메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3258-3265

A discriminative deep model for pedestrian detection with occlusion handling

Author keywords

[No Author keywords available]

Indexed keywords

CALTECH; DATA SETS; HIDDEN VARIABLE; LARGE DEFORMATIONS; MULTIPLE LAYERS; OBJECT DETECTION; OCCLUSION HANDLING; PEDESTRIAN DETECTION;

EID: 84866696906     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248062     Document Type: Conference Paper
Times cited : (313)

References (34)
  • 6
    • 84898465753 scopus 로고    scopus 로고
    • The fastest pedestrian detector in the west
    • P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian detector in the west. In BMVC, 2010.
    • (2010) BMVC
    • Dollár, P.1    Belongie, S.2    Perona, P.3
  • 8
    • 84862144388 scopus 로고    scopus 로고
    • Pedestrian detection: An evaluation of the state of the art
    • Accepted
    • P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. TPAMI, Accepted, 2011.
    • (2011) TPAMI
    • Dollár, P.1    Wojek, C.2    Schiele, B.3    Perona, P.4
  • 9
    • 84862886836 scopus 로고    scopus 로고
    • A structural filter approach to human detection
    • G. Duan, H. Ai, and S. Lao. A structural filter approach to human detection. In ECCV, 2010.
    • (2010) ECCV
    • Duan, G.1    Ai, H.2    Lao, S.3
  • 10
    • 77955998866 scopus 로고    scopus 로고
    • Multi-cue pedestrian classification with partial occlusion handling
    • M. Enzweiler, A. Eigenstetter, B. Schiele, and D.M. Gavrila. Multi-cue pedestrian classification with partial occlusion handling. In CVPR, 2010.
    • (2010) CVPR
    • Enzweiler, M.1    Eigenstetter, A.2    Schiele, B.3    Gavrila, D.M.4
  • 11
    • 50249083612 scopus 로고    scopus 로고
    • Depth and appearance for mobile scene analysis
    • A. Ess, B. Leibe, and L. V. Gool. Depth and appearance for mobile scene analysis. In ICCV, 2007.
    • (2007) ICCV
    • Ess, A.1    Leibe, B.2    Gool, L.V.3
  • 12
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • P. Felzenszwalb, R. B. Grishick, D.McAllister, and D. Ramanan. Object detection with discriminatively trained part based models. TPAMI, 32:1627-1645, 2010.
    • (2010) TPAMI , vol.32 , pp. 1627-1645
    • Felzenszwalb, P.1    Grishick, R.B.2    Mcallister, D.3    Ramanan, D.4
  • 13
    • 84866659814 scopus 로고    scopus 로고
    • R. Fisher. homepages.inf.ed.ac.uk/rbf/caviar/
    • R. Fisher. homepages.inf.ed.ac.uk/rbf/caviar/.
  • 14
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 15
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 16
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • July
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, July 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 17
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In CVPR, 2009.
    • (2009) CVPR
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    Lecun, Y.4
  • 18
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 19
    • 33744792263 scopus 로고    scopus 로고
    • Pedestrian detection in crowded scenes
    • B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded scenes. In CVPR, 2005.
    • (2005) CVPR
    • Leibe, B.1    Seemann, E.2    Schiele, B.3
  • 20
    • 51949098112 scopus 로고    scopus 로고
    • Classification using intersection kernel support vector machines is efficient
    • S. Maji, A. C. Berg, and J. Malik. Classification using intersection kernel support vector machines is efficient. In CVPR, 2008.
    • (2008) CVPR
    • Maji, S.1    Berg, A.C.2    Malik, J.3
  • 21
    • 24644521635 scopus 로고    scopus 로고
    • Human detection based on a probabilistic assembly of robust part detectors
    • C. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection based on a probabilistic assembly of robust part detectors. In ECCV, 2004.
    • (2004) ECCV
    • Mikolajczyk, C.1    Schmid, C.2    Zisserman, A.3
  • 22
    • 70450159350 scopus 로고    scopus 로고
    • Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning
    • M. Norouzi, M. Ranjbar, and G. Mori. Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning. In CVPR, 2009.
    • (2009) CVPR
    • Norouzi, M.1    Ranjbar, M.2    Mori, G.3
  • 24
    • 80052877144 scopus 로고    scopus 로고
    • On deep generative models with applications to recognition
    • M. Ranzato, J. Susskind, V. Mnih, and G. Hinton. On deep generative models with applications to recognition. In CVPR, 2011.
    • (2011) CVPR
    • Ranzato, M.1    Susskind, J.2    Mnih, V.3    Hinton, G.4
  • 25
    • 50249124717 scopus 로고    scopus 로고
    • Pedestrian detection via classification on riemannian manifolds
    • Oct.
    • O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via classification on riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell., 30(10):1713-1727, Oct. 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.10 , pp. 1713-1727
    • Tuzel, O.1    Porikli, F.2    Meer, P.3
  • 27
    • 17444367737 scopus 로고    scopus 로고
    • Detecting pedestrians using patterns of motion and appearance
    • P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns of motion and appearance. Int'l J. Computer Vision, 63(2):153-161, 2005.
    • (2005) Int'l J. Computer Vision , vol.63 , Issue.2 , pp. 153-161
    • Viola, P.1    Jones, M.J.2    Snow, D.3
  • 28
    • 77956007891 scopus 로고    scopus 로고
    • New features and insights for pedestrian detection
    • S. Walk, N. Majer, K. Schindler, and B. Schiele. New features and insights for pedestrian detection. In CVPR, 2010.
    • (2010) CVPR
    • Walk, S.1    Majer, N.2    Schindler, K.3    Schiele, B.4
  • 29
    • 77956000059 scopus 로고    scopus 로고
    • An hog-lbp human detector with partial occlusion handling
    • X. Wang, X. Han, and S. Yan. An hog-lbp human detector with partial occlusion handling. In CVPR, 2009.
    • (2009) CVPR
    • Wang, X.1    Han, X.2    Yan, S.3
  • 30
    • 80052913131 scopus 로고    scopus 로고
    • Learning hierarchical poselets for human parsing
    • Y. Wang, D. Tran, and Z. Liao. Learning hierarchical poselets for human parsing. In CVPR, 2011.
    • (2011) CVPR
    • Wang, Y.1    Tran, D.2    Liao, Z.3
  • 31
    • 70450162128 scopus 로고    scopus 로고
    • Multi-cue onboard pedestrian detection
    • C.Wojek, S.Walk, and B. Schiele. Multi-cue onboard pedestrian detection. In CVPR, 2009.
    • (2009) CVPR
    • Wojek, C.1    Walk, S.2    Schiele, B.3
  • 32
    • 33745943636 scopus 로고    scopus 로고
    • Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors
    • B. Wu and R. Nevatia. Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In ICCV, 2005.
    • (2005) ICCV
    • Wu, B.1    Nevatia, R.2
  • 33
    • 77954860497 scopus 로고    scopus 로고
    • A numeric study of the bottom-up and top-down inference processes in and-or graphs
    • Jun.
    • T. Wu and S. Zhu. A numeric study of the bottom-up and top-down inference processes in and-or graphs. Int'l Journal of Computer Vision, 93(2):226-252, Jun. 2011.
    • (2011) Int'l Journal of Computer Vision , vol.93 , Issue.2 , pp. 226-252
    • Wu, T.1    Zhu, S.2
  • 34
    • 77955986466 scopus 로고    scopus 로고
    • Latent hierarchical structural learning for object detection
    • L. Zhu, Y. Chen, A. Yuille, and W. Freeman. Latent hierarchical structural learning for object detection. In CVPR, 2010.
    • (2010) CVPR
    • Zhu, L.1    Chen, Y.2    Yuille, A.3    Freeman, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.