메뉴 건너뛰기




Volumn 54, Issue 3, 2016, Pages 1793-1802

Scene classification via a gradient boosting random convolutional network framework

Author keywords

Convolutional networks (CNets); Gradient boosting machine (GBM); Scene classification

Indexed keywords

CONVOLUTION; IMAGE RECONSTRUCTION; LAND USE; REMOTE SENSING;

EID: 84945898896     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2015.2488681     Document Type: Article
Times cited : (409)

References (33)
  • 1
    • 84890425279 scopus 로고    scopus 로고
    • Unsupervised feature learning for aerial scene classification
    • Jan.
    • A. M. Cheriyadat, "Unsupervised feature learning for aerial scene classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 439-451, Jan. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 439-451
    • Cheriyadat, A.M.1
  • 2
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • Oct. 13-16
    • J. Sivic and A. Zisserman, "Video Google: A text retrieval approach to object matching in videos," in Proc. 9th IEEE Int. Conf. Comput. Vis., Oct. 13-16, 2003, vol. 2, pp. 1470-1477.
    • (2003) Proc. 9th IEEE Int. Conf. Comput. Vis. , vol.2 , pp. 1470-1477
    • Sivic, J.1    Zisserman, A.2
  • 3
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories," in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog., 2006, vol. 2, pp. 2169-2178.
    • (2006) Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog. , vol.2 , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 4
    • 78650593938 scopus 로고    scopus 로고
    • Bag-of-visual-words and spatial extensions for land-use classification
    • Y. Yang and S. Newsam, "Bag-of-visual-words and spatial extensions for land-use classification," in Proc. ACM GIS, 2010, pp. 270-279.
    • (2010) Proc. ACM GIS , pp. 270-279
    • Yang, Y.1    Newsam, S.2
  • 5
    • 85027929099 scopus 로고    scopus 로고
    • Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification
    • May
    • F. Hu et al., "Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 5, pp. 2015-2030, May 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.5 , pp. 2015-2030
    • Hu, F.1
  • 6
  • 7
    • 75449091209 scopus 로고    scopus 로고
    • Semantic annotation of satellite images using latent Dirichlet allocation
    • Jan.
    • M. Lienou, H. Maitre, and M. Datcu, "Semantic annotation of satellite images using latent Dirichlet allocation," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 1, pp. 28-32, Jan. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.1 , pp. 28-32
    • Lienou, M.1    Maitre, H.2    Datcu, M.3
  • 8
    • 85027956142 scopus 로고    scopus 로고
    • Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery
    • Nov.
    • Y. Zhong, Q. Zhu, and L. Zhang, "Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 11, pp. 6207-6222, Nov. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.11 , pp. 6207-6222
    • Zhong, Y.1    Zhu, Q.2    Zhang, L.3
  • 9
    • 84884546915 scopus 로고    scopus 로고
    • Latent Dirichlet allocation models for image classification
    • Nov.
    • N. Rasiwasia and N. Vasconcelos, "Latent Dirichlet allocation models for image classification," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2665-2679, Nov. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.11 , pp. 2665-2679
    • Rasiwasia, N.1    Vasconcelos, N.2
  • 10
    • 77955998889 scopus 로고    scopus 로고
    • Convolutional networks and applications in vision
    • Jun.
    • Y. LeCun, K. Kavukcuoglu, and C. Farabet, "Convolutional networks and applications in vision," in Proc. IEEE ISCAS, Jun. 2010, pp. 253-256.
    • (2010) Proc. IEEE ISCAS , pp. 253-256
    • LeCun, Y.1    Kavukcuoglu, K.2    Farabet, C.3
  • 11
    • 84919744939 scopus 로고    scopus 로고
    • OverFeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet et al., "OverFeat: Integrated recognition, localization and detection using convolutional networks," in Proc. ICLR, 2014, pp. 1-16.
    • (2014) Proc. ICLR , pp. 1-16
    • Sermanet, P.1
  • 13
    • 0345159806 scopus 로고
    • Putting it all together: Methods for combining neural networks
    • M. P. Perrone, "Putting it all together: Methods for combining neural networks," in Proc. Adv. Neural Inf., 1994, vol. 6, pp. 1188-1189.
    • (1994) Proc. Adv. Neural Inf. , vol.6 , pp. 1188-1189
    • Perrone, M.P.1
  • 14
    • 84892667860 scopus 로고    scopus 로고
    • Gradient boosting machines, a tutorial
    • A. Natekin and A. Knoll, "Gradient boosting machines, a tutorial," Front. Neurorobot., vol. 7, p. 21, 2013.
    • (2013) Front. Neurorobot. , vol.7 , pp. 21
    • Natekin, A.1    Knoll, A.2
  • 17
    • 0000494467 scopus 로고
    • Handwritten digit recognition with a back-propagation network
    • Y. LeCun et al., "Handwritten digit recognition with a back-propagation network," in Proc. NIPS, 1990, pp. 396-404.
    • (1990) Proc. NIPS , pp. 396-404
    • LeCun, Y.1
  • 18
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 19
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 20
    • 84878919540 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Adv. Neural Inf., 2012, vol. 25, pp. 1106-1114.
    • (2012) Proc. Adv. Neural Inf. , vol.25 , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 21
    • 0030356238 scopus 로고    scopus 로고
    • Actively searching for an effective neural network ensemble
    • D. W. Opitz and J. W. Shavlik, "Actively searching for an effective neural network ensemble," Connect. Sci., vol. 8, no. 3/4, pp. 337-353, 1996.
    • (1996) Connect. Sci. , vol.8 , Issue.3-4 , pp. 337-353
    • Opitz, D.W.1    Shavlik, J.W.2
  • 22
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • R. J. Mammone, Ed. London, U.K.: Chapman & Hall
    • M. P. Perrone and L. N. Cooper, "When networks disagree: Ensemble methods for hybrid neural networks," in Neural Networks for Speech and Image Processing, R. J. Mammone, Ed. London, U.K.: Chapman & Hall, 1993.
    • (1993) Neural Networks for Speech and Image Processing
    • Perrone, M.P.1    Cooper, L.N.2
  • 23
    • 84937522268 scopus 로고    scopus 로고
    • Going deeper with convolutions
    • C. Szegedy et al., "Going deeper with convolutions," in Proc. CVPR, 2015, p. 1.
    • (2015) Proc. CVPR , pp. 1
    • Szegedy, C.1
  • 24
    • 84885953871 scopus 로고    scopus 로고
    • An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images
    • Nov.
    • A. Linares-Rodriguez, J. A. Ruiz-Arias, D. Pozo-Vazquez, and J. Tovar-Pescador, "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, vol. 61, pp. 636-645, Nov. 2013.
    • (2013) Energy , vol.61 , pp. 636-645
    • Linares-Rodriguez, A.1    Ruiz-Arias, J.A.2    Pozo-Vazquez, D.3    Tovar-Pescador, J.4
  • 25
    • 85027957551 scopus 로고    scopus 로고
    • Ensemble of adaptive rule-based granular neural network classifiers for multispectral remote sensing images
    • May
    • S. K. Meher and D. A. Kumar, "Ensemble of adaptive rule-based granular neural network classifiers for multispectral remote sensing images," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 5, pp. 2222-2231, May 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.5 , pp. 2222-2231
    • Meher, S.K.1    Kumar, D.A.2
  • 26
    • 0034243471 scopus 로고    scopus 로고
    • Boosting neural networks
    • H. Schwenk and Y. Bengio, "Boosting neural networks," Neural Comput., vol. 12, pp. 1869-1887, 2000.
    • (2000) Neural Comput. , vol.12 , pp. 1869-1887
    • Schwenk, H.1    Bengio, Y.2
  • 27
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in Proc. ECCV, 2013, pp. 818-833.
    • (2013) Proc. ECCV , pp. 818-833
    • Zeiler, M.1    Fergus, R.2
  • 28
    • 84906343066 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proc. CVPR, 2013, pp. 1-25.
    • (2013) Proc. CVPR , pp. 1-25
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 29
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Oct.
    • J. H. Friedman, "Greedy function approximation: A gradient boosting machine," Ann. Statist., vol. 29, no. 5, pp. 1189-1232, Oct. 2001.
    • (2001) Ann. Statist. , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 30
    • 84931572289 scopus 로고    scopus 로고
    • Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
    • L. Zhang et al., "Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding," Pattern Recognit., vol. 48, no. 10, pp. 3102-3112, 2015.
    • (2015) Pattern Recognit. , vol.48 , Issue.10 , pp. 3102-3112
    • Zhang, L.1
  • 31
    • 84959197642 scopus 로고    scopus 로고
    • Convolutional neural networks at constrained time cost
    • K. He and J. Sun, "Convolutional neural networks at constrained time cost," in Proc. IEEE CVPR, 2015, pp. 5353-5360.
    • (2015) Proc. IEEE CVPR , pp. 5353-5360
    • He, K.1    Sun, J.2
  • 32
    • 84908032942 scopus 로고    scopus 로고
    • Saliency-guided unsupervised feature learning for scene classification
    • Apr.
    • F. Zhang, B. Du, and L. Zhang, "Saliency-guided unsupervised feature learning for scene classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 2175-2184, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 2175-2184
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 33
    • 84902073586 scopus 로고    scopus 로고
    • A discriminative metric learning based anomaly detection method
    • Nov.
    • B. Du and L. Zhang, "A discriminative metric learning based anomaly detection method," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 6844-6857, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 6844-6857
    • Du, B.1    Zhang, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.