메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Hyperspectral image analysis using deep learning - A review

Author keywords

Auto Encoder (AE); Convolutional Neural Network (CNN); Deep Learning; feature representation; Hyperspectral Imaging (HSI); Stacked Auto Encoder (SAE)

Indexed keywords

DEEP NEURAL NETWORKS; HYPERSPECTRAL IMAGING; IMAGE ANALYSIS; IMAGE PROCESSING; INDEPENDENT COMPONENT ANALYSIS; LEARNING SYSTEMS; NEURAL NETWORKS; SPECTROSCOPY;

EID: 85013167685     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IPTA.2016.7820963     Document Type: Conference Paper
Times cited : (77)

References (30)
  • 4
    • 84888349041 scopus 로고    scopus 로고
    • Hyperspectral remote sensing data analysis and future challenges
    • J Bioucas-Dias. Hyperspectral remote sensing data analysis and future challenges. Geosci. Remote Sens, 1(2):6-36, 2013.
    • (2013) Geosci. Remote Sens , vol.1 , Issue.2 , pp. 6-36
    • Bioucas-Dias, J.1
  • 5
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • October
    • Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, and Chun-Hong Pan. Vehicle detection in satellite images by hybrid deep convolutional neural networks. Geoscience and Remote Sensing Letters, IEEE, 11(10):1797-1801, October 2014.
    • (2014) Geoscience and Remote Sensing Letters, IEEE , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.-L.3    Pan, C.-H.4
  • 11
    • 3042654673 scopus 로고    scopus 로고
    • A relative evaluation of multiclass image classification by support vector machines
    • G M Foody and M Ajay. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens, 42(6):1335-1343, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.6 , pp. 1335-1343
    • Foody, G.M.1    Ajay, M.2
  • 12
    • 84922311677 scopus 로고    scopus 로고
    • Recent applications of hyperspectral imaging in microbiology
    • Aoife A. Gowen, Yaoze Feng, Edurne Gaston, and Vasilis Valdramidis. Recent applications of hyperspectral imaging in microbiology. Talanta, 137:43-54, 2015.
    • (2015) Talanta , vol.137 , pp. 43-54
    • Gowen, A.A.1    Feng, Y.2    Gaston, E.3    Valdramidis, V.4
  • 20
    • 85013210087 scopus 로고    scopus 로고
    • Spectralspatial classification of hyperspectral image using autoencoders
    • abs/1511.02916
    • Zhouhan Lin, Yushi Chen, Xing Zhao, and Gang Wang. Spectralspatial classification of hyperspectral image using autoencoders. CoRR, abs/1511.02916, 2015.
    • (2015) CoRR
    • Lin, Z.1    Chen, Y.2    Zhao, X.3    Wang, G.4
  • 21
    • 84897586091 scopus 로고    scopus 로고
    • Medical hyperspectral imaging: A review
    • Guolan Lu and Baowei Fei. Medical hyperspectral imaging: a review. Journal of Biomedical Optics, 19(1):010901, 2014.
    • (2014) Journal of Biomedical Optics , vol.19 , Issue.1 , pp. 010901
    • Lu, G.1    Fei, B.2
  • 24
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F Melgani and L Bruzzone. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens, 42(8):1778-1790, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 25
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • S Rajan, J Ghosh, and M M Crawford. An active learning approach to hyperspectral data classification. IEEE Trans. Geosci. Remote Sens, 46(4):1231-1242, 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 28
    • 84906784859 scopus 로고    scopus 로고
    • Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning
    • Q Zhang, Y Tian, Y Yang, and C Pan. Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning. IEEE Trans. Geosci. Remote Sens, 53(1):261-279, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.1 , pp. 261-279
    • Zhang, Q.1    Tian, Y.2    Yang, Y.3    Pan, C.4
  • 29
    • 85027908382 scopus 로고    scopus 로고
    • Locality preserving composite kernel feature extraction for multi-source geospatial image analysis
    • Y Zhang, S Prasad, and Sens PP. Locality preserving composite kernel feature extraction for multi-source geospatial image analysis. IEEE J. Sel. Topics Appl. Earth Observ. Remote, 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote
    • Zhang, Y.1    Prasad, S.2    Sens, P.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.