메뉴 건너뛰기




Volumn 15, Issue 5, 2014, Pages 2191-2201

Deep architecture for traffic flow prediction: Deep belief networks with multitask learning

Author keywords

Deep learning; multitask learning (MTL); task grouping; Traffic flow prediction

Indexed keywords

DEEP ARCHITECTURES; DEEP BELIEF NETWORKS; DEEP LEARNING; MULTITASK LEARNING; TASK GROUPING; TRAFFIC FLOW PREDICTION;

EID: 84907500988     PISSN: 15249050     EISSN: None     Source Type: Journal    
DOI: 10.1109/TITS.2014.2311123     Document Type: Article
Times cited : (1094)

References (37)
  • 1
    • 1942470793 scopus 로고    scopus 로고
    • New York, NY, USA: Springer-Verlag
    • R. Caruana, Multitask Learning. New York, NY, USA: Springer-Verlag, 1998.
    • (1998) Multitask Learning
    • Caruana, R.1
  • 2
    • 58349104545 scopus 로고    scopus 로고
    • Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions
    • Apr.
    • M. Castro-Neto, Y.-S. Jeong, M.-K. Jeong, and L. D. Han, "Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions," Expert Syst. Appl., vol. 36, no. 3, pp. 6164-6173, Apr. 2009.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.3 , pp. 6164-6173
    • Castro-Neto, M.1    Jeong, Y.-S.2    Jeong, M.-K.3    Han, L.D.4
  • 3
    • 84861893114 scopus 로고    scopus 로고
    • Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm
    • Jun.
    • K. Y. Chan, T. S. Dillon, J. Singh, and E. Chang, "Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm," IEEE Trans. Intell. Transp. Syst., vol. 13, no. 2, pp. 644-654, Jun. 2012.
    • (2012) IEEE Trans. Intell. Transp. Syst. , vol.13 , Issue.2 , pp. 644-654
    • Chan, K.Y.1    Dillon, T.S.2    Singh, J.3    Chang, E.4
  • 4
    • 0037336276 scopus 로고    scopus 로고
    • Traffic prediction using multivariate nonparametric regression
    • Mar.
    • S. Clark, "Traffic prediction using multivariate nonparametric regression," J. Transp. Eng., vol. 129, no. 2, pp. 161-168, Mar. 2003.
    • (2003) J. Transp. Eng. , vol.129 , Issue.2 , pp. 161-168
    • Clark, S.1
  • 5
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston, "A unified architecture for natural language processing: Deep neural networks with multitask learning," in Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 160-167.
    • (2008) Proc. 25th Int. Conf. Mach. Learn. , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 7
    • 84867614591 scopus 로고    scopus 로고
    • Scalable stacking and learning for building deep architectures
    • L. Deng, D. Yu, and J. Platt, "Scalable stacking and learning for building deep architectures," in Proc. IEEE ICASSP, 2012, pp. 2133-2136.
    • (2012) Proc. IEEE ICASSP , pp. 2133-2136
    • Deng, L.1    Yu, D.2    Platt, J.3
  • 8
    • 33847182046 scopus 로고    scopus 로고
    • Bayesian time-series model for short-term traffic flow forecasting
    • Mar.
    • B. Ghosh, B. Basu, and M. O'Mahony, "Bayesian time-series model for short-term traffic flow forecasting," J. Transp. Eng., vol. 133, no. 3, pp. 180-189, Mar. 2007.
    • (2007) J. Transp. Eng. , vol.133 , Issue.3 , pp. 180-189
    • Ghosh, B.1    Basu, B.2    O'mahony, M.3
  • 9
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Aug.
    • G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Comput., vol. 14, no. 8, pp. 1771-1800, Aug. 2002.
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 10
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • May
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, May 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 11
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Jul.
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, Jul. 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 15
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area v2
    • H. Lee, C. Ekanadham, and A. Ng, "Sparse deep belief net model for visual area v2," in Adv. Neural Inf. Process. Syst., 2008, vol. 20, pp. 873-880.
    • (2008) Adv. Neural Inf. Process. Syst. , vol.20 , pp. 873-880
    • Lee, H.1    Ekanadham, C.2    Ng, A.3
  • 16
    • 84907514351 scopus 로고    scopus 로고
    • Transportation Research Board, Washington DC, USA
    • Highway Capacity Manual, Transportation Research Board, Washington, DC, USA, 2000.
    • (2000)
    • Capacity Manual, H.1
  • 18
    • 0002324802 scopus 로고
    • Short term traffic forecasting using time series methods
    • Jul.
    • C. K. Moorthy and B. G. Ratcliffe, "Short term traffic forecasting using time series methods," Transp. Planning Technol., vol. 12, no. 1, pp. 45-56, Jul. 1988.
    • (1988) Transp. Planning Technol. , vol.12 , Issue.1 , pp. 45-56
    • Moorthy, C.K.1    Ratcliffe, B.G.2
  • 19
    • 84870564831 scopus 로고    scopus 로고
    • Real-time video-based traffic measurement and visualization system for energy/emissions
    • Dec.
    • B. T. Morris, C. Tran, G. Scora, M. M. Trivedi, and M. J. Barth, "Real-time video-based traffic measurement and visualization system for energy/emissions," IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4, pp. 1667-1678, Dec. 2012.
    • (2012) IEEE Trans. Intell. Transp. Syst. , vol.13 , Issue.4 , pp. 1667-1678
    • Morris, B.T.1    Tran, C.2    Scora, G.3    Trivedi, M.M.4    Barth, M.J.5
  • 21
    • 84883802662 scopus 로고    scopus 로고
    • Shortterm traffic state prediction based on temporal-spatial correlation
    • Sep.
    • T. L. Pan, A. Sumalee, R. X. Zhong, and N. Indra-Payoong, "Shortterm traffic state prediction based on temporal-spatial correlation," IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1242-1254, Sep. 2013.
    • (2013) IEEE Trans. Intell. Transp. Syst. , vol.14 , Issue.3 , pp. 1242-1254
    • Pan, T.L.1    Sumalee, A.2    Zhong, R.X.3    Indra-Payoong, N.4
  • 22
    • 85162037149 scopus 로고    scopus 로고
    • Using deep belief nets to learn covariance kernels for Gaussian processes
    • R. Salakhutdinov and G. Hinton, "Using deep belief nets to learn covariance kernels for Gaussian processes," in Proc. Adv. Neural Inf. Process. Syst., 2008, vol. 20, pp. 1249-1256.
    • (2008) Proc. Adv. Neural Inf. Process. Syst. , vol.20 , pp. 1249-1256
    • Salakhutdinov, R.1    Hinton, G.2
  • 24
    • 0001891123 scopus 로고
    • Short-term traffic flow prediction: Neural network approach
    • B. L. Smith and M. J. Demetsky, "Short-term traffic flow prediction: Neural network approach," Transp. Res. Rec., vol. 1453, pp. 98-104, 1994.
    • (1994) Transp. Res. Rec. , vol.1453 , pp. 98-104
    • Smith, B.L.1    Demetsky, M.J.2
  • 25
    • 67650691083 scopus 로고    scopus 로고
    • Traffic flow forecasting based on multitask ensemble learning
    • S. Sun, "Traffic flow forecasting based on multitask ensemble learning," in Proc. 1st ACM/SIGEVO Summit Genetic Evol. Comput., 2009, pp. 961-964.
    • (2009) Proc. 1st ACM/SIGEVO Summit Genetic Evol. Comput. , pp. 961-964
    • Sun, S.1
  • 26
    • 79958135902 scopus 로고    scopus 로고
    • Variational inference for infinite mixtures of Gaussian processes with applications to traffic flow prediction
    • Jun.
    • S. Sun and X. Xu, "Variational inference for infinite mixtures of Gaussian processes with applications to traffic flow prediction," IEEE Trans. Intell. Transp. Syst., vol. 12, no. 2, pp. 466-475, Jun. 2011.
    • (2011) IEEE Trans. Intell. Transp. Syst. , vol.12 , Issue.2 , pp. 466-475
    • Sun, S.1    Xu, X.2
  • 27
    • 34249888176 scopus 로고    scopus 로고
    • The selective random subspace predictor for traffic flow forecasting
    • Jun.
    • S. Sun and C. Zhang, "The selective random subspace predictor for traffic flow forecasting," IEEE Trans. Intell. Transp. Syst., vol. 8, no. 2, pp. 367-373, Jun. 2007.
    • (2007) IEEE Trans. Intell. Transp. Syst. , vol.8 , Issue.2 , pp. 367-373
    • Sun, S.1    Zhang, C.2
  • 28
    • 33644989492 scopus 로고    scopus 로고
    • A Bayesian network approach to traffic flow forecasting
    • Mar.
    • S. Sun, C. Zhang, and G. Yu, "A Bayesian network approach to traffic flow forecasting," IEEE Trans. Intell. Transp. Syst., vol. 7, no. 1, pp. 124-132, Mar. 2006.
    • (2006) IEEE Trans. Intell. Transp. Syst. , vol.7 , Issue.1 , pp. 124-132
    • Sun, S.1    Zhang, C.2    Yu, G.3
  • 30
    • 84899005618 scopus 로고    scopus 로고
    • Rate-coded restricted Boltzmann machines for face recognition
    • Y. W. Teh and G. E. Hinton, "Rate-coded restricted Boltzmann machines for face recognition," in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 908-914.
    • (2001) Proc. Adv. Neural Inf. Process. Syst. , pp. 908-914
    • Teh, Y.W.1    Hinton, G.E.2
  • 32
    • 0030298951 scopus 로고    scopus 로고
    • Combining Kohonen maps with ARIMA time series models to forecast traffic flow
    • Oct.
    • M. Van Der Voort, M. Dougherty, and S. Watson, "Combining Kohonen maps with ARIMA time series models to forecast traffic flow," Transp. Res. C., Emerging Technol., vol. 4, no. 5, pp. 307-318, Oct. 1996.
    • (1996) Transp. Res. C., Emerging Technol. , vol.4 , Issue.5 , pp. 307-318
    • Voort Der M.Van1    Dougherty, M.2    Watson, S.3
  • 33
    • 77956338565 scopus 로고    scopus 로고
    • Parallel control and management for intelligent transportation systems: Concepts, architectures, and applications
    • Sep.
    • F.-Y. Wang, "Parallel control and management for intelligent transportation systems: Concepts, architectures, and applications," IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3, pp. 630-638, Sep. 2010.
    • (2010) IEEE Trans. Intell. Transp. Syst. , vol.11 , Issue.3 , pp. 630-638
    • Wang, F.-Y.1
  • 34
    • 84870549790 scopus 로고    scopus 로고
    • Short-term traffic speed forecasting based on data recorded at irregular intervals
    • Dec.
    • Q. Ye, W. Y. Szeto, and S. C. Wong, "Short-term traffic speed forecasting based on data recorded at irregular intervals," IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4, pp. 1727-1737, Dec. 2012.
    • (2012) IEEE Trans. Intell. Transp. Syst. , vol.13 , Issue.4 , pp. 1727-1737
    • Ye, Q.1    Szeto, W.Y.2    Wong, S.C.3
  • 37
    • 31044437283 scopus 로고    scopus 로고
    • Short-term freeway traffic flow prediction: Bayesian combined neural network approach
    • W. Zheng, D.-H. Lee, and Q. Shi, "Short-term freeway traffic flow prediction: Bayesian combined neural network approach," J. Transp. Eng., vol. 132, no. 2, pp. 114-121, 2006.
    • (2006) J. Transp. Eng. , vol.132 , Issue.2 , pp. 114-121
    • Zheng, W.1    Lee, D.-H.2    Shi, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.