메뉴 건너뛰기




Volumn 31, Issue 1, 2014, Pages 55-66

Manifold-learning-based feature extraction for classification of hyperspectral data: A review of advances in manifold learning

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; DATA VISUALIZATION; EXTRACTION; FEATURE EXTRACTION; PIXELS; RANDOM PROCESSES; SPECTRAL RESOLUTION; SPECTROSCOPY; STOCHASTIC SYSTEMS;

EID: 85032751123     PISSN: 10535888     EISSN: None     Source Type: Journal    
DOI: 10.1109/MSP.2013.2279894     Document Type: Article
Times cited : (287)

References (56)
  • 2
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, vol. 290, no. 5500, pp. 2319-2323, 2000. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 3
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schlkopf, A. J. Smola, and K. R. Muller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., vol. 10, no. 5, pp. 583-588, 1998.
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 583-588
    • Schlkopf, B.1    Smola, A.J.2    Muller, K.R.3
  • 4
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by local linear embedding, Science, vol. 290, no. 5500, pp. 2323-2326, 2000. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 5
    • 85156202169 scopus 로고    scopus 로고
    • Global versus local methods in nonlinear dimensionality reduction
    • Hyatt Regency, Vancouver, B.C., Canada
    • V. de Silva and J. B. Tenenbaum, Global versus local methods in nonlinear dimensionality reduction, in Proc. Advanced Neural Information Processing Systems, Hyatt Regency, Vancouver, B.C., Canada, 2002, vol. 15, pp. 713-720.
    • (2002) Proc. Advanced Neural Information Processing Systems , vol.15 , pp. 713-720
    • De Silva, V.1    Tenenbaum, J.B.2
  • 6
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • L. K. Saul and S. T. Roweis, Think globally, fit locally: Unsupervised learning of low dimensional manifolds, J. Mach. Learn. Res., vol. 4, pp. 119-155, 2003.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 7
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment
    • Z. Zhang and H. Zha, Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment, SIAM J. Sci. Comput., vol. 26, no. 1, pp. 313-338, 2004.
    • (2004) SIAM J. Sci. Comput. , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.1    Zha, H.2
  • 8
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • DOI 10.1162/089976603321780317
    • M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput., vol. 15, no. 6, pp. 1373-1396, June 2003. (Pubitemid 37049796)
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 9
    • 0038825237 scopus 로고    scopus 로고
    • Stochastic proximity embedding
    • D. K. Agrafiotis, Stochastic proximity embedding, J. Comput. Chem., vol. 24, no. 10, pp. 1215-1221, 2003.
    • (2003) J. Comput. Chem. , vol.24 , Issue.10 , pp. 1215-1221
    • Agrafiotis, D.K.1
  • 11
    • 70350304576 scopus 로고    scopus 로고
    • Using diffusion geometric coordinates for hyperspectral imagery representation
    • J. He, L. Zhang, Q. Wang, and Z. Li, Using diffusion geometric coordinates for hyperspectral imagery representation, IEEE Geosci. Remote Sensing Lett., vol. 6, no. 4, pp. 767-771, 2009.
    • (2009) IEEE Geosci. Remote Sensing Lett. , vol.6 , Issue.4 , pp. 767-771
    • He, J.1    Zhang, L.2    Wang, Q.3    Li, Z.4
  • 12
    • 34247356156 scopus 로고    scopus 로고
    • Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images
    • DOI 10.1109/LGRS.2006.888105
    • A. Mohan, G. Sapiro, and E. Bosch, Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images, IEEE Geosci. Remote Sensing Lett., vol. 4, no. 2, pp. 206-210, 2007. (Pubitemid 46645133)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.2 , pp. 206-210
    • Mohan, A.1    Sapiro, G.2    Bosch, E.3
  • 13
    • 84860119060 scopus 로고    scopus 로고
    • Exploring nonlinear manifold learning for classification of hyperspectral data
    • S. Prasad, J. Chanussot, and L. B. Eds. London: Springer- Verlag
    • M. M. Crawford, L. Ma, and W. Kim, Exploring nonlinear manifold learning for classification of hyperspectral data, in Optical Remote Sensing: Advances in Signal Processing and Exploitation Techniques, S. Prasad, J. Chanussot, and L. B. Eds. London: Springer-Verlag, 2011, pp. 207-234.
    • (2011) Optical Remote Sensing: Advances in Signal Processing and Exploitation Techniques , pp. 207-234
    • Crawford, M.M.1    Ma, L.2    Kim, W.3
  • 14
    • 84859784358 scopus 로고    scopus 로고
    • Locality preserving dimensionality reduction and classification for hyperspectral image analysis
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, Locality preserving dimensionality reduction and classification for hyperspectral image analysis, IEEE Trans. Geosci. Remote Sensing, vol. 50, no. 4, pp. 1185-1198, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sensing , vol.50 , Issue.4 , pp. 1185-1198
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 15
    • 80052307660 scopus 로고    scopus 로고
    • Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification, IEEE Geosci. Remote Sensing Lett., vol. 8, no. 5, pp. 895-898, 2011.
    • (2011) IEEE Geosci. Remote Sensing Lett. , vol.8 , Issue.5 , pp. 895-898
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 16
    • 77954564059 scopus 로고    scopus 로고
    • Anomaly detection for hyperspectral images based on robust locally linear embedding
    • L. Ma, M. M. Crawford, and J. W. Tian, Anomaly detection for hyperspectral images based on robust locally linear embedding, J. Infrared Millimeter Terahertz Waves, vol. 31, no. 6, pp. 753-762, 2010.
    • (2010) J. Infrared Millimeter Terahertz Waves , vol.31 , Issue.6 , pp. 753-762
    • Ma, L.1    Crawford, M.M.2    Tian, J.W.3
  • 17
    • 84891011267 scopus 로고    scopus 로고
    • Sparse transfer manifold embedding for hyperspectral target detection
    • DOI: 10.1109/TGRS.2013.2246837
    • L. Zhang, D. Tao, and X. Huang, Sparse transfer manifold embedding for hyperspectral target detection, IEEE Trans. Geosci. Remote Sensing, 2013. DOI: 10.1109/TGRS.2013.2246837.
    • (2013) IEEE Trans. Geosci. Remote Sensing
    • Zhang, L.1    Tao, D.2    Huang, X.3
  • 18
    • 79957443437 scopus 로고    scopus 로고
    • Nonlinear spectral unmixing by geodesic simplex volume maximization, IEEE J. Select
    • R. Heylen, D. Burazerovic, and P. Scheunders, Nonlinear spectral unmixing by geodesic simplex volume maximization, IEEE J. Select. Topics Signal Processing, vol. 5, no. 3, pp. 534-542, 2011.
    • (2011) Topics Signal Processing , vol.5 , Issue.3 , pp. 534-542
    • Heylen, R.1    Burazerovic, D.2    Scheunders, P.3
  • 19
    • 80455158223 scopus 로고    scopus 로고
    • Nonlinear unmixing of hyperspectral images using a generalized bilinear model
    • A. Halimi, Y. Altmann, N. Dobigeon, and J.-Y. Tourneret, Nonlinear unmixing of hyperspectral images using a generalized bilinear model, IEEE Trans. Geosci. Remote Sensing, vol. 49, no. 11, pp. 4153-4162, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sensing , vol.49 , Issue.11 , pp. 4153-4162
    • Halimi, A.1    Altmann, Y.2    Dobigeon, N.3    Tourneret, J.-Y.4
  • 20
    • 84861197539 scopus 로고    scopus 로고
    • Calculation of geodesic distances in nonlinear mixing models: Application to the generalized bilinear model
    • R. Heylen and P. Scheunders, Calculation of geodesic distances in nonlinear mixing models: Application to the generalized bilinear model, IEEE Geosci. Remote Sensing Lett., vol. 9, no. 4, pp. 644-648, 2012.
    • (2012) IEEE Geosci. Remote Sensing Lett. , vol.9 , Issue.4 , pp. 644-648
    • Heylen, R.1    Scheunders, P.2
  • 21
    • 84870927938 scopus 로고    scopus 로고
    • Selection of landmark points on nonlinear manifolds for spectral unmixing using local homogeneity
    • J. Chi and M. M. Crawford, Selection of landmark points on nonlinear manifolds for spectral unmixing using local homogeneity, IEEE Geosci. Remote Sensing Lett., vol. 10, no. 4, pp. 711-715, 2013.
    • (2013) IEEE Geosci. Remote Sensing Lett. , vol.10 , Issue.4 , pp. 711-715
    • Chi, J.1    Crawford, M.M.2
  • 22
    • 84872911794 scopus 로고    scopus 로고
    • Spherical stochastic neighbor embedding of hyperspectral data
    • D. Lunga and O. Ersoy, Spherical stochastic neighbor embedding of hyperspectral data, IEEE Trans. Geosci. Remote Sensing, vol. 51, no. 2, pp. 857-871, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sensing , vol.51 , Issue.2 , pp. 857-871
    • Lunga, D.1    Ersoy, O.2
  • 24
    • 34948837227 scopus 로고    scopus 로고
    • Improved nonlinear manifold learning for land cover classification via intelligent landmark selection
    • DOI 10.1109/IGARSS.2006.144, 4241291, 2006 IEEE International Geoscience and Remote Sensing Symposium, IGARSS
    • Y. Chen, M. Crawford, and J. Ghosh, Improved nonlinear manifold learning for land cover classification via intelligent landmark selection, in IEEE Int. Conf. Geoscience and Remote Sensing Symp., 2006, pp. 545-548. (Pubitemid 47515569)
    • (2006) International Geoscience and Remote Sensing Symposium (IGARSS) , pp. 545-548
    • Chen, Y.1    Crawford, M.M.2    Ghosh, J.3
  • 25
    • 33745593949 scopus 로고    scopus 로고
    • Sparse multidimensional scaling using landmark points
    • Stanford Univ. June
    • V. Silva and J. Tenenbaum, Sparse multidimensional scaling using landmark points, Tech. Rep., Stanford Univ., June 2004.
    • (2004) Tech. Rep.
    • Silva, V.1    Tenenbaum, J.2
  • 27
    • 78049264379 scopus 로고    scopus 로고
    • Local manifold learning-based k-nearestneighbor for hyperspectral image classification
    • M. Li, M. M. Crawford, and J. Tian, Local manifold learning-based k-nearestneighbor for hyperspectral image classification, IEEE Trans. Geosci. Remote Sensing, vol. 48, no. 11, pp. 4099-4109, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sensing , vol.48 , Issue.11 , pp. 4099-4109
    • Li, M.1    Crawford, M.M.2    Tian, J.3
  • 28
    • 33748149588 scopus 로고    scopus 로고
    • Learning nonlinear image manifolds by global alignment of local linear models
    • DOI 10.1109/TPAMI.2006.166
    • J. Verbeek, Nonlinear image manifolds by global alignment of local linear models, IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 8, pp. 1236-1250, 2006. (Pubitemid 46405022)
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.8 , pp. 1236-1250
    • Verbeek, J.1
  • 31
    • 84863261451 scopus 로고    scopus 로고
    • Heterogeneous domain adaptation using manifold alignment
    • Barcelona, Spain, July 16- 20
    • C. Wang and S. Mahadevan, Heterogeneous domain adaptation using manifold alignment, in Proc. Int. Joint Conf. Artificial Intelligence (IJCAI), Barcelona, Spain, July 16-20, 2011, pp. 1541-1546.
    • (2011) Proc. Int. Joint Conf. Artificial Intelligence (IJCAI) , pp. 1541-1546
    • Wang, C.1    Mahadevan, S.2
  • 32
    • 80955141887 scopus 로고    scopus 로고
    • Manifold alignment for multitemporal hyperspectral image classification
    • Vancouver, B.C., July 25-29
    • H. L. Yang and M. M. Crawford, Manifold alignment for multitemporal hyperspectral image classification, in Proc. 2011 IEEE Int. Geoscience and Remote Sensing Symp., Vancouver, B.C., July 25-29, 2011, pp. 4332-4335.
    • (2011) Proc. 2011 IEEE Int. Geoscience and Remote Sensing Symp. , pp. 4332-4335
    • Yang, H.L.1    Crawford, M.M.2
  • 33
    • 84890403016 scopus 로고    scopus 로고
    • Learning a joint manifold with global-local preservation for multitemporal hyperspectral image classification
    • Melbourne, Australia, July 21-26
    • H. L. Yang and M. M. Crawford, Learning a joint manifold with global-local preservation for multitemporal hyperspectral image classification, in Proc. 2013 IEEE Int. Geoscience and Remote Sensing Symp., Melbourne, Australia, July 21-26, 2013, pp. 1047-1050.
    • (2013) Proc. 2013 IEEE Int. Geoscience and Remote Sensing Symp. , pp. 1047-1050
    • Yang, H.L.1    Crawford, M.M.2
  • 35
    • 55649122577 scopus 로고    scopus 로고
    • Limitations of principal component analysis for hyperspectral target recognition
    • Oct
    • S. Prasad and L. M. Bruce, Limitations of principal component analysis for hyperspectral target recognition, IEEE Geosci. Remote Sensing Lett., vol. 5, no. 4, pp. 625-629, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sensing Lett. , vol.5 , Issue.4 , pp. 625-629
    • Prasad, S.1    Bruce, L.M.2
  • 36
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hyperspectral images with regularized linear discriminant analysis
    • T. V. Bandos, L. Bruzzone, and G. Camps-Valls, Classification of hyperspectral images with regularized linear discriminant analysis, IEEE Trans. Geosci. Remote Sensing, vol. 47, no. 3, pp. 862-873, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sensing , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 37
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • M. Sugiyama, Dimensionaltity reduction of multimodal labeled data by local Fisher discriminant analysis, J. Mach. Learn. Res., vol. 8, pp. 1027-1061, May 2007. (Pubitemid 46798409)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 38
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections
    • S. Thrun L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press
    • X. He and P. Niyogi, Locality preserving projections, in Advances in Neural Information Processing Systems, S. Thrun, L. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004.
    • (2004) Advances in Neural Information Processing Systems
    • He, X.1    Niyogi, P.2
  • 39
    • 84880282493 scopus 로고    scopus 로고
    • Locality preserving genetic algorithms for spatial-spectral hyperspectral image classification
    • May
    • M. Cui, S. Prasad, W. Li, and L. Bruce, Locality preserving genetic algorithms for spatial-spectral hyperspectral image classification, IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, vol. 6, no. 3, pp. 1688-1697, May 2013.
    • (2013) IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing , vol.6 , Issue.3 , pp. 1688-1697
    • Cui, M.1    Prasad, S.2    Li, W.3    Bruce, L.4
  • 40
    • 80955132629 scopus 로고    scopus 로고
    • Feature selection using kernel based local fisher discriminant analysis for hyperspectral image classification
    • G. Zhang and X. Jia, Feature selection using kernel based local fisher discriminant analysis for hyperspectral image classification, in Proc. 2011 IEEE Int. Geosci. Remote Sensing Symp., pp. 1728-1731.
    • Proc. 2011 IEEE Int. Geosci. Remote Sensing Symp. , pp. 1728-1731
    • Zhang, G.1    Jia, X.2
  • 41
    • 85032759708 scopus 로고    scopus 로고
    • Segmented mixture of Gaussian classification for hyperspectral image analysis
    • to be published
    • S. Prasad, M. Cui, W. Li, and J. Fowler, Segmented mixture of Gaussian classification for hyperspectral image analysis, IEEE Geosci. Remote Sensing Lett., to be published.
    • IEEE Geosci. Remote Sensing Lett.
    • Prasad, S.1    Cui, M.2    Li, W.3    Fowler, J.4
  • 42
    • 84890426252 scopus 로고    scopus 로고
    • Hyperspectral image classification using nearest feature line embedding approach
    • DOI: 10.1109/TGRS.2013.2238635
    • Y.-L. Chang, J.-N. Liu, C.-C. Han, and Y.-N. Chen, Hyperspectral image classification using nearest feature line embedding approach, IEEE Trans. Geosci. Remote Sensing, vol. PP, no. 99, pp. 1-10, 2013. DOI: 10.1109/TGRS.2013.2238635
    • (2013) IEEE Trans. Geosci. Remote Sensing , Issue.99 , pp. 1-10
    • Chang, Y.-L.1    Liu, J.-N.2    Han, C.-C.3    Chen, Y.-N.4
  • 43
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, Advances in spectral-spatial classification of hyperspectral images, Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 44
    • 67649793633 scopus 로고    scopus 로고
    • Spatially adapted manifold learning for classification of hyperspectral imagery with insufficient labeled data
    • W. Kim, M. M. Crawford, and J. Ghosh, Spatially adapted manifold learning for classification of hyperspectral imagery with insufficient labeled data, in Proc. 2008 IEEE Int. Geoscience and Remote Sensing Symp., pp. 213-217.
    • Proc. 2008 IEEE Int. Geoscience and Remote Sensing Symp. , pp. 213-217
    • Kim, W.1    Crawford, M.M.2    Ghosh, J.3
  • 45
    • 80052740627 scopus 로고    scopus 로고
    • A spatial-spectral kernelbased approach for the classification of remote-sensing images
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, A spatial-spectral kernelbased approach for the classification of remote-sensing images, Pattern Recognit., vol. 45, no. 1, pp. 381-392, 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.1 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 46
    • 84873179751 scopus 로고    scopus 로고
    • Exploiting spectral-spatial proximity for classification of hyperspectral data on manifolds
    • Munich, Germany
    • H. H. Yang and M. M. Crawford, Exploiting spectral-spatial proximity for classification of hyperspectral data on manifolds, in Proc. 2012 IEEE Geoscience and Remote Sensing Symp., Munich, Germany, pp. 4174-4177.
    • Proc. 2012 IEEE Geoscience and Remote Sensing Symp. , pp. 4174-4177
    • Yang, H.H.1    Crawford, M.M.2
  • 47
    • 84871736244 scopus 로고    scopus 로고
    • Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction
    • Jan
    • L. Zhang, D. Tao, and X. Huang, Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction, IEEE Trans. Geosci. Remote Sensing, vol. 51, no. 1, pp. 242-254, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sensing , vol.51 , Issue.1 , pp. 242-254
    • Zhang, L.1    Tao, D.2    Huang, X.3
  • 49
    • 84890403382 scopus 로고    scopus 로고
    • Multidimensional artificial field embedding with spatial sensitivity
    • DOI: 10.1109/TGRS.2013.2251889
    • D. Lunga and O. Ersoy, Multidimensional artificial field embedding with spatial sensitivity, IEEE Trans. Geosci. Remote Sensing, vol. PP, no. 99, pp. 1-1, 2013. DOI: 10.1109/TGRS.2013.2251889
    • (2013) IEEE Trans. Geosci. Remote Sensing , Issue.99 , pp. 1-1
    • Lunga, D.1    Ersoy, O.2
  • 50
    • 65049083029 scopus 로고    scopus 로고
    • Improving hyperspectral image classification using spatial preprocessing
    • S. Velasco-Forero and V. Manian, Improving hyperspectral image classification using spatial preprocessing, IEEE Trans. Geosci. Remote Sensing, vol. 6, no. 2, pp. 297-301, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sensing , vol.6 , Issue.2 , pp. 297-301
    • Velasco-Forero, S.1    Manian, V.2
  • 51
    • 79957457001 scopus 로고    scopus 로고
    • Sparse matrix transform for hyperspectral image processing, IEEE J. Select
    • J. Theiler, G. Cao, L. R. Bachega, and C. A. Bouman, Sparse matrix transform for hyperspectral image processing, IEEE J. Select. Topics Signal Processing, vol. 5, no. 3, pp. 424-437, 2011.
    • (2011) Topics Signal Processing , vol.5 , Issue.3 , pp. 424-437
    • Theiler, J.1    Cao, G.2    Bachega, L.R.3    Bouman, C.A.4
  • 53
    • 85032996208 scopus 로고    scopus 로고
    • Stochastic neighbor embedding
    • G. Hinton and S. Roweis, Stochastic neighbor embedding, in Proc. ICML, 2002, vol. 15, pp. 833-840.
    • (2002) Proc. ICML , vol.15 , pp. 833-840
    • Hinton, G.1    Roweis, S.2
  • 54
  • 56
    • 72249099006 scopus 로고    scopus 로고
    • A distribution for a pair of unit vectors generated by Brownian motion
    • S. Kato, A distribution for a pair of unit vectors generated by Brownian motion, Bernoulli, vol. 15, no. 3, pp. 898-921, 2009.
    • (2009) Bernoulli , vol.15 , Issue.3 , pp. 898-921
    • Kato, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.