메뉴 건너뛰기




Volumn 8, Issue 2, 2017, Pages 136-145

SatCNN: satellite image dataset classification using agile convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER GRAPHICS; CONVOLUTION; DEEP NEURAL NETWORKS; GRAPHICS PROCESSING UNIT; NETWORK ARCHITECTURE; NEURAL NETWORKS; PROGRAM PROCESSORS; REMOTE SENSING; SATELLITE IMAGERY;

EID: 84994662729     PISSN: 2150704X     EISSN: 21507058     Source Type: Journal    
DOI: 10.1080/2150704X.2016.1235299     Document Type: Article
Times cited : (117)

References (22)
  • 2
    • 34047192082 scopus 로고    scopus 로고
    • Which Is the Best Way to Organize/Classify Images by Content?
    • A.Bosch, X.Muñoz, and R.Mart. 2007. “Which Is the Best Way to Organize/Classify Images by Content?” Image and Vision Computing 25 (6):778–791. doi:10.1016/j.imavis.2006.07.015.
    • (2007) Image and Vision Computing , vol.25 , Issue.6 , pp. 778-791
    • Bosch, A.1    Muñoz, X.2    Mart, R.3
  • 3
    • 85020214070 scopus 로고    scopus 로고
    • Land Use Classification in Remote Sensing Images by Convolutional Neural Networks
    • M.Castelluccio, G.Poggi, C.Sansone, and L.Verdoliva. 2015. “Land Use Classification in Remote Sensing Images by Convolutional Neural Networks.” CoRR arXiv:1508.00092. https://arxiv.org/pdf/1508.00092.pdf
    • (2015) CoRR , vol.arXiv
    • Castelluccio, M.1    Poggi, G.2    Sansone, C.3    Verdoliva, L.4
  • 4
    • 84994664142 scopus 로고    scopus 로고
    • Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing, New York: ACM
    • A.Cheriyadat, 2012. “Aerial Scene Recognition Using Efficient Sparse Representation.” In Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing, 11. New York:ACM.
    • (2012) Aerial Scene Recognition Using Efficient Sparse Representation , pp. 11
    • Cheriyadat, A.1
  • 7
    • 33646012930 scopus 로고    scopus 로고
    • Mind the Gap: Another Look at the Problem of the Semantic Gap in Image Retrieval
    • Bellingham, WA: International Society for Optics and Photonics
    • J.Hare, P.Lewis, P.Enser, and C.Sandom. 2006. “Mind the Gap:Another Look at the Problem of the Semantic Gap in Image Retrieval.” In Electronic Imaging 2006, 607309–607309. Bellingham, WA:International Society for Optics and Photonics.
    • (2006) Electronic Imaging 2006 , pp. 607309
    • Hare, J.1    Lewis, P.2    Enser, P.3    Sandom, C.4
  • 8
    • 84950141946 scopus 로고    scopus 로고
    • Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
    • F.Hu, G.Xia, J.Hu, and L.Zhang. 2015. “Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery.” Remote Sensing 7 (11):14680–14707. doi:10.3390/rs71114680.
    • (2015) Remote Sensing , vol.7 , Issue.11 , pp. 14680-14707
    • Hu, F.1    Xia, G.2    Hu, J.3    Zhang, L.4
  • 11
    • 84930630277 scopus 로고    scopus 로고
    • Deep Learning
    • Y.LeCun, Y.Bengio, and G.Hinton. 2015. “Deep Learning.” Nature 521 (7553):436–444. doi:10.1038/nature14539.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 13
    • 84933585162 scopus 로고    scopus 로고
    • Very Deep Convolutional Networks for Large-Scale Image Recognition
    • K.Simonyan, and A.Zisserman. 2014. “Very Deep Convolutional Networks for Large-Scale Image Recognition.” In Arxiv Preprint Arxiv:1409.1556. https://arxiv.org/pdf/1409.1556.pdf
    • (2014) Arxiv Preprint Arxiv:1409.1556
    • Simonyan, K.1    Zisserman, A.2
  • 15
    • 84908032942 scopus 로고    scopus 로고
    • Saliency-Guided Unsupervised Feature Learning for Scene Classification
    • F.Zhang, B.Du, and L.Zhang. 2015. “Saliency-Guided Unsupervised Feature Learning for Scene Classification.” IEEE Transactions on Geoscience and Remote Sensing 53 (4):2175–2184. doi:10.1109/TGRS.2014.2357078.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.4 , pp. 2175-2184
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 16
    • 84947933375 scopus 로고    scopus 로고
    • Dirichlet-Derived Multiple Topic Scene Classification Model Fusing Heterogeneous Features for High Spatial Resolution Remote Sensing Imagery
    • B.Zhao, Y.Zhong, G.-S.Xia, and L.Zhang. 2016a. “Dirichlet-Derived Multiple Topic Scene Classification Model Fusing Heterogeneous Features for High Spatial Resolution Remote Sensing Imagery.” IEEE Transactions on Geoscience and Remote Sensing 54 (4):2108–2123. doi:10.1109/TGRS.2015.2496185.
    • (2016) IEEE Transactions on Geoscience and Remote Sensing , vol.54 , Issue.4 , pp. 2108-2123
    • Zhao, B.1    Zhong, Y.2    Xia, G.-S.3    Zhang, L.4
  • 17
    • 84890096359 scopus 로고    scopus 로고
    • Scene Classification via Latent Dirichlet Allocation Using a Hybrid Generative/Discriminative Strategy for High Spatial Resolution Remote Sensing Imagery
    • B.Zhao, Y.Zhong, and L.Zhang. 2013. “Scene Classification via Latent Dirichlet Allocation Using a Hybrid Generative/Discriminative Strategy for High Spatial Resolution Remote Sensing Imagery.” Remote Sensing Letters 4 (12):1204–1213. doi:10.1080/2150704X.2013.858843.
    • (2013) Remote Sensing Letters , vol.4 , Issue.12 , pp. 1204-1213
    • Zhao, B.1    Zhong, Y.2    Zhang, L.3
  • 18
    • 84980000082 scopus 로고    scopus 로고
    • High-Resolution Image Classification Integrating Spectral-Spatial-Location Cues by Conditional Random Fields
    • J.Zhao, Y.Zhong, H.Shu, and L.Zhang. 2016b. “High-Resolution Image Classification Integrating Spectral-Spatial-Location Cues by Conditional Random Fields.” IEEE Transactions on Image Processing 25 (9):4033–4045. doi:10.1109/TIP.2016.2577886.
    • (2016) IEEE Transactions on Image Processing , vol.25 , Issue.9 , pp. 4033-4045
    • Zhao, J.1    Zhong, Y.2    Shu, H.3    Zhang, L.4
  • 19
    • 84937137588 scopus 로고    scopus 로고
    • On Combining Multiscale Deep Learning Features for the Classification of Hyperspectral Remote Sensing Imagery
    • W.Zhao, Z.Guo, J.Yue, X.Zhang, and L.Luo. 2015. “On Combining Multiscale Deep Learning Features for the Classification of Hyperspectral Remote Sensing Imagery.” International Journal of Remote Sensing 36 (13):3368–3379. doi:10.1080/2150704X.2015.1062157.
    • (2015) International Journal of Remote Sensing , vol.36 , Issue.13 , pp. 3368-3379
    • Zhao, W.1    Guo, Z.2    Yue, J.3    Zhang, X.4    Luo, L.5
  • 20
    • 85027956142 scopus 로고    scopus 로고
    • Scene Classification Based on the Multifeature Fusion Probabilistic Topic Model for High Spatial Resolution Remote Sensing Imagery
    • Y.Zhong, Q.Zhu, and L.Zhang. 2015. “Scene Classification Based on the Multifeature Fusion Probabilistic Topic Model for High Spatial Resolution Remote Sensing Imagery.” IEEE Transactions on Geoscience and Remote Sensing 53 (11):6207–6222. doi:10.1109/TGRS.2015.2435801.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.11 , pp. 6207-6222
    • Zhong, Y.1    Zhu, Q.2    Zhang, L.3
  • 21
    • 84866009594 scopus 로고    scopus 로고
    • Scene Classification Using a Multi-Resolution Bag-Of-Features Model
    • L.Zhou, Z.Zhou, and D.Hu. 2013. “Scene Classification Using a Multi-Resolution Bag-Of-Features Model.” Pattern Recognition 46 (1):424–433. doi:10.1016/j.patcog.2012.07.017.
    • (2013) Pattern Recognition , vol.46 , Issue.1 , pp. 424-433
    • Zhou, L.1    Zhou, Z.2    Hu, D.3
  • 22
    • 84940766118 scopus 로고    scopus 로고
    • High-Resolution Remote-Sensing Imagery Retrieval Using Sparse Features by Auto-Encoder
    • W.Zhou, Z.Shao, C.Diao, and Q.Cheng. 2015. “High-Resolution Remote-Sensing Imagery Retrieval Using Sparse Features by Auto-Encoder.” Remote Sensing Letters 6 (10):775–783. doi:10.1080/2150704X.2015.1074756.
    • (2015) Remote Sensing Letters , vol.6 , Issue.10 , pp. 775-783
    • Zhou, W.1    Shao, Z.2    Diao, C.3    Cheng, Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.