메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 431-440

Fully convolutional networks for semantic segmentation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; IMAGE ENHANCEMENT; IMAGE SEGMENTATION; PIXELS; SEMANTIC WEB; SEMANTICS;

EID: 84959205572     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298965     Document Type: Conference Paper
Times cited : (27189)

References (39)
  • 2
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Deep neural networks segment neuronal membranes in electron microscopy images. In NIPS, pages 2852-2860, 2012
    • (2012) NIPS , pp. 2852-2860
    • Ciresan, D.C.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 9
    • 84959181749 scopus 로고    scopus 로고
    • N4-fields: Neural network nearest neighbor fields for image transforms
    • Y. Ganin and V. Lempitsky. N4-fields: Neural network nearest neighbor fields for image transforms. In ACCV, 2014
    • (2014) ACCV
    • Ganin, Y.1    Lempitsky, V.2
  • 12
    • 84887380335 scopus 로고    scopus 로고
    • Perceptual organization and recognition of indoor scenes from RGB-D images
    • S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization and recognition of indoor scenes from RGB-D images. In CVPR, 2013
    • (2013) CVPR
    • Gupta, S.1    Arbelaez, P.2    Malik, J.3
  • 13
    • 84922645579 scopus 로고    scopus 로고
    • Learning rich features from RGB-D images for object detection and segmentation
    • Springer
    • S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning rich features from RGB-D images for object detection and segmentation. In ECCV. Springer, 2014
    • (2014) ECCV
    • Gupta, S.1    Girshick, R.2    Arbelaez, P.3    Malik, J.4
  • 17
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 19
    • 0023141705 scopus 로고
    • Representation of local geometry in the visual system
    • J. J. Koenderink and A. J. van Doorn. Representation of local geometry in the visual system. Biological cybernetics, 55(6):367-375, 1987
    • (1987) Biological Cybernetics , vol.55 , Issue.6 , pp. 367-375
    • Koenderink, J.J.1    Van Doorn, A.J.2
  • 20
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 84937874835 scopus 로고    scopus 로고
    • Do convnets learn correspondence
    • J. Long, N. Zhang, and T. Darrell. Do convnets learn correspondence? In NIPS, 2014
    • (2014) NIPS
    • Long, J.1    Zhang, N.2    Darrell, T.3
  • 26
    • 0039870910 scopus 로고
    • Multidigit recognition using a space displacement neural network
    • Citeseer
    • O. Matan, C. J. Burges, Y. LeCun, and J. S. Denker. Multidigit recognition using a space displacement neural network. In NIPS, pages 488-495. Citeseer, 1991
    • (1991) NIPS , pp. 488-495
    • Matan, O.1    Burges, C.J.2    LeCun, Y.3    Denker, J.S.4
  • 28
    • 84919790220 scopus 로고    scopus 로고
    • Recurrent convolutional neural networks for scene labeling
    • P. H. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene labeling. In ICML, 2014
    • (2014) ICML
    • Pinheiro, P.H.1    Collobert, R.2
  • 29
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 30
    • 84881536861 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from rgbd images
    • N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012
    • (2012) ECCV
    • Silberman, N.1    Hoiem, D.2    Kohli, P.3    Fergus, R.4
  • 33
    • 78149311874 scopus 로고    scopus 로고
    • Superparsing: Scalable nonparametric image parsing with superpixels
    • Springer
    • J. Tighe and S. Lazebnik. Superparsing: scalable nonparametric image parsing with superpixels. In ECCV, pages 352-365. Springer, 2010
    • (2010) ECCV , pp. 352-365
    • Tighe, J.1    Lazebnik, S.2
  • 34
    • 84887363465 scopus 로고    scopus 로고
    • Finding things: Image parsing with regions and per-exemplar detectors
    • J. Tighe and S. Lazebnik. Finding things: Image parsing with regions and per-exemplar detectors. In CVPR, 2013
    • (2013) CVPR
    • Tighe, J.1    Lazebnik, S.2
  • 38
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Computer Vision-ECCV 2014, pages 818-833. Springer, 2014
    • (2014) Computer Vision-ECCV 2014 , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.