메뉴 건너뛰기




Volumn 562, Issue , 2015, Pages 696-705

Three-class change detection in synthetic aperture radar images based on deep belief network

Author keywords

Deep belief network; Deep learning; Image change detection; Synthetic aperture radar

Indexed keywords

COMPUTATION THEORY; PIXELS; RADAR; SIGNAL DETECTION; SYNTHETIC APERTURE RADAR; TRACKING RADAR;

EID: 84954181255     PISSN: 18650929     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-662-49014-3_62     Document Type: Conference Paper
Times cited : (5)

References (17)
  • 1
    • 11144354673 scopus 로고    scopus 로고
    • Modeling SAR images with a generalization of the Rayleigh distribution
    • Kuruoglu, E. E., Zerubia, J.: Modeling SAR images with a generalization of the Rayleigh distribution. IEEE Trans. Image Process. 13, 527–533 (2004)
    • (2004) IEEE Trans. Image Process , vol.13 , pp. 527-533
    • Kuruoglu, E.E.1    Zerubia, J.2
  • 2
    • 84875648585 scopus 로고    scopus 로고
    • Improving urban change detection from multitemporal SAR images using PCA-NLM
    • Yousif, O., Ban, Y.: Improving urban change detection from multitemporal SAR images using PCA-NLM. IEEE Trans. Geosci. Remote Sens. 51, 2032–2041 (2013)
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , pp. 2032-2041
    • Yousif, O.1    Ban, Y.2
  • 3
    • 84885368811 scopus 로고    scopus 로고
    • Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images
    • Gong, M., Su, L., Jia, M.: Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans. Fuzzy Syst. 22, 98–109 (2014)
    • (2014) IEEE Trans. Fuzzy Syst , vol.22 , pp. 98-109
    • Gong, M.1    Su, L.2    Jia, M.3
  • 4
    • 84888308186 scopus 로고    scopus 로고
    • Unsupervised change detection with expectation-maximization-based level set
    • Hao, M., Shi, W., Zhang, H., Li, C.: Unsupervised change detection with expectation-maximization-based level set. IEEE Geosci. Remote Sens. Lett. 11, 210–214 (2014)
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , pp. 210-214
    • Hao, M.1    Shi, W.2    Zhang, H.3    Li, C.4
  • 5
    • 84908011389 scopus 로고    scopus 로고
    • Unsupervised change detection in SAR image based on Gauss-log ratio image fusion and compressed projection
    • Hou, B., Wei, Q., Zheng, Y., Wang, S.: Unsupervised change detection in SAR image based on Gauss-log ratio image fusion and compressed projection. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7, 3297–3317 (2014)
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , pp. 3297-3317
    • Hou, B.1    Wei, Q.2    Zheng, Y.3    Wang, S.4
  • 6
    • 84908007374 scopus 로고    scopus 로고
    • A local statistical fuzzy active contour model for change detection
    • Li, H., Gong, M., Liu, J.: A local statistical fuzzy active contour model for change detection. IEEE Geosci. Remote Sens. Lett. 12, 582–586 (2015)
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 582-586
    • Li, H.1    Gong, M.2    Liu, J.3
  • 7
    • 84896317984 scopus 로고    scopus 로고
    • Slow feature analysis for change detection in multispectral imagery
    • Wu, C., Du, B., Zhang, L.: Slow feature analysis for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens. 52, 2858–2874 (2014)
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 2858-2874
    • Wu, C.1    Du, B.2    Zhang, L.3
  • 8
    • 84859060840 scopus 로고    scopus 로고
    • Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering
    • Gong, M., Zhou, Z., Ma, J.: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Process. 21, 2141–2151 (2012)
    • (2012) IEEE Trans. Image Process , vol.21 , pp. 2141-2151
    • Gong, M.1    Zhou, Z.2    Ma, J.3
  • 9
    • 84864757265 scopus 로고    scopus 로고
    • Multitemporal spaceborne SAR data for urban change detection in China
    • Ban, Y., Yousif, O.: Multitemporal spaceborne SAR data for urban change detection in China. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 5, 1087–1094 (2012)
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.5 , pp. 1087-1094
    • Ban, Y.1    Yousif, O.2
  • 10
    • 85027945983 scopus 로고    scopus 로고
    • Unsupervised change detection in multitemporal SAR images over large urban areas
    • Hu, H., Ban, Y.: Unsupervised change detection in multitemporal SAR images over large urban areas. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7, 3248–3261 (2014)
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , pp. 3248-3261
    • Hu, H.1    Ban, Y.2
  • 11
    • 84891742167 scopus 로고    scopus 로고
    • Building change detection from multitemporal highresolution remotely sensed images based on a morphological building index
    • Huang, X., Zhang, L., Zhu, T.: Building change detection from multitemporal highresolution remotely sensed images based on a morphological building index. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7, 105–115 (2014)
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , pp. 105-115
    • Huang, X.1    Zhang, L.2    Zhu, T.3
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 13
    • 84907486524 scopus 로고    scopus 로고
    • Change detection based on pulse-coupled neural networks and the NMI feature for highspatial resolution remote sensing imagery
    • Zhong, Y., Liu, W., Zhao, J., Zhang, L.: Change detection based on pulse-coupled neural networks and the NMI feature for highspatial resolution remote sensing imagery. IEEE Geosci. Remote Sens. Lett. 12, 537–541 (2015)
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 537-541
    • Zhong, Y.1    Liu, W.2    Zhao, J.3    Zhang, L.4
  • 14
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E., Salakhutdinov, R. R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 15
    • 85015544392 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A. P., Laird, N. M., Rubin, D. B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. 39, 1–38 (1977)
    • (1977) J. R. Statist. Soc , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 17
    • 77951276538 scopus 로고    scopus 로고
    • A robust fuzzy local information c-means clustering algorithm
    • Krinidis, S., Chatzis, V.: A robust fuzzy local information c-means clustering algorithm. IEEE Trans. Image Process. 19, 1328–1337 (2010)
    • (2010) IEEE Trans. Image Process , vol.19 , pp. 1328-1337
    • Krinidis, S.1    Chatzis, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.