메뉴 건너뛰기




Volumn 5, Issue , 2009, Pages 448-455

Deep Boltzmann machines

Author keywords

[No Author keywords available]

Indexed keywords

BOLTZMANN MACHINES; DATA SETS; GENERATIVE MODEL; HANDWRITTEN DIGIT; HIDDEN LAYERS; HIDDEN VARIABLE; LAYER-BY-LAYERS; LOG LIKELIHOOD; PRE-TRAINING; SINGLE MODE; VARIATIONAL APPROXIMATION; VARIATIONAL INFERENCE; VISUAL OBJECT RECOGNITION;

EID: 84862286946     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (1696)

References (22)
  • 2
    • 0036161034 scopus 로고    scopus 로고
    • Training invariant support vector machines
    • D. Decoste and B. Schölkopf. Training invariant support vector machines. Machine Learning, 46(1/3):161, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 161
    • Decoste, D.1    Schölkopf, B.2
  • 3
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1711-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1711-1800
    • Hinton, G.1
  • 4
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504 - 507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 6
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length and Helmholtz free energy
    • G. Hinton and R. Zemel. Autoencoders, minimum description length and Helmholtz free energy. In NIPS, volume 6, pages 3-10, 1994.
    • (1994) NIPS , vol.6 , pp. 3-10
    • Hinton, G.1    Zemel, R.2
  • 7
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.W.3
  • 8
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • Y. LeCun, F. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to pose and lighting. In CVPR (2), pages 97-104, 2004.
    • (2004) CVPR , vol.2 , pp. 97-104
    • Le Cun, Y.1    Huang, F.2    Bottou, L.3
  • 10
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • R. Neal. Annealed importance sampling. Statistics and Computing, 11:125-139, 2001.
    • (2001) Statistics and Computing , vol.11 , pp. 125-139
    • Neal, R.1
  • 11
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • R. Neal. Connectionist learning of belief networks. Artif. Intell, 56(1):71-113, 1992.
    • (1992) Artif. Intell , vol.56 , Issue.1 , pp. 71-113
    • Neal, R.1
  • 12
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse and other variants
    • M. I. Jordan, editor
    • R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse and other variants. In M. I. Jordan, editor, Learning in Graphical Models, pages 355-368, 1998.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 13
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Stat., 22:400-407, 1951.
    • (1951) Ann. Math. Stat. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 16
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • chapter 6, MIT Press
    • P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In Parallel Distributed Processing, volume 1, chapter 6, pages 194-281. MIT Press, 1986.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 17
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient
    • T. Tieleman. Training restricted Boltzmann machines using approximations to the likelihood gradient. In International Conference on Machine Learning, 2008.
    • (2008) International Conference on Machine Learning
    • Tieleman, T.1
  • 18
    • 84862289622 scopus 로고    scopus 로고
    • A new learning algorithm for mean field Boltzmann machines
    • M. Welling and G. Hinton. A new learning algorithm for mean field Boltzmann machines. Lecture Notes in Computer Science, 2415, 2002.
    • (2002) Lecture Notes in Computer Science , vol.2415
    • Welling, M.1    Hinton, G.2
  • 19
    • 84899000641 scopus 로고    scopus 로고
    • Exponential family harmoniums with an application to information retrieval
    • M. Welling, M. Rosen-Zvi, and G. Hinton. Exponential family harmoniums with an application to information retrieval. In NIPS 17, pages 1481-1488, 2005.
    • (2005) NIPS , vol.17 , pp. 1481-1488
    • Welling, M.1    Rosen-Zvi, M.2    Hinton, G.3
  • 21
    • 0000355193 scopus 로고
    • Parameter inference for imperfectly observed Gibbsian fields
    • L. Younes. Parameter inference for imperfectly observed Gibbsian fields. Probability Theory Rel. Fields, 82:625-645, 1989.
    • (1989) Probability Theory Rel. Fields , vol.82 , pp. 625-645
    • Younes, L.1
  • 22
    • 48849114847 scopus 로고    scopus 로고
    • The convergence of contrastive divergences
    • A. L. Yuille. The convergence of contrastive divergences. In NIPS, 2004.
    • (2004) NIPS
    • Yuille, A.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.