-
1
-
-
77957741951
-
On the mean accuracy of statistical pattern recognizers
-
G. F. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, 1968.
-
(1968)
IEEE Trans. Inf. Theory
, vol.IT-14
, Issue.1
, pp. 55-63
-
-
Hughes, G.F.1
-
2
-
-
0018203420
-
Fundamentals of pattern recognition in remote sensing
-
New York: McGraw-Hill
-
P. Swain, "Fundamentals of pattern recognition in remote sensing," in Remote Sensing: The Quantitative Approach. New York: McGraw-Hill, 1978, pp. 136-188.
-
(1978)
Remote Sensing: The Quantitative Approach
, pp. 136-188
-
-
Swain, P.1
-
4
-
-
0027525734
-
Artificial neural networks for land-cover classification and mapping
-
D. L. Civco, "Artificial neural networks for land-cover classification and mapping," Int. J. Geophys. Inf. Syst., vol. 7. no. 2, pp. 173-186, 1993.
-
(1993)
Int. J. Geophys. Inf. Syst.
, vol.7
, Issue.2
, pp. 173-186
-
-
Civco, D.L.1
-
5
-
-
0027595168
-
Classification of land cover using optimized neural nets on SPOT data
-
P. Dreyer, "Classification of land cover using optimized neural nets on SPOT data," Photogramm. Eng. Remote Sens., vol. 59, no. 5, pp. 617-621, 1993.
-
(1993)
Photogramm. Eng. Remote Sens.
, vol.59
, Issue.5
, pp. 617-621
-
-
Dreyer, P.1
-
6
-
-
0031673762
-
Finding optimal neural networks for land use classification
-
Jan.
-
H. Bischof and A. Leona, "Finding optimal neural networks for land use classification," IEEE Trans. Geosci. Remote Sens., vol. 36, no. 1, pp. 337-341, Jan. 1998.
-
(1998)
IEEE Trans. Geosci. Remote Sens.
, vol.36
, Issue.1
, pp. 337-341
-
-
Bischof, H.1
Leona, A.2
-
7
-
-
0033540293
-
A back-propagation neural network for mineralogical mapping from AVIRIS data
-
H. Yang, F. van der Meer, W. Bakker, and Z. J. Tan, "A back-propagation neural network for mineralogical mapping from AVIRIS data," Int. J. Remote Sens., vol. 20, no. 1, pp. 97-110, 1999.
-
(1999)
Int. J. Remote Sens.
, vol.20
, Issue.1
, pp. 97-110
-
-
Yang, H.1
Van Der Meer, F.2
Bakker, W.3
Tan, Z.J.4
-
8
-
-
0033099197
-
A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images
-
Mar.
-
L. Bruzzone and D. Fernández-Prieto, "A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 1179-1184, Mar. 1999.
-
(1999)
IEEE Trans. Geosci. Remote Sens.
, vol.37
, Issue.2
, pp. 1179-1184
-
-
Bruzzone, L.1
Fernández-Prieto, D.2
-
9
-
-
0034072495
-
Combination of neural and statistical algorithms for supervised classification of remote-sensing images
-
G. Giacinto and L. Bruzzone, "Combination of neural and statistical algorithms for supervised classification of remote-sensing images," Pattern Recognit. Lett., vol. 21, no. 5, pp. 399-405, 2000.
-
(2000)
Pattern Recognit. Lett.
, vol.21
, Issue.5
, pp. 399-405
-
-
Giacinto, G.1
Bruzzone, L.2
-
10
-
-
0036762743
-
A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps
-
Sep.
-
L. Bruzzone and R. Cossu, "A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 1984-1996, Sep. 2002.
-
(2002)
IEEE Trans. Geosci. Remote Sens.
, vol.40
, Issue.9
, pp. 1984-1996
-
-
Bruzzone, L.1
Cossu, R.2
-
11
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussier, Ed., Pittsburgh, PA
-
B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," in 5th Annu. ACM Workshop on COLT, D. Haussier, Ed., Pittsburgh, PA, 1992, pp. 144-152.
-
(1992)
5th Annu. ACM Workshop on COLT
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
12
-
-
0003408420
-
-
Cambridge, MA: MIT Press
-
B. Schölkopf and A. Smola, Learning With Kernels-Support Vector Machines, Regularization, Optimization and Beyond. Cambridge, MA: MIT Press, 2001.
-
(2001)
Learning with Kernels-support Vector Machines, Regularization, Optimization and Beyond
-
-
Schölkopf, B.1
Smola, A.2
-
13
-
-
0032636659
-
Support vector machines for hyperspectral remote sensing classification
-
Feb.
-
J. A. Gualtieri and R. F. Cramp, "Support vector machines for hyperspectral remote sensing classification," in Proc. SPIE 27th AIPR Workshop, Feb. 1998, pp. 221-232.
-
(1998)
Proc. SPIE 27th AIPR Workshop
, pp. 221-232
-
-
Gualtieri, J.A.1
Cramp, R.F.2
-
14
-
-
0344378124
-
Support vector machine classifiers as applied to AVIRIS data
-
Feb.
-
J. A. Gualtieri, S. R. Chettri, R. F. Cromp, and L. F. Johnson, "Support vector machine classifiers as applied to AVIRIS data," presented at the 7999 Airborne Geoscience Workshop, Feb. 1999.
-
(1999)
7999 Airborne Geoscience Workshop
-
-
Gualtieri, J.A.1
Chettri, S.R.2
Cromp, R.F.3
Johnson, L.F.4
-
15
-
-
0037138473
-
An assessment of support vector machines for land cover classification
-
C. Huang, L. S. Davis, and J. R. G. Townshend, "An assessment of support vector machines for land cover classification," Int. J. Remote Sens., vol. 23, no. 4, pp. 725-749, 2002.
-
(2002)
Int. J. Remote Sens.
, vol.23
, Issue.4
, pp. 725-749
-
-
Huang, C.1
Davis, L.S.2
Townshend, J.R.G.3
-
16
-
-
3843096026
-
Robust support vector method for hyperspectral data classification and knowledge discovery
-
Jul.
-
G. Camps-Vails, L. Gómez-Chova, J. Calpe, E. Soria, J. D. Martín, L. Alonso, and J. Moreno, "Robust support vector method for hyperspectral data classification and knowledge discovery." IEEE Trans. Geosci. Remote Sens., vol. 42, no. 7, pp. 1530-1542, Jul. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.7
, pp. 1530-1542
-
-
Camps-Vails, G.1
Gómez-Chova, L.2
Calpe, J.3
Soria, E.4
Martín, J.D.5
Alonso, L.6
Moreno, J.7
-
17
-
-
4344614511
-
Classification of hyperspectral remotesensing images with support vector machines
-
Aug.
-
F. Melgani and L. Bruzzone, "Classification of hyperspectral remotesensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
19
-
-
0006609612
-
Invariant feature extraction and classification in kernel spaces
-
Cambridge, MA: MIT Press
-
S. Mika, G. Ratsch, B. Schölkopf, A. Smola, J. Weston, and K.-R. Müller, "Invariant feature extraction and classification in kernel spaces," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1999, vol. 12.
-
(1999)
Advances in Neural Information Processing Systems
, vol.12
-
-
Mika, S.1
Ratsch, G.2
Schölkopf, B.3
Smola, A.4
Weston, J.5
Müller, K.-R.6
-
20
-
-
1242308803
-
A cost-effective semisupervised classifier approach with kernels
-
Jan.
-
M. Murat Dundar and A. Landgrebe, "A cost-effective semisupervised classifier approach with kernels," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 1, pp. 264-270, Jan. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.1
, pp. 264-270
-
-
Dundar, M.M.1
Landgrebe, A.2
-
21
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik, "Support vector networks," in Mach. Learn., 1995, vol. 20, pp. 273-297.
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
22
-
-
0001089823
-
Support vector clustering
-
A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik, "Support vector clustering," J. Mach. Learn. Res., vol. 2, pp. 125-137, 2001.
-
(2001)
J. Mach. Learn. Res.
, vol.2
, pp. 125-137
-
-
Ben-Hur, A.1
Horn, D.2
Siegelmann, H.3
Vapnik, V.4
-
23
-
-
0002829165
-
Robust ensemble learning
-
A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press
-
G. Ratsch, B. Schökopf, A. Smola, S. Mika, T. Onoda, and K.-R. Müller, "Robust ensemble learning," in Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press, 1999, pp. 207-219.
-
(1999)
Advances in Large Margin Classifiers
, pp. 207-219
-
-
Ratsch, G.1
Schökopf, B.2
Smola, A.3
Mika, S.4
Onoda, T.5
Müller, K.-R.6
-
24
-
-
25444435768
-
Onboard detection of snow, ice, clouds and other geophysical processes using kernel methods
-
Washington, DC, Aug.
-
A. N. Srivastava and J. Stroeve, "Onboard detection of snow, ice, clouds and other geophysical processes using kernel methods," presented at the ICML 2003 Workshop on Machine Learning Technologies for Autonomous Space Sciences, Washington, DC, Aug. 2003.
-
(2003)
ICML 2003 Workshop on Machine Learning Technologies for Autonomous Space Sciences
-
-
Srivastava, A.N.1
Stroeve, J.2
-
25
-
-
17644366298
-
Regularized RBF networks for hyperspectral data classification
-
Berlin, Germany: Springer-Verlag, Oct., Lecture Notes in Computer Science
-
G. Camps-Vails, A. Serrano-Lopez, L. Gömez-Chova, J. D. Martín, J. Calpe, and J. Moreno, "Regularized RBF networks for hyperspectral data classification," in International Conference on Image Recognition, ICIAR 2004. Berlin, Germany: Springer-Verlag, Oct. 2004, Lecture Notes in Computer Science.
-
(2004)
International Conference on Image Recognition, ICIAR 2004
-
-
Camps-Vails, G.1
Serrano-Lopez, A.2
Gömez-Chova, L.3
Martín, J.D.4
Calpe, J.5
Moreno, J.6
-
26
-
-
20444469575
-
Regularized methods for HyMap data classification
-
Gran Canaria, Spain, Sep.
-
G. Camps-Vails and L. Bruzzone, "Regularized methods for HyMap data classification," presented at the SPIE Int. Symp. Remote Sensing. Gran Canaria, Spain, Sep. 2004.
-
(2004)
SPIE Int. Symp. Remote Sensing
-
-
Camps-Vails, G.1
Bruzzone, L.2
-
27
-
-
0031272926
-
Comparing support vector machines with Gaussian kernels to radial basis function classifiers
-
Nov.
-
B. Schólkopf, K.-K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. N. Vapnik, "Comparing support vector machines with Gaussian kernels to radial basis function classifiers," IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2758-2765, Nov. 1997.
-
(1997)
IEEE Trans. Signal Process.
, vol.45
, Issue.11
, pp. 2758-2765
-
-
Schólkopf, B.1
Sung, K.-K.2
Burges, C.3
Girosi, F.4
Niyogi, P.5
Poggio, T.6
Vapnik, V.N.7
-
28
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Mar.
-
K.-R. Müller, S. Mika, G. Ratsch, and K. Tsuda, "An introduction to kernel-based learning algorithms," IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 181-201, Mar. 2001.
-
(2001)
IEEE Trans. Neural Netw.
, vol.12
, Issue.2
, pp. 181-201
-
-
Müller, K.-R.1
Mika, S.2
Ratsch, G.3
Tsuda, K.4
-
32
-
-
84918441630
-
Geometrical and statistical properties of systems of linear inequalities with application in pattern recognition
-
Jun.
-
T. M. Cover, "Geometrical and statistical properties of systems of linear inequalities with application in pattern recognition," IEEE Trans. Electron. Comput., vol. 14, pp. 326-334, Jun. 1965.
-
(1965)
IEEE Trans. Electron. Comput.
, vol.14
, pp. 326-334
-
-
Cover, T.M.1
-
34
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
A. Aizerman, E. M. Braverman, and L. I. Rozoner, "Theoretical foundations of the potential function method in pattern recognition learning," Automat. Remote Contr., vol. 25, pp. 821-837, 1964.
-
(1964)
Automat. Remote Contr.
, vol.25
, pp. 821-837
-
-
Aizerman, A.1
Braverman, E.M.2
Rozoner, L.I.3
-
36
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, Eds. Piscataway, NJ: IEEE
-
S. Mika, G. Ratsch, J. Weston, B. Schölkopf, and K.-R. Müller, "Fisher discriminant analysis with kernels," in Neural Networks for Signal Processing, Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, Eds. Piscataway, NJ: IEEE, 1999, vol. 9, pp. 41-48.
-
(1999)
Neural Networks for Signal Processing
, vol.9
, pp. 41-48
-
-
Mika, S.1
Ratsch, G.2
Weston, J.3
Schölkopf, B.4
Müller, K.-R.5
-
37
-
-
84898965347
-
A mathematical programming approach to the kernel fisher algorithm
-
T. G. D. T. K. Leen and V. Tresp, Eds. Cambridge, MA: MIT Press
-
S. Mika, G. Rätsch, and K.-R. Müller, "A mathematical programming approach to the kernel fisher algorithm," in Neural Networks for Signal Processing Xlll, T. G. D. T. K. Leen and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001, pp. 591-597.
-
(2001)
Neural Networks for Signal Processing Xlll
, pp. 591-597
-
-
Mika, S.1
Rätsch, G.2
Müller, K.-R.3
-
38
-
-
1542337814
-
-
Ph.D. dissertation, Dept. Comput. Sci., Univ. Technol., Berlin, Germany
-
S. Mika, "Kernel Fisher discriminants," Ph.D. dissertation, Dept. Comput. Sci., Univ. Technol., Berlin, Germany, 2002.
-
(2002)
Kernel Fisher Discriminants
-
-
Mika, S.1
-
39
-
-
0001963082
-
A short introduction to boosting
-
Sep.
-
Y. Freund and R. E. Schapire, "A short introduction to boosting," J. Jpn. Soc. Artif. Intell., vol. 14, no. 5, pp. 771-780, Sep. 1999.
-
(1999)
J. Jpn. Soc. Artif. Intell.
, vol.14
, Issue.5
, pp. 771-780
-
-
Freund, Y.1
Schapire, R.E.2
-
40
-
-
0025448521
-
The strength of weak learnability
-
R. Schapire, "The strength of weak learnability," Mach. Learn., vol. 5, no. 2, pp. 197-227, 1990.
-
(1990)
Mach. Learn.
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.1
-
41
-
-
0004311187
-
-
Ph.D. dissertation, Univ. Potsdam, Potsdam. Germany, Oct. [Online]
-
G. Ratsch, "Robust boosting via convex optimization," Ph.D. dissertation, Univ. Potsdam, Potsdam. Germany, Oct. 2001. [Online]. Available: http://www.boosting.org/papers/thesis.ps.gz.
-
(2001)
Robust Boosting Via Convex Optimization
-
-
Ratsch, G.1
-
42
-
-
0037695279
-
-
Singapore: World Scientific
-
J. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle, Least Squares Support Vector Machines, Singapore: World Scientific, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
43
-
-
0032638628
-
Least squares support vector machine classifiers
-
J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett., vol. 9, no. 3, pp. 293-300, 1999.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
44
-
-
0032355984
-
Classification by pairwise coupling
-
T. Hastie and R. Tibshirani, "Classification by pairwise coupling," Ann. Stat., vol. 26, no. 2, pp. 471-475, 1998.
-
(1998)
Ann. Stat.
, vol.26
, Issue.2
, pp. 471-475
-
-
Hastie, T.1
Tibshirani, R.2
-
45
-
-
23044532181
-
Puncturing multi-class support vector machines
-
J. Dorronsoro, Ed. Berlin, Germany: Springer-Verlag, Lecture Notes on Computer Science
-
F. Pérez-Cruz and A. Artés-Rodriguez, "Puncturing multi-class support vector machines," in Int. Conf. Artificial Neural Networks, ICANN02, J. Dorronsoro, Ed. Berlin, Germany: Springer-Verlag, 2002, vol. 2415, Lecture Notes on Computer Science.
-
(2002)
Int. Conf. Artificial Neural Networks, ICANN02
, vol.2415
-
-
Pérez-Cruz, F.1
Artés-Rodriguez, A.2
-
46
-
-
0000406788
-
Solving multiclass learning problems via error-correcting output codes
-
T. G. Dietterich and G. Bakiri, "Solving multiclass learning problems via error-correcting output codes," J. Artif. Intell. Res., vol. 2, no. 2, pp. 263-286, 1995.
-
(1995)
J. Artif. Intell. Res.
, vol.2
, Issue.2
, pp. 263-286
-
-
Dietterich, T.G.1
Bakiri, G.2
-
49
-
-
0031334889
-
An improved training algorithm for support vector machines
-
J. Principe, L. Gile, N. Morgan, and E. Wilson, Eds.
-
E. Osuna, R. Freund, and F. Girosi, "An improved training algorithm for support vector machines," in Neural Networks for Signal Processing VII-Proc. 1997 IEEE Workshop, J. Principe, L. Gile, N. Morgan, and E. Wilson, Eds., 1997, pp. 276-285.
-
(1997)
Neural Networks for Signal Processing VII-Proc. 1997 IEEE Workshop
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
50
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press
-
J. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods-Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999, pp. 185-208.
-
(1999)
Advances in Kernel Methods-support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
51
-
-
0003243224
-
Probabilities for SV machines
-
A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press
-
_, "Probabilities for SV machines," in Advances In Large Margin Classifiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press, 2000, pp. 61-74.
-
(2000)
Advances in Large Margin Classifiers
, pp. 61-74
-
-
-
52
-
-
20444470005
-
Geometrical and statistical properties of systems of linear inequalities with application in pattern recognition
-
P. Mehra and B. Wah, Eds. Los Alamitos, CA: IEEE Comput. Soc. Press. Reprinted
-
T. M. Cover, "Geometrical and statistical properties of systems of linear inequalities with application in pattern recognition," in Artificial Neural Networks: Concepts and Theory, P. Mehra and B. Wah, Eds. Los Alamitos, CA: IEEE Comput. Soc. Press, 1992. Reprinted.
-
(1992)
Artificial Neural Networks: Concepts and Theory
-
-
Cover, T.M.1
|