메뉴 건너뛰기




Volumn 54, Issue 3, 2016, Pages 1349-1362

Unsupervised deep feature extraction for remote sensing image classification

Author keywords

Aerial image classification; Classification; Deep convolutional networks; Deep learning; Feature extraction; Hyperspectral (HS) image; Multispectral (MS) images; Segmentation; Sparse features learning; Very high resolution (VHR)

Indexed keywords

ALGORITHMS; COMPLEX NETWORKS; CONVOLUTION; FEATURE EXTRACTION; IMAGE PROCESSING; IMAGE RECONSTRUCTION; LAND USE; LEARNING ALGORITHMS; NETWORK LAYERS; PRINCIPAL COMPONENT ANALYSIS; REMOTE SENSING; SPECTROSCOPY;

EID: 84940417789     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2015.2478379     Document Type: Article
Times cited : (677)

References (67)
  • 3
    • 85032751238 scopus 로고    scopus 로고
    • Signal processing for hyperspectral image exploitation
    • Jan
    • G. Shaw and D. Manolakis, "Signal processing for hyperspectral image exploitation," IEEE Signal Process. Mag., vol. 50, no. 1, pp. 12-16, Jan. 2002.
    • (2002) IEEE Signal Process. Mag. , vol.50 , Issue.1 , pp. 12-16
    • Shaw, G.1    Manolakis, D.2
  • 4
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
    • Jan
    • G. Camps-Valls, D. Tuia, L. Bruzzone, and J. Atli Benediktsson, "Advances in hyperspectral image classification: Earth monitoring with statistical learning methods," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 45-54, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Atli Benediktsson, J.4
  • 6
    • 85032751606 scopus 로고    scopus 로고
    • Sparsity and structure in hyperspectral imaging: Sensing, reconstruction, and target detection
    • Jan
    • R. Willett, M. Duarte, M. Davenport, and R. Baraniuk, "Sparsity and structure in hyperspectral imaging: Sensing, reconstruction, and target detection," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 116-126, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 116-126
    • Willett, R.1    Duarte, M.2    Davenport, M.3    Baraniuk, R.4
  • 7
    • 85032751209 scopus 로고    scopus 로고
    • A signal processing perspective on hyperspectral unmixing: Insights from remote sensing
    • Jan
    • W.-K. Ma et al., "A signal processing perspective on hyperspectral unmixing: Insights from remote sensing," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 67-81, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 67-81
    • Ma, W.-K.1
  • 8
    • 85032763743 scopus 로고    scopus 로고
    • Compressive coded aperture spectral imaging: An introduction
    • Jan
    • G. Arce, D. Brady, L. Carin, H. Arguello, and D. Kittle, "Compressive coded aperture spectral imaging: An introduction," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 105-115, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 105-115
    • Arce, G.1    Brady, D.2    Carin, L.3    Arguello, H.4    Kittle, D.5
  • 9
    • 84896818071 scopus 로고    scopus 로고
    • Landsat-8: Science and product vision for terrestrial global change research
    • Apr
    • D. Roy et al., "Landsat-8: Science and product vision for terrestrial global change research," Remote Sens. Environ., vol. 145, no. 0, pp. 154-172, Apr. 2014.
    • (2014) Remote Sens. Environ. , vol.145 , pp. 154-172
    • Roy, D.1
  • 10
    • 84930794526 scopus 로고    scopus 로고
    • Prelaunch assessment of worldview-3 information content
    • Lausanne, Switzerland
    • N. Longbotham, F. Pacifici, B. Baugh, and G. Camps-Valls, "Prelaunch assessment of worldview-3 information content," in Proc. WHISPERS, Lausanne, Switzerland, 2014, pp. 479-486.
    • (2014) Proc. WHISPERS , pp. 479-486
    • Longbotham, N.1    Pacifici, F.2    Baugh, B.3    Camps-Valls, G.4
  • 11
    • 84859427372 scopus 로고    scopus 로고
    • Sentinel-2: ESA's optical high-resolution mission for GMES operational services,"
    • May
    • M. Drusch et al., "Sentinel-2: ESA's optical high-resolution mission for GMES operational services," Remote Sens. Environ., vol. 120, pp. 25-36, May 2012.
    • (2012) Remote Sens. Environ. , vol.120 , pp. 25-36
    • Drusch, M.1
  • 12
    • 84859429155 scopus 로고    scopus 로고
    • The Global Monitoring for Environment and Security (GMES) sentinel-3 mission
    • May
    • C. Donlon et al., "The Global Monitoring for Environment and Security (GMES) sentinel-3 mission," Remote Sens. Environ., vol. 120, pp. 37-57, May 2012.
    • (2012) Remote Sens. Environ. , vol.120 , pp. 37-57
    • Donlon, C.1
  • 13
    • 34248390993 scopus 로고    scopus 로고
    • The EnMAP hyperspectral imager-An advanced optical payload for future applications in Earth observation programmes
    • Aug
    • T. Stuffler et al., "The EnMAP hyperspectral imager-An advanced optical payload for future applications in Earth observation programmes," Acta Astronaut., vol. 61, no. 1-6, pp. 115-120, Aug. 2007.
    • (2007) Acta Astronaut. , vol.61 , Issue.1-6 , pp. 115-120
    • Stuffler, T.1
  • 14
    • 84855449469 scopus 로고    scopus 로고
    • Synergies between VSWIR and TIR data for the urban environment: An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) decadal survey mission
    • Feb
    • D. Roberts, D. Quattrochi, G. Hulley, S. Hook, and R. Green, "Synergies between VSWIR and TIR data for the urban environment: An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) decadal survey mission," Remote Sens. Environ., vol. 117, pp. 83-101, Feb. 2012.
    • (2012) Remote Sens. Environ. , vol.117 , pp. 83-101
    • Roberts, D.1    Quattrochi, D.2    Hulley, G.3    Hook, S.4    Green, R.5
  • 16
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspec-tral image classification
    • Jun
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspec-tral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 20
    • 39049167499 scopus 로고    scopus 로고
    • Improved manifold coordinate representations of large-scale hyperspectral scenes
    • Oct
    • C. Bachmann, T. Ainsworth, and R. Fusina, "Improved manifold coordinate representations of large-scale hyperspectral scenes," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2786-2803, Oct. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2786-2803
    • Bachmann, C.1    Ainsworth, T.2    Fusina, R.3
  • 21
    • 85032751590 scopus 로고    scopus 로고
    • Kernel multivariate analysis framework for supervised subspace learning: A tutorial on linear and kernel multivariate methods
    • Jul
    • J. Arenas-García, K. B. Petersen, G. Camps-Valls, and L. K. Hansen, "Kernel multivariate analysis framework for supervised subspace learning: A tutorial on linear and kernel multivariate methods," IEEE Signal Process. Mag., vol. 30, no. 4, pp. 16-29, Jul. 2013.
    • (2013) IEEE Signal Process. Mag. , vol.30 , Issue.4 , pp. 16-29
    • Arenas-García, J.1    Petersen, K.B.2    Camps-Valls, G.3    Hansen, L.K.4
  • 22
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks,"
    • Jul
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, Jul. 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 23
    • 79953810111 scopus 로고    scopus 로고
    • Iterative Gaussianization: From ICA to random rotations
    • Apr
    • V. Laparra, G. Camps, and J. Malo, "Iterative Gaussianization: From ICA to random rotations," IEEE Trans. Neural Netw., vol. 22, no. 4, pp. 537-549, Apr. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.4 , pp. 537-549
    • Laparra, V.1    Camps, G.2    Malo, J.3
  • 24
    • 0029273524 scopus 로고
    • A neural network for unsupervised categorization of multivalued input patterns: An application to satellite image clustering
    • Mar
    • A. Baraldi and F. Parmiggiani, "A neural network for unsupervised categorization of multivalued input patterns: An application to satellite image clustering," IEEE Trans. Geosci. Remote Sens., vol. 33, no. 2, pp. 305-316, Mar. 1995.
    • (1995) IEEE Trans. Geosci. Remote Sens. , vol.33 , Issue.2 , pp. 305-316
    • Baraldi, A.1    Parmiggiani, F.2
  • 25
    • 33847695328 scopus 로고    scopus 로고
    • A context-sensitive technique for unsupervised change detection based on Hopfield-type neural networks
    • Mar
    • S. Ghosh, L. Bruzzone, S. Patra, F. Bovolo, and A. Ghosh, "A context-sensitive technique for unsupervised change detection based on Hopfield-type neural networks," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 778-789, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 778-789
    • Ghosh, S.1    Bruzzone, L.2    Patra, S.3    Bovolo, F.4    Ghosh, A.5
  • 26
    • 72049088546 scopus 로고    scopus 로고
    • Autoassociative neural networks for features reduction of hyperspectral data
    • Aug
    • F. Del Frate, G. Licciardi, and R. Duca, "Autoassociative neural networks for features reduction of hyperspectral data," in Proc. IEEE 1st WHISPERS, Aug. 2009, pp. 1-4.
    • (2009) Proc. IEEE 1st WHISPERS , pp. 1-4
    • Del Frate, F.1    Licciardi, G.2    Duca, R.3
  • 27
    • 77950936583 scopus 로고    scopus 로고
    • Feature reduction of hyperspec-tral data using autoassociative neural networks algorithms
    • Jul
    • G. Licciardi, F. Del Frate, and R. Duca, "Feature reduction of hyperspec-tral data using autoassociative neural networks algorithms," in Proc. IEEE IGARSS, Jul. 2009, vol. 1, pp. I-176-I-179.
    • (2009) Proc. IEEE IGARSS , vol.1 , pp. I176-I179
    • Licciardi, G.1    Del Frate, F.2    Duca, R.3
  • 28
    • 84869762769 scopus 로고    scopus 로고
    • Deep learning in very high resolution remote sensing image information mining communication concept
    • Aug
    • C. Vaduva, I. Gavat, and M. Datcu, "Deep learning in very high resolution remote sensing image information mining communication concept," in Proc. IEEE 20th EUSIPCO, Aug. 2012, pp. 2506-2510.
    • (2012) Proc. IEEE 20th EUSIPCO , pp. 2506-2510
    • Vaduva, C.1    Gavat, I.2    Datcu, M.3
  • 29
    • 84867136367 scopus 로고    scopus 로고
    • Learning to label aerial images from noisy data
    • V. Mnih and G. Hinton, "Learning to label aerial images from noisy data," in Proc. 29th ICML, 2012, pp. 567-574.
    • (2012) Proc. 29th ICML , pp. 567-574
    • Mnih, V.1    Hinton, G.2
  • 30
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • Oct
    • X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, "Vehicle detection in satellite images by hybrid deep convolutional neural networks," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 10, pp. 1797-1801, Oct. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.-L.3    Pan, C.-H.4
  • 31
    • 84905925092 scopus 로고    scopus 로고
    • Deep learning-based classification of hyperspectral data
    • Jun
    • Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, "Deep learning-based classification of hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ., vol. 7, no. 6, pp. 2094-2107, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. , vol.7 , Issue.6 , pp. 2094-2107
    • Chen, Y.1    Lin, Z.2    Zhao, X.3    Wang, G.4    Gu, Y.5
  • 32
    • 84896391507 scopus 로고    scopus 로고
    • Spatial-spectral classification of hyperspectral images using discriminative dictionary designed by learning vector quantization
    • Aug
    • Z. Wang, N. Nasrabadi, and T. Huang, "Spatial-spectral classification of hyperspectral images using discriminative dictionary designed by learning vector quantization," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4808-4822, Aug. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.8 , pp. 4808-4822
    • Wang, Z.1    Nasrabadi, N.2    Huang, T.3
  • 33
    • 84896402578 scopus 로고    scopus 로고
    • Data-driven compressive sampling and learning sparse coding for hyperspectral image classification
    • Feb
    • S. Yang, H. Jin, M. Wang, Y. Ren, and L. Jiao, "Data-driven compressive sampling and learning sparse coding for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 2, pp. 479-483, Feb. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.2 , pp. 479-483
    • Yang, S.1    Jin, H.2    Wang, M.3    Ren, Y.4    Jiao, L.5
  • 34
    • 84883814326 scopus 로고    scopus 로고
    • Remote sensing image fusion via sparse representations over learned dictionaries
    • Sep
    • S. Li, H. Yin, and L. Fang, "Remote sensing image fusion via sparse representations over learned dictionaries," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 9, pp. 4779-4789, Sep. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.9 , pp. 4779-4789
    • Li, S.1    Yin, H.2    Fang, L.3
  • 35
    • 78650941566 scopus 로고    scopus 로고
    • Satellite image classification via two-layer sparse coding with biased image representation
    • Jan
    • D. Dai and W. Yang, "Satellite image classification via two-layer sparse coding with biased image representation," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 1, pp. 173-176, Jan. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.1 , pp. 173-176
    • Dai, D.1    Yang, W.2
  • 36
    • 84886593202 scopus 로고    scopus 로고
    • Low-level visual saliency with application on aerial imagery
    • Nov
    • I. Rigas, G. Economou, and S. Fotopoulos, "Low-level visual saliency with application on aerial imagery," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 6, pp. 1389-1393, Nov. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.6 , pp. 1389-1393
    • Rigas, I.1    Economou, G.2    Fotopoulos, S.3
  • 37
    • 84655169282 scopus 로고    scopus 로고
    • Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model
    • Jan
    • H. Sun, X. Sun, H. Wang, Y. Li, and X. Li, "Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 1, pp. 109-113, Jan. 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.1 , pp. 109-113
    • Sun, H.1    Sun, X.2    Wang, H.3    Li, Y.4    Li, X.5
  • 38
    • 84890425279 scopus 로고    scopus 로고
    • Unsupervised feature learning for aerial scene classification
    • Jan
    • A. Cheriyadat, "Unsupervised feature learning for aerial scene classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 439-451, Jan. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 439-451
    • Cheriyadat, A.1
  • 39
    • 15344347807 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • S. Haykin and B. Kosko, Eds. Piscataway, NJ, USA: IEEE Press [Online]
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," in Intelligent Signal Processing, S. Haykin and B. Kosko, Eds. Piscataway, NJ, USA: IEEE Press, 2001, pp. 306-351. [Online]. Available: http://yann.lecun.com/exdb/publis/pdf/ lecun-01a.pdf
    • (2001) Intelligent Signal Processing , pp. 306-351
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 40
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Jul
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 42
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • New York, NY, USA
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proc. 26th Annu. ICML, New York, NY, USA, 2009, pp. 609-616.
    • (2009) Proc. 26th Annu. ICML , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 43
    • 79959353548 scopus 로고    scopus 로고
    • Stacked convo-lutional auto-encoders for hierarchical feature extraction
    • Berlin, Germany
    • J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, "Stacked convo-lutional auto-encoders for hierarchical feature extraction," in Proc. 21st ICANN, Berlin, Germany, 2011, pp. 52-59.
    • (2011) Proc. 21st ICANN , pp. 52-59
    • Masci, J.1    Meier, U.2    Cireşan, D.3    Schmidhuber, J.4
  • 44
    • 84947803081 scopus 로고    scopus 로고
    • Meta-parameter free unsupervised sparse feature learning
    • Aug
    • A. Romero, P. Radeva, and C. Gatta, "Meta-parameter free unsupervised sparse feature learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 8, pp. 1716-1722, Aug. 2015.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , Issue.8 , pp. 1716-1722
    • Romero, A.1    Radeva, P.2    Gatta, C.3
  • 47
    • 84919744939 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • Apr
    • P. Sermanet et al., "Overfeat: Integrated recognition, localization and detection using convolutional networks," in Proc. ICLR, Apr. 2014, pp. 1-16.
    • (2014) Proc. ICLR , pp. 1-16
    • Sermanet, P.1
  • 49
    • 84965099650 scopus 로고    scopus 로고
    • Learning convolutional feature hierarchies for visual recognition
    • K. Kavukcuoglu et al., "Learning convolutional feature hierarchies for visual recognition," in Proc. NIPS, 2010, pp. 1090-1098.
    • (2010) Proc. NIPS , pp. 1090-1098
    • Kavukcuoglu, K.1
  • 50
  • 51
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • Jul
    • D. J. Field, "What is the goal of sensory coding?" Neural Comput., vol. 6, no. 4, pp. 559-601, Jul. 1994.
    • (1994) Neural Comput. , vol.6 , Issue.4 , pp. 559-601
    • Field, D.J.1
  • 52
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • B. Olshausen and D. J. Field, "Sparse coding with an overcomplete basis set: A strategy employed by V1?" Vis. Res., vol. 37, no. 23, pp. 3311-3325, 1997.
    • (1997) Vis. Res. , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.1    Field, D.J.2
  • 53
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • M. A. Ranzato, C. Poultney, S. Chopra, and Y. Lecun, "Efficient learning of sparse representations with an energy-based model," in Proc. NIPS, 2006, pp. 1137-1144.
    • (2006) Proc. NIPS , pp. 1137-1144
    • Ranzato, M.A.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 54
    • 0005713456 scopus 로고    scopus 로고
    • Characterizing the sparseness of neural codes
    • Aug
    • B. Willmore and D. J. Tolhurst, "Characterizing the sparseness of neural codes," Network, vol. 12, no. 12, pp. 255-270, Aug. 2001.
    • (2001) Network , vol.12 , Issue.12 , pp. 255-270
    • Willmore, B.1    Tolhurst, D.J.2
  • 55
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • A. Coates and A. Ng, "The importance of encoding versus training with sparse coding and vector quantization," in Proc. ICML, 2011, pp. 921-928.
    • (2011) Proc. ICML , pp. 921-928
    • Coates, A.1    Ng, A.2
  • 56
    • 84891786014 scopus 로고    scopus 로고
    • No more pesky learning rates
    • T. Schaul, S. Zhang, and Y. LeCun, "No more pesky learning rates," in Proc. ICML, 2013, pp. 1-7.
    • (2013) Proc. ICML , pp. 1-7
    • Schaul, T.1    Zhang, S.2    LeCun, Y.3
  • 57
    • 78650593938 scopus 로고    scopus 로고
    • Bag-of-visual-words and spatial extensions for land-use classification
    • San Jose, CA, USA
    • Y. Yang and S. Newsam, "Bag-of-visual-words and spatial extensions for land-use classification," in Proc. GIS, San Jose, CA, USA, 2010, pp. 270-279.
    • (2010) Proc. GIS , pp. 270-279
    • Yang, Y.1    Newsam, S.2
  • 58
    • 77954497634 scopus 로고    scopus 로고
    • Merits and limits of ecosystem protection for conserving wild salmon in a northern coastal British Columbia river
    • A. C. Hill, T. S. Bansak, B. K. Ellis, and J. A. Stanford, "Merits and limits of ecosystem protection for conserving wild salmon in a northern coastal British Columbia river," Ecol. Soc., vol. 15, no. 2, pp. 1-20, 2010.
    • (2010) Ecol. Soc. , vol.15 , Issue.2 , pp. 1-20
    • Hill, A.C.1    Bansak, T.S.2    Ellis, B.K.3    Stanford, J.A.4
  • 59
    • 84873279911 scopus 로고    scopus 로고
    • Estimation of juvenile salmon habitat in pacific rim rivers using multiscalar remote sensing and geospatial analysis
    • Feb
    • D. C. Whited, J. S. Kimball, M. Lorang, and J. Stanford, "Estimation of juvenile salmon habitat in pacific rim rivers using multiscalar remote sensing and geospatial analysis," River Res. Appl., vol. 29, no. 2, pp. 135-148, Feb. 2013.
    • (2013) River Res. Appl. , vol.29 , Issue.2 , pp. 135-148
    • Whited, D.C.1    Kimball, J.S.2    Lorang, M.3    Stanford, J.4
  • 60
    • 0032800968 scopus 로고    scopus 로고
    • A study of cloud classification with neural networks using spectral and textural features
    • Jan
    • B. Tian, M. Shaikh, M. Azimi-Sadjadi, T. Haar, and D. Reinke, "A study of cloud classification with neural networks using spectral and textural features," IEEE Trans. Neural Netw., vol. 10, no. 1, pp. 138-151, Jan. 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.1 , pp. 138-151
    • Tian, B.1    Shaikh, M.2    Azimi-Sadjadi, M.3    Haar, T.4    Reinke, D.5
  • 61
    • 0036763017 scopus 로고    scopus 로고
    • Arctic sea ice, cloud, water, and lead classification using neural networks and 1.6-μm data
    • Sep
    • T. McIntire and J. Simpson, "Arctic sea ice, cloud, water, and lead classification using neural networks and 1.6-μm data," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 1956-1972, Sep. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.9 , pp. 1956-1972
    • McIntire, T.1    Simpson, J.2
  • 62
    • 0038272078 scopus 로고    scopus 로고
    • An automatic cloudmask-ing system using backpro neural nets for AVHRR scenes
    • Apr
    • J. Arriaza, F. Rojas, M. López, and M. Cantón, "An automatic cloudmask-ing system using backpro neural nets for AVHRR scenes," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 4, pp. 826-831, Apr. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.4 , pp. 826-831
    • Arriaza, J.1    Rojas, F.2    López, M.3    Cantón, M.4
  • 64
  • 66
    • 79952042749 scopus 로고    scopus 로고
    • On the impact of lossy compression on hyperspectral image classification and unmixing
    • Mar
    • F. García-Vílchez et al. and, "On the impact of lossy compression on hyperspectral image classification and unmixing," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 2, pp. 253-257, Mar. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.2 , pp. 253-257
    • García-Vílchez, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.