메뉴 건너뛰기




Volumn , Issue , 2016, Pages 417-425

CNN-based object segmentation in urban LIDAR with missing points

Author keywords

3D Vision; deep learning; neural networks; segmentation

Indexed keywords

DEEP LEARNING; DEEP NEURAL NETWORKS; IMAGE SEGMENTATION; NEURAL NETWORKS;

EID: 85011277882     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/3DV.2016.51     Document Type: Conference Paper
Times cited : (24)

References (35)
  • 2
    • 84872740146 scopus 로고    scopus 로고
    • Contextually guided semantic labeling and search for 3D point clouds
    • Jan
    • A. Anand, H. S. Koppula, T. Joachims, and A. Saxena. Contextually guided semantic labeling and search for 3D point clouds. Int. J. Rob. Res., 32(1): 19-34, Jan. 2013. 2
    • (2013) Int. J. Rob. Res , vol.32 , Issue.1 , pp. 19-34
    • Anand, A.1    Koppula, H.S.2    Joachims, T.3    Saxena, A.4
  • 4
    • 84906347581 scopus 로고    scopus 로고
    • Unsupervised feature learning for RGB-D based object recognition
    • Springer
    • L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for RGB-D based object recognition. In Experimental Robotics, pages 387-402. Springer, 2013
    • (2013) Experimental Robotics , pp. 387-402
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 10
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot, and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, volume 9, pages 249-256, 2010
    • (2010) AISTATS , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 17
    • 77954064287 scopus 로고    scopus 로고
    • Object recognition in 3D point clouds using web data and domain adaptation
    • K. Lai, and D. Fox. Object recognition in 3D point clouds using web data and domain adaptation. The International Journal of Robotics Research, 29(8): 1019-1037, 2010
    • (2010) The International Journal of Robotics Research , vol.29 , Issue.8 , pp. 1019-1037
    • Lai, K.1    Fox, D.2
  • 20
    • 77953289501 scopus 로고    scopus 로고
    • On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes
    • A. Mian, M. Bennamoun, and R. Owens. On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. International Journal of Computer Vision, 89(2-3): 348-361, 2010
    • (2010) International Journal of Computer Vision , vol.89 , Issue.2-3 , pp. 348-361
    • Mian, A.1    Bennamoun, M.2    Owens, R.3
  • 23
    • 84866653395 scopus 로고    scopus 로고
    • RGB-(D) scene labeling: Features and algorithms
    • IEEE Conference on IEEE 2012
    • X. Ren, L. Bo, and D. Fox. RGB-(D) scene labeling: Features and algorithms. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2759-2766. IEEE, 2012
    • (2012) Computer Vision and Pattern Recognition (CVPR) , pp. 2759-2766
    • Ren, X.1    Bo, L.2    Fox, D.3
  • 24
    • 78651518184 scopus 로고    scopus 로고
    • Fast 3D recognition and pose using the viewpoint feature histogram
    • IEEE/RSJ International Conference on IEEE, 2010
    • R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3D recognition and pose using the viewpoint feature histogram. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 2155-2162. IEEE, 2010
    • (2010) Intelligent Robots and Systems (IROS) , pp. 2155-2162
    • Rusu, R.B.1    Bradski, G.2    Thibaux, R.3    Hsu, J.4
  • 25
    • 84856656491 scopus 로고    scopus 로고
    • Indoor scene segmentation using a structured light sensor
    • IEEE International Conference on IEEE, 2011
    • N. Silberman, and R. Fergus. Indoor scene segmentation using a structured light sensor. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages 601-608. IEEE, 2011
    • (2011) Computer Vision Workshops (ICCV Workshops) , pp. 601-608
    • Silberman, N.1    Fergus, R.2
  • 28
    • 84906344350 scopus 로고    scopus 로고
    • Sliding shapes for 3D object detection in depth images
    • Springer
    • S. Song, and J. Xiao. Sliding shapes for 3D object detection in depth images. In European Conference on Computer Vision (ECCV), pages 634-651. Springer, 2014
    • (2014) European Conference on Computer Vision (ECCV) , pp. 634-651
    • Song, S.1    Xiao, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.