메뉴 건너뛰기




Volumn 2015-June, Issue June, 2015, Pages 3471-3478

3D Convolutional Neural Networks for landing zone detection from LiDAR

Author keywords

[No Author keywords available]

Indexed keywords

AGRICULTURAL ROBOTS; AIRCRAFT DETECTION; CONVOLUTION; HEURISTIC METHODS; OPTICAL RADAR; ROBOTICS; VEGETATION;

EID: 84938228349     PISSN: 10504729     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICRA.2015.7139679     Document Type: Conference Paper
Times cited : (238)

References (33)
  • 2
    • 84869088446 scopus 로고    scopus 로고
    • Autonomous landing at unprepared sites by a full-scale helicopter
    • Dec
    • S. Scherer, L. Chamberlain, and S. Singh, "Autonomous landing at unprepared sites by a full-scale helicopter," RAS, vol. 60, no. 12, pp. 1545-1562, Dec. 2012.
    • (2012) RAS , vol.60 , Issue.12 , pp. 1545-1562
    • Scherer, S.1    Chamberlain, L.2    Singh, S.3
  • 5
    • 85008468929 scopus 로고    scopus 로고
    • Enabling aircraft emergency landings using active visual site detection
    • M. Warren, L. Mejias, X. Yang, B. Arain, and F. Gonzalez, "Enabling Aircraft Emergency Landings using Active Visual Site Detection," in FSR, 2013.
    • (2013) FSR
    • Warren, M.1    Mejias, L.2    Yang, X.3    Arain, B.4    Gonzalez, F.5
  • 6
    • 80051744664 scopus 로고    scopus 로고
    • Ground filtering algorithms for airborne lidar data: A review of critical issues
    • X. Meng, N. Currit, and K. Zhao, "Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues," Remote Sensing, vol. 2, no. 3, pp. 833-860, 2010.
    • (2010) Remote Sensing , vol.2 , Issue.3 , pp. 833-860
    • Meng, X.1    Currit, N.2    Zhao, K.3
  • 7
    • 84938260447 scopus 로고    scopus 로고
    • Non-stationary space-carving kernels for accurate rough terrain estimation
    • R. Hadsell, J. A. Bagnell, D. Huber, and M. Hebert, "Non-Stationary Space-Carving Kernels for Accurate Rough Terrain Estimation," in RSS, 2008.
    • (2008) RSS
    • Hadsell, R.1    Bagnell, J.A.2    Huber, D.3    Hebert, M.4
  • 8
    • 80053350122 scopus 로고    scopus 로고
    • Onboard contextual classification of 3-D point clouds with learned high-order Markov random fields
    • D. Munoz, N. Vandapel, and M. Hebert, "Onboard contextual classification of 3-D point clouds with learned high-order Markov random fields," in ICRA, 2009.
    • (2009) ICRA
    • Munoz, D.1    Vandapel, N.2    Hebert, M.3
  • 9
    • 84938245022 scopus 로고    scopus 로고
    • Non-associative Markov networks for 3d point cloud classification
    • R. Shapovalov, "Non-associative Markov networks for 3D point cloud classification," PCV, 2010.
    • (2010) PCV
    • Shapovalov, R.1
  • 10
  • 11
    • 33750990780 scopus 로고    scopus 로고
    • A generative model of terrain for autonomous navigation in vegetation
    • C. Wellington, A. Courville, and A. Stentz, "A Generative Model of Terrain for Autonomous Navigation in Vegetation," IJRR, vol. 25, no. 12, pp. 1287-1304, 2006.
    • (2006) IJRR , vol.25 , Issue.12 , pp. 1287-1304
    • Wellington, C.1    Courville, A.2    Stentz, A.3
  • 12
    • 0345615299 scopus 로고    scopus 로고
    • Ladar-based discrimination of grass from obstacles for autonomous navigation
    • J. Macedo, R. Manduchi, and L. Matthies, "Ladar-based discrimination of grass from obstacles for autonomous navigation," in ISER, 2001.
    • (2001) ISER
    • Macedo, J.1    Manduchi, R.2    Matthies, L.3
  • 13
    • 0344876651 scopus 로고    scopus 로고
    • Foliage discrimination using a rotating ladar
    • A. Castano and L. Matthies, "Foliage discrimination using a rotating ladar," Robotics and Automation, vol. 1, pp. 1-6, 2003.
    • (2003) Robotics and Automation , vol.1 , pp. 1-6
    • Castano, A.1    Matthies, L.2
  • 15
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," JMLR, vol. 15, pp. 1929-1958, 2014.
    • (2014) JMLR , vol.15 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.5
  • 16
    • 84877789646 scopus 로고    scopus 로고
    • Convolutional-recursive deep learning for 3d object classification
    • R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng, "Convolutional-Recursive Deep Learning for 3D Object Classification," in NIPS, 2012.
    • (2012) NIPS
    • Socher, R.1    Huval, B.2    Bhat, B.3    Manning, C.D.4    Ng, A.Y.5
  • 17
    • 84893741253 scopus 로고    scopus 로고
    • Deep learning for detecting robotic grasps
    • I. Lenz, H. Lee, and A. Saxena, "Deep learning for detecting robotic grasps," in RSS, 2013.
    • (2013) RSS
    • Lenz, I.1    Lee, H.2    Saxena, A.3
  • 18
    • 84870183903 scopus 로고    scopus 로고
    • 3D convolutional neural networks for human action recognition
    • S. Ji, W. Xu, M. Yang, and K. Yu, "3D convolutional neural networks for human action recognition," TPAMI, vol. 35, no. 1, pp. 221-231, 2013.
    • (2013) TPAMI , vol.35 , Issue.1 , pp. 221-231
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 19
    • 84866645169 scopus 로고    scopus 로고
    • A 3D extension to cortex like mechanisms for 3D object class recognition
    • G. Flitton, T. P. Breckon, and N. Megherbi, "A 3D extension to cortex like mechanisms for 3D object class recognition," in CVPR, 2012, pp. 3634-3641.
    • (2012) CVPR , pp. 3634-3641
    • Flitton, G.1    Breckon, T.P.2    Megherbi, N.3
  • 20
    • 84929146905 scopus 로고    scopus 로고
    • Unsupervised feature learning for 3D scene labeling
    • K. Lai, L. Bo, and D. Fox, "Unsupervised feature learning for 3D scene labeling," in ICRA, 2014.
    • (2014) ICRA
    • Lai, K.1    Bo, L.2    Fox, D.3
  • 21
    • 84906713426 scopus 로고    scopus 로고
    • The planner ensemble and trajectory executive: A high performance motion planning system with guaranteed safety
    • S. Choudhury, S. Arora, and S. Scherer, "The planner ensemble and trajectory executive: A high performance motion planning system with guaranteed safety," in AHS 70th Annual Forum, 2014.
    • (2014) AHS 70th Annual Forum
    • Choudhury, S.1    Arora, S.2    Scherer, S.3
  • 22
    • 85041522555 scopus 로고
    • High resolution maps from wide angle sonar
    • H. Moravec and A. Elfes, "High resolution maps from wide angle sonar," in ICRA, 1985.
    • (1985) ICRA
    • Moravec, H.1    Elfes, A.2
  • 23
    • 33646677499 scopus 로고    scopus 로고
    • Toward reliable off road autonomous vehicles operating in challenging environments
    • A. Kelly, A. Stentz, and O. Amidi, "Toward reliable off road autonomous vehicles operating in challenging environments," IJRR, vol. 25, no. 5-6, pp. 449-483, 2006.
    • (2006) IJRR , vol.25 , Issue.5-6 , pp. 449-483
    • Kelly, A.1    Stentz, A.2    Amidi, O.3
  • 24
    • 77955795720 scopus 로고    scopus 로고
    • FLIRT-interest regions for 2D range data
    • G. D. Tipaldi and K. O. Arras, "FLIRT-interest regions for 2D range data," in ICRA, 2010.
    • (2010) ICRA
    • Tipaldi, G.D.1    Arras, K.O.2
  • 25
    • 0002647811 scopus 로고
    • A fast voxel traversal algorithm for ray tracing
    • Aug.
    • J. Amanatides and A. Woo, "A fast voxel traversal algorithm for ray tracing," in Eurographics '87, Aug. 1987, pp. 3-10.
    • (1987) Eurographics '87 , pp. 3-10
    • Amanatides, J.1    Woo, A.2
  • 27
    • 84864459647 scopus 로고    scopus 로고
    • Automatic data driven vegetation modeling for lidar simulation
    • J.-E. Deschaud, D. Prasser, M. F. Dias, B. Browning, and P. Rander, "Automatic data driven vegetation modeling for lidar simulation," in ICRA, 2012, pp. 5030-5036.
    • (2012) ICRA , pp. 5030-5036
    • Deschaud, J.-E.1    Prasser, D.2    Dias, M.F.3    Browning, B.4    Rander, P.5
  • 28
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 30
    • 33751221647 scopus 로고    scopus 로고
    • Natural terrain classification using three-dimensional ladar data for ground robot mobility
    • Oct
    • J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, "Natural terrain classification using three-dimensional ladar data for ground robot mobility," JFR, vol. 23, no. 10, pp. 839-861, Oct. 2006.
    • (2006) JFR , vol.23 , Issue.10 , pp. 839-861
    • Lalonde, J.-F.1    Vandapel, N.2    Huber, D.F.3    Hebert, M.4
  • 32
    • 84938251248 scopus 로고    scopus 로고
    • Making a science of model search
    • "Making a science of model search," in ICML, vol. 28, 2013.
    • (2013) ICML , vol.28
  • 33
    • 84938239875 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • K. Simonyan, A. Vedaldi, and A. Zisserman, "Deep inside convolutional networks: Visualising image classification models and saliency maps," CoRR, 2013.
    • (2013) CoRR
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.