-
3
-
-
0033284915
-
-
Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference On. IEEE Computer Society Vol. 2
-
Lowe DG (1999) Object recognition from local scale-invariant features. In: Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference On. IEEE Computer Society Vol. 2. pp 1150–1157
-
(1999)
Object recognition from local scale-invariant features.
, pp. 1150-1157
-
-
Lowe, D.G.1
-
4
-
-
34547975052
-
Scaling learning algorithms towards, AI
-
Bottou L, Chapelle O, DeCoste D, Weston J, (eds), MIT Press, Cambridge, MA
-
Bengio Y, LeCun Y: Scaling learning algorithms towards, AI.In Large Scale Kernel Machines Edited by: Bottou L, Chapelle O, DeCoste D, Weston J. MIT Press, Cambridge, MA; 2007, 321–360. [http://www.iro.umontreal.ca/~lisa/pointeurs/bengio+lecun_chapter2007.pdf] http://www.iro.umontreal.ca/~lisa/pointeurs/bengio+lecun_chapter2007.pdf http://www.iro.umontreal.ca/~lisa/pointeurs/bengio+lecun_chapter2007.pdf
-
(2007)
Large Scale Kernel Machines
, pp. 321-360
-
-
Bengio, Y.1
LeCun, Y.2
-
5
-
-
84879854889
-
Representation learning: A review and new perspectives
-
doi:10.1109/TPAMI.2013.50
-
Bengio Y, Courville A, Vincent P: Representation learning: A review and new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on 2013,35(8):1798–1828. doi:10.1109/TPAMI.2013.50 doi:10.1109/TPAMI.2013.50 10.1109/TPAMI.2013.50
-
(2013)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
6
-
-
77958488310
-
Deep machine learning-a new frontier in artificial intelligence research [research frontier]
-
Arel I, Rose DC, Karnowski TP: Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE Comput Intell 2010, 5: 13–18. 10.1109/MCI.2010.938364
-
(2010)
IEEE Comput Intell
, vol.5
, pp. 13-18
-
-
Arel, I.1
Rose, D.C.2
Karnowski, T.P.3
-
7
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton GE, Osindero S, Teh Y-W: A fast learning algorithm for deep belief nets. Neural Comput 2006,18(7):1527–1554. 10.1162/neco.2006.18.7.1527
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
8
-
-
85183816159
-
-
Bengio Y, Lamblin P, Popovici D, Larochelle H2007. Greedy layer-wise training of deep networks, Vol. 19. Bengio Y, Lamblin P, Popovici D, Larochelle H2007. Greedy layer-wise training of deep networks, Vol. 19
-
Bengio Y, Lamblin P, Popovici D, Larochelle H2007. Greedy layer-wise training of deep networks, Vol. 19. Bengio Y, Lamblin P, Popovici D, Larochelle H2007. Greedy layer-wise training of deep networks, Vol. 19.
-
-
-
-
9
-
-
59449087310
-
Exploring strategies for training deep neural networks
-
Larochelle H, Bengio Y, Louradour J, Lamblin P: Exploring strategies for training deep neural networks. J Mach Learn Res 2009, 10: 1–40.
-
(2009)
J Mach Learn Res
, vol.10
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
Lamblin, P.4
-
10
-
-
84862286946
-
-
International Conference on, Artificial Intelligence and Statistics. JMLR.org
-
Salakhutdinov R, Hinton GE (2009) Deep boltzmann machines. In: International Conference on, Artificial Intelligence and Statistics. JMLR.org. pp 448–455
-
(2009)
Deep boltzmann machines
, pp. 448-455
-
-
Salakhutdinov, R.1
Hinton, G.E.2
-
11
-
-
84860644702
-
-
Advances in Neural Information Processing Systems. Curran Associates, Inc
-
Goodfellow I, Lee H, Le QV, Saxe A, Ng AY (2009) Measuring invariances in deep networks. In: Advances in Neural Information Processing Systems. Curran Associates, Inc. pp 646–654
-
(2009)
Measuring invariances in deep networks
, pp. 646-654
-
-
Goodfellow, I.1
Lee, H.2
Le, Q.V.3
Saxe, A.4
Ng, A.Y.5
-
12
-
-
85056446895
-
-
Advances in Neural Information Processing Systems. Curran Associates, Inc
-
Dahl G, Ranzato M, Mohamed A-R, Hinton GE (2010) Phone recognition with the mean-covariance restricted boltzmann machine. In: Advances in Neural Information Processing Systems. Curran Associates, Inc. pp 469–477
-
(2010)
Phone recognition with the mean-covariance restricted boltzmann machine.
, pp. 469-477
-
-
Dahl, G.1
Ranzato, M.2
Mohamed, A.-R.3
Hinton, G.E.4
-
13
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Hinton G, Deng L, Yu D, Mohamed A-R, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T, Dahl G, Kingsbury B: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Process Mag IEEE 2012,29(6):82–97. 10.1109/MSP.2012.2205597
-
(2012)
Signal Process Mag IEEE
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Mohamed, A.-R.4
Jaitly, N.5
Senior, A.6
Vanhoucke, V.7
Nguyen, P.8
Sainath, T.9
Dahl, G.10
Kingsbury, B.11
-
16
-
-
84055222005
-
Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
-
Dahl GE, Yu D, Deng L, Acero A: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. Audio Speech Lang Process IEEE Trans 2012,20(1):30–42. 10.1109/TASL.2011.2134090
-
(2012)
Audio Speech Lang Process IEEE Trans
, vol.20
, Issue.1
, pp. 30-42
-
-
Dahl, G.E.1
Yu, D.2
Deng, L.3
Acero, A.4
-
19
-
-
85053840970
-
-
Advances in Neural Information Processing Systems. Curran Associates, Inc
-
Socher R, Huang EH, Pennin J, Manning CD, Ng A (2011) Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: Advances in Neural Information Processing Systems. Curran Associates, Inc. pp 801–809
-
(2011)
Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
, pp. 801-809
-
-
Socher, R.1
Huang, E.H.2
Pennin, J.3
Manning, C.D.4
Ng, A.5
-
22
-
-
84870871676
-
What Is Big Data? An Introduction to the Big Data Landscape
-
O’Reilly, Santa Clara, CA O’Reilly
-
Dumbill E: What Is Big Data? An Introduction to the Big Data Landscape. In Strata 2012: Making Data Work. O’Reilly, Santa Clara, CA O’Reilly; 2012.
-
(2012)
Strata 2012: Making Data Work
-
-
Dumbill, E.1
-
23
-
-
85183810062
-
-
Proceedings of the 25th International Conference on Software Engineering and Knowledge Engineering, Boston, MA. ICSE. Invited Keynote Speaker
-
Khoshgoftaar TM (2013) Overcoming big data challenges. In: Proceedings of the 25th International Conference on Software Engineering and Knowledge Engineering, Boston, MA. ICSE. Invited Keynote Speaker
-
(2013)
Overcoming big data challenges
-
-
Khoshgoftaar, T.M.1
-
25
-
-
84883201530
-
Deep learning of representations: Looking forward
-
Springer, Tarragona, Spain: 10.1007/978-3-642-39593-2_1
-
Bengio Y: Deep learning of representations: Looking forward. In Proceedings of the 1st International Conference on Statistical Language and Speech Processing. SLSP’13. Springer, Tarragona, Spain; 2013:1–37. http://dx.doi.org/10.1007/978–3-642–39593–2_1 http://dx.doi.org/10.1007/978-3-642-39593-2_1 10.1007/978-3-642-39593-2_1
-
(2013)
Proceedings of the 1st International Conference on Statistical Language and Speech Processing. SLSP’13
, pp. 1-37
-
-
Bengio, Y.1
-
26
-
-
85183831188
-
-
Hinton GE, Salakhutdinov RR (Science) Reducing the dimensionality of data with neural networks313(5786): 504–507. Hinton GE, Salakhutdinov RR (Science) Reducing the dimensionality of data with neural networks313(5786): 504–507
-
Hinton GE, Salakhutdinov RR (Science) Reducing the dimensionality of data with neural networks313(5786): 504–507. Hinton GE, Salakhutdinov RR (Science) Reducing the dimensionality of data with neural networks313(5786): 504–507.
-
-
-
-
27
-
-
0002834189
-
Autoencoders, minimum description length, and helmholtz free energy
-
Hinton GE, Zemel RS: Autoencoders, minimum description length, and helmholtz free energy. Adv Neural Inform Process Syst 1994, 6: 3–10.
-
(1994)
Adv Neural Inform Process Syst
, vol.6
, pp. 3-10
-
-
Hinton, G.E.1
Zemel, R.S.2
-
29
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton GE: Training products of experts by minimizing contrastive divergence. Neural Comput 2002,14(8):1771–1800. 10.1162/089976602760128018
-
(2002)
Neural Comput
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
30
-
-
85013991145
-
-
Online Slide Show
-
Garshol LM (2013) Introduction to Big Data/Machine Learning. Online Slide Show,. http://www.slideshare.net/larsga/introduction-to-big-datamachine-learning., [http://www.slideshare.net/larsga/introduction-to-big-datamachine-learning]
-
(2013)
Introduction to Big Data/Machine Learning
-
-
Garshol, L.M.1
-
31
-
-
84898821872
-
-
European Data Forum
-
Grobelnik M (2013) Big Data Tutorial. European Data Forum. http://www.slideshare.net/EUDataForum/edf2013-big-datatutorialmarkogrobelnik?related=1., Grobelnik M (2013) Big Data Tutorial. European Data Forum. http://www.slideshare.net/EUDataForum/edf2013-big-datatutorialmarkogrobelnik?related=1 Grobelnik M (2013) Big Data Tutorial. European Data Forum.
-
(2013)
Big Data Tutorial.
-
-
Grobelnik, M.1
-
32
-
-
45549117987
-
Term-weighting approaches in automatic text retrieval
-
Salton G, Buckley C: Term-weighting approaches in automatic text retrieval. Inform Process Manag 1988,24(5):513–523. 10.1016/0306-4573(88)90021-0
-
(1988)
Inform Process Manag
, vol.24
, Issue.5
, pp. 513-523
-
-
Salton, G.1
Buckley, C.2
-
34
-
-
79961219393
-
Discovering binary codes for documents by learning deep generative models
-
Hinton G, Salakhutdinov R: Discovering binary codes for documents by learning deep generative models. Topics Cogn Sci 2011,3(1):74–91. 10.1111/j.1756-8765.2010.01109.x
-
(2011)
Topics Cogn Sci
, vol.3
, Issue.1
, pp. 74-91
-
-
Hinton, G.1
Salakhutdinov, R.2
-
38
-
-
84877760312
-
Large scale distributed deep networks
-
Bartlett P, Pereira FCN, Burges CJC, Bottou L, Weinberger KQ, (eds)
-
Dean J, Corrado G, Monga R, Chen K, Devin M, Le Q, Mao M, Ranzato M, Senior A, Tucker P, Yang K, Ng A (2012) Large scale distributed deep networks. In: Bartlett P, Pereira FCN, Burges CJC, Bottou L, Weinberger KQ (eds)Advances in Neural Information Processing Systems, 1232–1240. http://books.nips.cc/papers/files/nips25/NIPS2012_0598.pdf., Dean J, Corrado G, Monga R, Chen K, Devin M, Le Q, Mao M, Ranzato M, Senior A, Tucker P, Yang K, Ng A (2012) Large scale distributed deep networks. In: Bartlett P, Pereira FCN, Burges CJC, Bottou L, Weinberger KQ (eds)Advances in Neural Information Processing Systems, 1232–1240. http://books.nips.cc/papers/files/nips25/NIPS2012_0598.pdf
-
(2012)
Advances in Neural Information Processing Systems Vol. 25
, pp. 1232-1240
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.6
Mao, M.7
Ranzato, M.8
Senior, A.9
Tucker, P.10
Yang, K.11
Ng, A.12
-
40
-
-
84874255156
-
-
Spoken Language Technology Workshop (SLT), 2012 IEEE. IEEE
-
Li G, Zhu H, Cheng G, Thambiratnam K, Chitsaz B, Yu D, Seide F (2012) Context-dependent deep neural networks for audio indexing of real-life data. In: Spoken Language Technology Workshop (SLT), 2012 IEEE. IEEE. pp 143–148
-
(2012)
Context-dependent deep neural networks for audio indexing of real-life data
, pp. 143-148
-
-
Li, G.1
Zhu, H.2
Cheng, G.3
Thambiratnam, K.4
Chitsaz, B.5
Yu, D.6
Seide, F.7
-
41
-
-
85013931957
-
-
The New York Times. News Watch Article
-
Zipern A (2001) A Quick Way to Search For Images on the Web. The New York Times. News Watch Article. http://www.nytimes.com/2001/07/12/technology/news-watch-a-quick-way-to-search-for-images-on-the-web.html., Zipern A (2001) A Quick Way to Search For Images on the Web. The New York Times. News Watch Article. http://www.nytimes.com/2001/07/12/technology/news-watch-a-quick-way-to-search-for-images-on-the-web.html
-
(2001)
A Quick Way to Search For Images on the Web
-
-
Zipern, A.1
-
42
-
-
13444257671
-
Google: What it is and what it is not
-
doi:10.1145/1042091.1042107
-
Cusumano MA: Google: What it is and what it is not. Commun ACM - Med Image Moeling 2005,48(2):15–17. doi:10.1145/1042091.1042107 doi:10.1145/1042091.1042107 10.1145/1042091.1042107
-
(2005)
Commun ACM - Med Image Moeling
, vol.48
, Issue.2
, pp. 15-17
-
-
Cusumano, M.A.1
-
44
-
-
85183829879
-
-
Proceeding of the 29th International Conference in Machine Learning, Edingburgh, Scotland
-
Le Q, Ranzato M, Monga R, Devin M, Chen K, Corrado G, Dean J, Ng A (2012) Building high-level features using large scale unsupervised learning. In: Proceeding of the 29th International Conference in Machine Learning, Edingburgh, Scotland
-
(2012)
Building high-level features using large scale unsupervised learning
-
-
Le, Q.1
Ranzato, M.2
Monga, R.3
Devin, M.4
Chen, K.5
Corrado, G.6
Dean, J.7
Ng, A.8
-
45
-
-
84886390740
-
Labeling Examples that Matter: Relevance-Based Active Learning with Gaussian Processes
-
Saarland University and Max-Planck-Institute for Informatics, Germany
-
Freytag A, Rodner E, Bodesheim P, Denzler J: Labeling Examples that Matter: Relevance-Based Active Learning with Gaussian Processes. In 35th German Conference on Pattern Recognition (GCPR). Saarland University and Max-Planck-Institute for Informatics, Germany; 2013:282–291.
-
(2013)
35th German Conference on Pattern Recognition (GCPR)
, pp. 282-291
-
-
Freytag, A.1
Rodner, E.2
Bodesheim, P.3
Denzler, J.4
-
51
-
-
84867674920
-
Learning deep belief networks from non-stationary streams
-
Springer, Berlin Heidelberg: 10.1007/978-3-642-33266-1_47
-
Calandra R, Raiko T, Deisenroth MP, Pouzols FM: Learning deep belief networks from non-stationary streams. In Artificial Neural Networks and Machine Learning–ICANN 2012. Springer, Berlin Heidelberg; 2012:379–386. 10.1007/978-3-642-33266-1_47
-
(2012)
Artificial Neural Networks and Machine Learning–ICANN 2012
, pp. 379-386
-
-
Calandra, R.1
Raiko, T.2
Deisenroth, M.P.3
Pouzols, F.M.4
-
52
-
-
84867129067
-
Marginalized denoising autoencoders for domain adaptation
-
Chen M, Xu ZE, Weinberger KQ, Sha F (2012) Marginalized denoising autoencoders for domain adaptation. In: Proceeding of the 29th International Conference in Machine Learning, Edingburgh, Scotland
-
(2012)
Proceeding of the 29th International Conference in Machine Learning, Edingburgh, Scotland
-
-
Chen, M.1
Xu, Z.E.2
Weinberger, K.Q.3
Sha, F.4
Chen, M.5
Xu, Z.E.6
Weinberger, K.Q.7
Sha, F.8
-
54
-
-
84890466217
-
Improving neural networks by preventing co-adaptation of feature detectors
-
abs/1207.0580
-
Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R (2012) Improving neural networks by preventing co-adaptation of feature detectors. CoRR: Comput Res Repository: 1–18. abs/1207.0580
-
(2012)
CoRR: Comput Res Repository
, pp. 1-18
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
55
-
-
84892421248
-
-
Goodfellow IJ, Warde-Farley D, Mirza M, Courville A, Bengio Y (2013) Maxout networks. In: Proceeding of the 30th International Conference in Machine Learning, Atlanta, GA
-
(2013)
Maxout networks.
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
56
-
-
84894294885
-
-
Proceedings of the 30th International Conference on Machine Learning
-
Coates A, Huval B, Wang T, Wu D, Catanzaro B, Andrew N (2013) Deep learning with cots hpc systems. In: Proceedings of the 30th International Conference on Machine Learning. pp 1337–1345
-
(2013)
Deep learning with cots hpc systems.
, pp. 1337-1345
-
-
Coates, A.1
Huval, B.2
Wang, T.3
Wu, D.4
Catanzaro, B.5
Andrew, N.6
-
58
-
-
84902256759
-
Dlid: Deep learning for domain adaptation by interpolating betweendomains
-
Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA
-
Chopra S, Balakrishnan S, Gopalan R (2013) Dlid: Deep learning for domain adaptation by interpolating betweendomains. In: Workshop on Challenges in Representation Learning, Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA
-
(2013)
Workshop on Challenges in Representation Learning
-
-
Chopra, S.1
Balakrishnan, S.2
Gopalan, R.3
-
59
-
-
84908392723
-
Big data classification: Problems and challenges in network intrusion prediction with machine learning
-
ACM, Pittsburgh, PA
-
Suthaharan S: Big data classification: Problems and challenges in network intrusion prediction with machine learning. In ACM Sigmetrics: Big Data Analytics Workshop. ACM, Pittsburgh, PA; 2013.
-
(2013)
ACM Sigmetrics: Big Data Analytics Workshop
-
-
Suthaharan, S.1
-
60
-
-
84894166767
-
Statistical wavelet-based anomaly detection in big data with compressive sensing
-
Wang W, Lu D, Zhou X, Zhang B, Mu J: Statistical wavelet-based anomaly detection in big data with compressive sensing. EURASIP J Wireless Commun Netw 2013, 2013: 269. http://www.bibsonomy.org/bibtex/25e432dc7230087ab1cdc65925be6d4cb/dblp http://www.bibsonomy.org/bibtex/25e432dc7230087ab1cdc65925be6d4cb/dblp 10.1186/1687-1499-2013-269
-
(2013)
EURASIP J Wireless Commun Netw
, vol.2013
, pp. 269
-
-
Wang, W.1
Lu, D.2
Zhou, X.3
Zhang, B.4
Mu, J.5
|