메뉴 건너뛰기




Volumn , Issue , 2010, Pages 2528-2535

Deconvolutional networks

Author keywords

[No Author keywords available]

Indexed keywords

ANALYSIS AND SYNTHESIS; EDGE INFORMATION; FEATURE DETECTOR; FEATURE SETS; IMAGE DATA; IMAGE REPRESENTATIONS; LEARNING FRAMEWORKS; MID-LEVEL CUE; SPARSITY CONSTRAINTS;

EID: 77956001004     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5539957     Document Type: Conference Paper
Times cited : (1742)

References (31)
  • 1
    • 0033208584 scopus 로고    scopus 로고
    • A computational model for visual selection
    • Y. Amit and D. Geman. A computational model for visual selection. Neural Computation, 11(7):1691-1715, 1999.
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1691-1715
    • Amit, Y.1    Geman, D.2
  • 2
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layerwise training of deep networks
    • Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layerwise training of deep networks. In NIPS, pages 153-160, 2007.
    • (2007) NIPS , pp. 153-160
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 3
    • 0032131292 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci Comp., 20(1):33-61, 1999.
    • (1999) SIAM J. Sci Comp. , vol.20 , Issue.1 , pp. 33-61
    • Chen, S.1    Donoho, D.2    Saunders, M.3
  • 4
    • 51949101472 scopus 로고    scopus 로고
    • Similarity-based cross-layered hierarchical representation for object categorization
    • S. Fidler, M. Boben, and A. Leonardis. Similarity-based cross-layered hierarchical representation for object categorization. In CVPR, 2008.
    • (2008) CVPR
    • Fidler, S.1    Boben, M.2    Leonardis, A.3
  • 5
    • 35148867545 scopus 로고    scopus 로고
    • Towards scalable representations of object categories: Learning a hierarchy of parts
    • S. Fidler and A. Leonardis. Towards scalable representations of object categories: Learning a hierarchy of parts. In CVPR, 2007.
    • (2007) CVPR
    • Fidler, S.1    Leonardis, A.2
  • 6
    • 0029341230 scopus 로고
    • Nonlinear image recovery with half-quadratic regularization
    • D. Geman and Y. C. Nonlinear image recovery with half-quadratic regularization. PAMI, 4:932-946, 1995.
    • (1995) PAMI , vol.4 , pp. 932-946
    • Geman, D.1    C, Y.2
  • 7
    • 34047107296 scopus 로고    scopus 로고
    • Primal sketch: Integrating texture and structure
    • April
    • C. E. Guo, S. C. Zhu, and Y. N. Wu. Primal sketch: Integrating texture and structure. CVIU, 106:5-19, April 2007.
    • (2007) CVIU , vol.106 , pp. 5-19
    • Guo, C.E.1    Zhu, S.C.2    Wu, Y.N.3
  • 8
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets. Neural Comput., 18(7):1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 9
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In ICCV, 2009.
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    LeCun, Y.4
  • 10
    • 33845568397 scopus 로고    scopus 로고
    • Context and hierarchy in a probabilistic image model
    • Y. Jin and S. Geman. Context and hierarchy in a probabilistic image model. In CVPR, volume 2, pages 2145-2152, 2006.
    • (2006) CVPR , vol.2 , pp. 2145-2152
    • Jin, Y.1    Geman, S.2
  • 11
    • 84898769608 scopus 로고    scopus 로고
    • Analytic Hyper-Laplacian Priors for Fast Image Deconvolution
    • D. Krishnan and R. Fergus. Analytic Hyper-Laplacian Priors for Fast Image Deconvolution. In NIPS, 2009.
    • (2009) NIPS
    • Krishnan, D.1    Fergus, R.2
  • 12
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 13
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. IEEE, 86(11):2278-2324, 1998.
    • (1998) IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 14
    • 84864036295 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In NIPS, pages 801-808, 2007.
    • (2007) NIPS , pp. 801-808
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.Y.4
  • 15
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, pages 609-616, 2009.
    • (2009) ICML , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 16
    • 71149119964 scopus 로고    scopus 로고
    • Online dictionary learning for sparse coding
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In ICML, pages 689-696, 2009.
    • (2009) ICML , pp. 689-696
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 18
    • 0003834557 scopus 로고
    • Freeman, San Francisco
    • D. Marr. Vision. Freeman, San Francisco, 1982.
    • (1982) Vision
    • Marr, D.1
  • 19
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37(23):3311-3325, 1997.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 20
    • 57349098579 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng. Self-taught learning: Transfer learning from unlabeled data. In ICML, 2007.
    • (2007) ICML
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.5
  • 21
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • MIT Press
    • M. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature learning for deep belief networks. In NIPS. MIT Press, 2008.
    • (2008) NIPS
    • Ranzato, M.1    Boureau, Y.2    LeCun, Y.3
  • 22
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • M. Ranzato, C. S. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an energy-based model. In NIPS, pages 1137-1144, 2006.
    • (2006) NIPS , pp. 1137-1144
    • Ranzato, M.1    Poultney, C.S.2    Chopra, S.3    LeCun, Y.4
  • 23
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11):1019-1025, 1999.
    • (1999) Nature Neuroscience , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 24
    • 24644511277 scopus 로고    scopus 로고
    • Object recognition with features inspired by visual cortex
    • T. Serre, L. Wolf, and T. Poggio. Object recognition with features inspired by visual cortex. In CVPR, 2005.
    • (2005) CVPR
    • Serre, T.1    Wolf, L.2    Poggio, T.3
  • 25
    • 33744536742 scopus 로고    scopus 로고
    • Parsing images into regions, curves, and curve groups
    • August
    • Z. W. Tu and S. C. Zhu. Parsing images into regions, curves, and curve groups. IJCV, 69(2):223-249, August 2006.
    • (2006) IJCV , vol.69 , Issue.2 , pp. 223-249
    • Tu, Z.W.1    Zhu, S.C.2
  • 26
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, pages 1096-1103, 2008.
    • (2008) ICML , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.A.4
  • 27
    • 85012251675 scopus 로고    scopus 로고
    • A new alternating minimization algorithm for total variation image reconstruction
    • Y. Wang, J. Yang, W. Yin, and Y. Zhang. A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imag. Sci., 1(3):248-272, 2008.
    • (2008) SIAM J. Imag. Sci. , vol.1 , Issue.3 , pp. 248-272
    • Wang, Y.1    Yang, J.2    Yin, W.3    Zhang, Y.4
  • 28
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009.
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 29
    • 33845566162 scopus 로고    scopus 로고
    • Svm-knn: Discriminative nearest neighbor classification for visual category recognition
    • H. Zhang, A. C. Berg, M. Maire, and J. Malik. Svm-knn: Discriminative nearest neighbor classification for visual category recognition. In CVPR, 2006.
    • (2006) CVPR
    • Zhang, H.1    Berg, A.C.2    Maire, M.3    Malik, J.4
  • 30
    • 78149310387 scopus 로고    scopus 로고
    • Learning a hierarchical deformable template for rapid deformable object parsing
    • March
    • L. Zhu, Y. Chen, and A. L. Yuille. Learning a hierarchical deformable template for rapid deformable object parsing. PAMI, March 2009.
    • (2009) PAMI
    • Zhu, L.1    Chen, Y.2    Yuille, A.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.