메뉴 건너뛰기




Volumn 9823, Issue , 2016, Pages

Detecting buried explosive hazards with handheld GPR and deep learning

Author keywords

Anomaly detection; Buried explosive hazard; Convolutional neural networks; Deep learning; Ground penetrating radar; Signal processing

Indexed keywords

AUTOMATIC TARGET RECOGNITION; CLASSIFICATION (OF INFORMATION); COMPLEX NETWORKS; EXPLOSIVES; EXPLOSIVES DETECTION; GEOLOGICAL SURVEYS; GROUND PENETRATING RADAR SYSTEMS; HAZARDS; NEURAL NETWORKS; PATTERN RECOGNITION; RADAR; SIGNAL DETECTION; SIGNAL PROCESSING; SPEECH RECOGNITION; TRACKING RADAR;

EID: 84982141319     PISSN: 0277786X     EISSN: 1996756X     Source Type: Conference Proceeding    
DOI: 10.1117/12.2223797     Document Type: Conference Paper
Times cited : (29)

References (20)
  • 1
    • 84881049067 scopus 로고    scopus 로고
    • Geneva International Centre for Humanitarian Demining, March
    • Geneva International Centre for Humanitarian Demining, "Mines other than anti-personnel mines, " (March 2012).
    • (2012) Mines Other Than Anti-personnel Mines
  • 2
    • 1542476187 scopus 로고    scopus 로고
    • Joint Improvised Explosive Device Defeat Organization
    • Joint Improvised Explosive Device Defeat Organization, "Annual report, " (2010).
    • (2010) Annual Report
  • 4
    • 0036613258 scopus 로고    scopus 로고
    • A linear prediction land mine detector algorithms for handheld ground penetrating radar
    • Ho, K. C. and Gader, P. D., "A linear prediction land mine detector algorithms for handheld ground penetrating radar, " IEEE Trans. Geosci. Remote Sensing, 40(6), pp. 1374-1384 (2002).
    • (2002) IEEE Trans. Geosci. Remote Sensing , vol.40 , Issue.6 , pp. 1374-1384
    • Ho, K.C.1    Gader, P.D.2
  • 5
    • 84982154387 scopus 로고    scopus 로고
    • Landmine detection using frequency domain features from GPR measurements and their fusion with time domain features. Development of region processing algorithms for HSTAMIDS: Status and field test results
    • Ho, K. C., Gader, P., Wilson, J. N. and Glenn, T. C., "Landmine detection using frequency domain features from GPR measurements and their fusion with time domain features, " Development of region processing algorithms for HSTAMIDS: Status and field test results, " in Proc. SPIE Detection and Remediation Technologies for Mines and Minelike Targets X (2005).
    • (2005) Proc. SPIE Detection and Remediation Technologies for Mines and Minelike Targets X
    • Ho, K.C.1    Gader, P.2    Wilson, J.N.3    Glenn, T.C.4
  • 13
    • 84905695247 scopus 로고    scopus 로고
    • Deep learning algorithms for detecting explosive hazards in ground penetrating radar data
    • Besaw, L.E. and Stimac, P.J., "Deep Learning Algorithms for Detecting Explosive Hazards in Ground Penetrating Radar Data, " in Proc. SPIE Defense, Security and Sensing (2014).
    • (2014) Proc. SPIE Defense, Security and Sensing
    • Besaw, L.E.1    Stimac, P.J.2
  • 14
    • 60549105876 scopus 로고    scopus 로고
    • Detection and discrimination of land mines in ground-penetrating radar based on edge histogram descriptors and a possibilistic k-nearest neighbor classifier
    • Frigui H. and Gader, P., "Detection and discrimination of land mines in ground-penetrating radar based on edge histogram descriptors and a possibilistic k-nearest neighbor classifier, " Fuzzy Systems, IEEE Transactions on 17(1), pp. 185-199 (2009).
    • (2009) Fuzzy Systems, IEEE Transactions on , vol.17 , Issue.1 , pp. 185-199
    • Frigui, H.1    Gader, P.2
  • 19
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., Bienenstock, E. and Doursat, R. "Neural networks and the bias/variance dilemma." Neural Computation 4: 1-58. doi:10.1162/neco.1992.4.1 (1992).
    • (1992) Neural Computation , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.