Geoscience and Remote Sensing 53 (8):4238–4249. doi:10.1109/TGRS.2015.2393857.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.8 , pp. 4238-4249
    • Cheng, G.1    Han, J.2    Guo, L.3    Liu, Z.4    Bu, S.5    Ren, J.6
  • 8
    • 84909977972 scopus 로고    scopus 로고
    • Multi-Class Geospatial Object Detection and Geographic Image Classification Based on Collection of Part Detectors
    • G.Cheng, J.Han, P.Zhou, and L.Guo. 2014. “Multi-Class Geospatial Object Detection and Geographic Image Classification Based on Collection of Part Detectors.” ISPRS Journal of Photogrammetry and Remote Sensing 98:119–132. doi:10.1016/j.isprsjprs.2014.10.002.
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.98 , pp. 119-132
    • Cheng, G.1    Han, J.2    Zhou, P.3    Guo, L.4
  • 9
    • 0027525734 scopus 로고
    • Artificial Neural Networks for Land-Cover Classification and Mapping
    • D.L.Civco, 1993. “Artificial Neural Networks for Land-Cover Classification and Mapping.” International Journal of Geographical Information Science 7 (2):173–186. doi:10.1080/02693799308901949.
    • (1993) International Journal of Geographical Information Science , vol.7 , Issue.2 , pp. 173-186
    • Civco, D.L.1
  • 11
    • 84055222005 scopus 로고    scopus 로고
    • Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition
    • G.E.Dahl, D.Yu, L.Deng, and A.Acero. 2012. “Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition.” IEEE Transactions on Audio, Speech, and Language Processing 20 (1):30–42. doi:10.1109/TASL.2011.2134090.
    • (2012) IEEE Transactions on Audio, Speech, and Language Processing , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 13
    • 84872359932 scopus 로고    scopus 로고
    • Finer Resolution Observation and Monitoring of Global Land Cover: First Mapping Results with Landsat TM and ETM+ Data
    • P.Gong, J.Wang, L.Yu, Y.C.Zhao, Y.Y.Zhao, L.Liang, Z.G.Niu, et al. 2013. “Finer Resolution Observation and Monitoring of Global Land Cover:First Mapping Results with Landsat TM and ETM+ Data.” International Journal of Remote Sensing 34:2607–2654. doi:10.1080/01431161.2012.748992.
    • (2013) International Journal of Remote Sensing , vol.34 , pp. 2607-2654
    • Gong, P.1    Wang, J.2    Yu, L.3    Zhao, Y.C.4    Zhao, Y.Y.5    Liang, L.6    Niu, Z.G.7
  • 14
    • 85028166694 scopus 로고    scopus 로고
    • Object Detection in Optical Remote Sensing Images Based on Weakly Supervised Learning and High-Level Feature Learning
    • J.Han, D.Zhang, G.Cheng, L.Guo, and J.Ren. 2015. “Object Detection in Optical Remote Sensing Images Based on Weakly Supervised Learning and High-Level Feature Learning.” IEEE Transactions on Geoscience and Remote Sensing 53 (6):3325–3337. doi:10.1109/TGRS.2014.2374218.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.6 , pp. 3325-3337
    • Han, J.1    Zhang, D.2    Cheng, G.3    Guo, L.4    Ren, J.5
  • 15
    • 85032751458 scopus 로고    scopus 로고
    • Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups
    • G.Hinton, L.Deng, D.Yu, G.E.Dahl, A.-R.Mohamed, N.Jaitly, A.Senior, et al. 2012. “Deep Neural Networks for Acoustic Modeling in Speech Recognition:The Shared Views of Four Research Groups.” IEEE Signal Processing Magazine 29 (6):82–97. doi:10.1109/MSP.2012.2205597.
    • (2012) IEEE Signal Processing Magazine , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3    Dahl, G.E.4    Mohamed, A.-R.5    Jaitly, N.6    Senior, A.7
  • 19
    • 84990854141 scopus 로고    scopus 로고
    • An All-Season Sample Database for Improving Land-Cover Mapping of Africa with Two Classification Schemes
    • C.Li, P.Gong, J.Wang, C.Yuan, T.Y.Hu, Q.Wang, L.Yu, et al. 2016. “An All-Season Sample Database for Improving Land-Cover Mapping of Africa with Two Classification Schemes.” International Journal of Remote Sensing 37 (19):4623–4647. doi:10.1080/01431161.2016.1213923.
    • (2016) International Journal of Remote Sensing , vol.37 , Issue.19 , pp. 4623-4647
    • Li, C.1    Gong, P.2    Wang, J.3    Yuan, C.4    Hu, T.Y.5    Wang, Q.6    Yu, L.7
  • 20
    • 84894607481 scopus 로고    scopus 로고
    • Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery
    • C.Li, J.Wang, L.Wang, L.Hu, and P.Gong. 2014. “Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery.” Remote Sensing 6 (2):964–983. doi:10.3390/rs6020964.
    • (2014) Remote Sensing , vol.6 , Issue.2 , pp. 964-983
    • Li, C.1    Wang, J.2    Wang, L.3    Hu, L.4    Gong, P.5
  • 21
    • 84939208923 scopus 로고    scopus 로고
    • Urban Land Use and Land Cover Classification Using Remotely Sensed SAR Data through Deep Belief Networks
    • Q.Lv, Y.Dou, X.Niu, J.Xu, J.Xu, and F.Xia. 2015. “Urban Land Use and Land Cover Classification Using Remotely Sensed SAR Data through Deep Belief Networks.” Journal of Sensors 501:538063.
    • (2015) Journal of Sensors , vol.501 , pp. 538063
    • Lv, Q.1    Dou, Y.2    Niu, X.3    Xu, J.4    Xu, J.5    Xia, F.6
  • 24
    • 0018877134 scopus 로고
    • Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy
    • J.E.Shore, and R.W.Johnson. 1980. “Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy.” IEEE Transactions on Information Theory 26 (1):26–37. doi:10.1109/TIT.1980.1056144.
    • (1980) IEEE Transactions on Information Theory , vol.26 , Issue.1 , pp. 26-37
    • Shore, J.E.1    Johnson, R.W.2
  • 26
    • 79551480483 scopus 로고    scopus 로고
    • Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
    • P.Vincent, H.Larochelle, I.Lajoie, Y.Bengio, and P.A.Manzagol. 2010. “Stacked Denoising Autoencoders:Learning Useful Representations in a Deep Network with a Local Denoising Criterion.” The Journal of Machine Learning Research 11:3371–3408.
    • (2010) The Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 27
    • 33747136902 scopus 로고    scopus 로고
    • Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery
    • H.Xu, 2006. “Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery.” International Journal of Remote Sensing 27 (14):3025–3033. doi:10.1080/01431160600589179.
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.14 , pp. 3025-3033
    • Xu, H.1
  • 28
    • 84904971625 scopus 로고    scopus 로고
    • Meta-Discoveries from a Synthesis of Satellite-Based Land Cover Mapping Research
    • L.Yu, L.Liang, J.Wang, Y.Zhao, Q.Cheng, L.Hu, S.Liu, et al. 2014a. “Meta-Discoveries from a Synthesis of Satellite-Based Land Cover Mapping Research.” International Journal of Remote Sensing 35 (13):4573–4588. doi:10.1080/01431161.2014.930206.
    • (2014) International Journal of Remote Sensing , vol.35 , Issue.13 , pp. 4573-4588
    • Yu, L.1    Liang, L.2    Wang, J.3    Zhao, Y.4    Cheng, Q.5    Hu, L.6    Liu, S.7
  • 29
    • 84879047611 scopus 로고    scopus 로고
    • Improving 30 Meter Global Land Cover Map FROM-GLC with Time Series MODIS and Auxiliary Datasets: A Segmentation Based Approach
    • L.Yu, J.Wang, and P.Gong. 2013. “Improving 30 Meter Global Land Cover Map FROM-GLC with Time Series MODIS and Auxiliary Datasets:A Segmentation Based Approach.” International Journal of Remote Sensing 34 (16):5851–5867. doi:10.1080/01431161.2013.798055.
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.16 , pp. 5851-5867
    • Yu, L.1    Wang, J.2    Gong, P.3
  • 30
    • 84919949888 scopus 로고    scopus 로고
    • A Multi-Resolution Global Land Cover Dataset through Multisource Data Aggregation
    • L.Yu, J.Wang, X.Li, C.Li, Y.Zhao, and P.Gong. 2014b. “A Multi-Resolution Global Land Cover Dataset through Multisource Data Aggregation.” Science China Earth Sciences 57 (10):2317–2329. doi:10.1007/s11430-014-4919-z.
    • (2014) Science China Earth Sciences , vol.57 , Issue.10 , pp. 2317-2329
    • Yu, L.1    Wang, J.2    Li, X.3    Li, C.4    Zhao, Y.5    Gong, P.6
  • 31
    • 84937137588 scopus 로고    scopus 로고
    • On Combining Multiscale Deep Learning Features for the Classification of Hyperspectral Remote Sensing Imagery
    • W.Zhao, Z.Guo, J.Yue, X.Zhang, and L.Luo. 2015. “On Combining Multiscale Deep Learning Features for the Classification of Hyperspectral Remote Sensing Imagery.” International Journal of Remote Sensing 36 (13):3368–3379. doi:10.1080/2150704X.2015.1062157.
    • (2015) International Journal of Remote Sensing , vol.36 , Issue.13 , pp. 3368-3379
    • Zhao, W.1    Guo, Z.2    Yue, J.3    Zhang, X.4    Luo, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.