메뉴 건너뛰기




Volumn 55, Issue 2, 2017, Pages 844-853

Hyperspectral Image Classification Using Deep Pixel-Pair Features

Author keywords

Convolutional neural network (CNN); deep learning; feature extraction; hyperspectral imagery; pattern classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; FEATURE EXTRACTION; IMAGE CLASSIFICATION; NEURAL NETWORKS; PATTERN RECOGNITION; SPECTROSCOPY;

EID: 84995529466     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2016.2616355     Document Type: Article
Times cited : (756)

References (30)
  • 2
    • 84941419455 scopus 로고    scopus 로고
    • Combined sparse and collaborative representation for hyperspectral target detection
    • W. Li, Q. Du, and B. Zhang, "Combined sparse and collaborative representation for hyperspectral target detection," Pattern Recognit., vol. 48, no. 12, pp. 3904-3916, 2015.
    • (2015) Pattern Recognit. , vol.48 , Issue.12 , pp. 3904-3916
    • Li, W.1    Du, Q.2    Zhang, B.3
  • 3
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
    • Jan.
    • X. Huang and L. Zhang, "An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 257-272, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 257-272
    • Huang, X.1    Zhang, L.2
  • 4
    • 84902073586 scopus 로고    scopus 로고
    • A discriminative metric learning based anomaly detection method
    • Nov.
    • B. Du and L. Zhang, "A discriminative metric learning based anomaly detection method," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 6844-6857, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 6844-6857
    • Du, B.1    Zhang, L.2
  • 5
    • 84899785506 scopus 로고    scopus 로고
    • Gabor-filtering-based nearest regularized subspace for hyperspectral image classification
    • Apr.
    • W. Li and Q. Du, "Gabor-filtering-based nearest regularized subspace for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1012-1022, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1012-1022
    • Li, W.1    Du, Q.2
  • 6
    • 85032752318 scopus 로고    scopus 로고
    • Hyperspectral target detection: An overview of current and future challenges
    • Jan.
    • N. M. Nasrabadi, "Hyperspectral target detection: An overview of current and future challenges," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 34-44, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 34-44
    • Nasrabadi, N.M.1
  • 7
    • 44049098082 scopus 로고    scopus 로고
    • Nearest neighbor classification of remote sensing images with the maximal margin principle
    • Jun.
    • E. Blanzieri and F. Melgani, "Nearest neighbor classification of remote sensing images with the maximal margin principle," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1804-1811, Jun. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.6 , pp. 1804-1811
    • Blanzieri, E.1    Melgani, F.2
  • 8
    • 84906948361 scopus 로고    scopus 로고
    • Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery
    • Feb.
    • W. Li, Q. Du, F. Zhang, and W. Hu, "Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett, vol. 12, no. 2, pp. 389-393, Feb. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , Issue.2 , pp. 389-393
    • Li, W.1    Du, Q.2    Zhang, F.3    Hu, W.4
  • 9
    • 84906949283 scopus 로고    scopus 로고
    • Subspace-based support vector machines for hyperspectral image classification
    • Feb.
    • L. Gao et al, "Subspace-based support vector machines for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett, vol. 12, no. 2, pp. 349-353, Feb. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , Issue.2 , pp. 349-353
    • Gao, L.1
  • 10
    • 84859784358 scopus 로고    scopus 로고
    • Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
    • Apr.
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Locality-preserving dimensionality reduction and classification for hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1185-1198, Apr. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.4 , pp. 1185-1198
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 11
    • 84896397647 scopus 로고    scopus 로고
    • Decision fusion in kernel-induced spaces for hyperspectral image classification
    • Jun.
    • W. Li, S. Prasad, and J. E. Fowler, "Decision fusion in kernel-induced spaces for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3399-3411, Jun. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.6 , pp. 3399-3411
    • Li, W.1    Prasad, S.2    Fowler, J.E.3
  • 12
    • 80052307660 scopus 로고    scopus 로고
    • Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification
    • Sep.
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett, vol. 8, no. 5, pp. 894-898, Sep. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , Issue.5 , pp. 894-898
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 13
    • 79957643015 scopus 로고    scopus 로고
    • Robust hyperspectral classification using relevance vector machine
    • Jun.
    • F. A. Mianji and Y. Zhang, "Robust hyperspectral classification using relevance vector machine," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2100-2112, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 2100-2112
    • Mianji, F.A.1    Zhang, Y.2
  • 14
    • 84925296587 scopus 로고    scopus 로고
    • Local binary patterns and extreme learning machine for hyperspectral imagery classification
    • Jul.
    • W. Li, C. Chen, H. Su, and Q. Du, "Local binary patterns and extreme learning machine for hyperspectral imagery classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, pp. 3681-3693, Jul. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.7 , pp. 3681-3693
    • Li, W.1    Chen, C.2    Su, H.3    Du, Q.4
  • 15
    • 84899896987 scopus 로고    scopus 로고
    • E LMs: Ensemble extreme learning machines for hyperspectral image classification
    • Apr.
    • A. Samat, P. Du, S. Liu, J. Li, and L. Cheng, "E LMs: Ensemble extreme learning machines for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1060-1069, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1060-1069
    • Samat, A.1    Du, P.2    Liu, S.3    Li, J.4    Cheng, L.5
  • 16
    • 84938339675 scopus 로고    scopus 로고
    • Hyperspectral image classification via contextual deep learning
    • X. Ma, J. Geng, and H. Wang, "Hyperspectral image classification via contextual deep learning," EURASIP J. Image Video Process., vol. 20, no. 1, pp. 1-12, 2015.
    • (2015) EURASIP J. Image Video Process. , vol.20 , Issue.1 , pp. 1-12
    • Ma, X.1    Geng, J.2    Wang, H.3
  • 17
    • 84947127828 scopus 로고    scopus 로고
    • Deep learning based feature selection for remote sensing scene classification
    • Nov.
    • Q. Zou, L. Ni, T. Zhang, and Q. Wang, "Deep learning based feature selection for remote sensing scene classification," IEEE Geosci. Remote Sens. Lett, vol. 12, no. 11, pp. 2321-2325, Nov. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , Issue.11 , pp. 2321-2325
    • Zou, Q.1    Ni, L.2    Zhang, T.3    Wang, Q.4
  • 18
    • 84908032942 scopus 로고    scopus 로고
    • Saliency-guided unsupervised feature learning for scene classification
    • Apr.
    • F. Zhang, B. Du, and L. Zhang, "Saliency-guided unsupervised feature learning for scene classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 2175-2184, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 2175-2184
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 19
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • Jun.
    • L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: A technical tutorial on the state of the art," IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 22-A0, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 22A0
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 21
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on deep belief network
    • Jun.
    • Y Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2381-2392
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 22
    • 84959139728 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral image based on deep auto-encoder
    • Sep.
    • X. Ma, H. Wang, and J. Geng, "Spectral-spatial classification of hyperspectral image based on deep auto-encoder," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 9, pp. 4073-4085, Sep. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.9 , Issue.9 , pp. 4073-4085
    • Ma, X.1    Wang, H.2    Geng, J.3
  • 23
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • W Hu, Y Huang, L. Wei, F. Zhang, and H. Li, "Deep convolutional neural networks for hyperspectral image classification," J. Sensors, vol. 2015, 2015, Art. no. 258619, doi: 10.1155/2015/258619.
    • (2015) J. Sensors , vol.2015
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 24
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Mar.
    • A. Romero, C. Gatta, and G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1349-1362, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 25
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
    • Aug.
    • W Zhao and S. Du, "Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4544-4554, Aug. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 27
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 29
    • 77953871614 scopus 로고    scopus 로고
    • Sensitivity of support vector machines to random feature selection in classification of hyperspectral data
    • Jul.
    • B. Waske, S. van der Linden, J. A. Benediktsson, A. Rabe, and P. Hostert, "Sensitivity of support vector machines to random feature selection in classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2880-2889, Jul. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.7 , pp. 2880-2889
    • Waske, B.1    Linden Der Van, S.2    Benediktsson, J.A.3    Rabe, A.4    Hostert, P.5
  • 30
    • 82155191285 scopus 로고    scopus 로고
    • Hyperspectral image classification with independent component discriminant analysis
    • Dec.
    • A. Villa, J. A. Benediktsson, J. Chanussot, and C. Jutten, "Hyperspectral image classification with independent component discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 4865-4876, Dec. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.12 , pp. 4865-4876
    • Villa, A.1    Benediktsson, J.A.2    Chanussot, J.3    Jutten, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.