메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 2121-2159

Adaptive subgradient methods for online learning and stochastic optimization

Author keywords

Adaptivity; Online learning; Stochastic convex optimization; Subgradient methods

Indexed keywords

ADAPTIVITY; DOMAIN CONSTRAINT; EFFICIENT ALGORITHM; EMPIRICAL RISK MINIMIZATION; GRADIENT-BASED LEARNING; LEARNING RATES; ONLINE LEARNING; REGULARIZATION FUNCTION; STOCHASTIC CONVEX OPTIMIZATION; STOCHASTIC OPTIMIZATIONS; SUB-GRADIENT ALGORITHM; SUBGRADIENT METHODS;

EID: 80052250414     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (9599)

References (44)
  • 2
    • 0001079995 scopus 로고
    • Concavity of certain maps on positive definite matrices and applications to Hadamard products
    • T. Ando. Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra and its Applications, 26:203-241, 1979.
    • (1979) Linear Algebra and Its Applications , vol.26 , pp. 203-241
    • Ando, T.1
  • 6
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31:167-175, 2003.
    • (2003) Operations Research Letters , vol.31 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 7
    • 0041010236 scopus 로고
    • Comments on and complements to Inequalities: Theory of Majorization and Its Applications
    • J. V. Bondar. Comments on and complements to Inequalities: Theory of Majorization and Its Applications. Linear Algebra and its Applications, 199:115-129, 1994.
    • (1994) Linear Algebra and Its Applications , vol.199 , pp. 115-129
    • Bondar, J.V.1
  • 10
    • 0021479943 scopus 로고
    • An O(n) algorithm for quadratic knapsack problems
    • P. Brucker. An O(n) algorithm for quadratic knapsack problems. Operations Research Letters, 3 (3):163-166, 1984.
    • (1984) Operations Research Letters , vol.3 , Issue.3 , pp. 163-166
    • Brucker, P.1
  • 12
    • 20544470498 scopus 로고    scopus 로고
    • A second-order perceptron algorithm
    • DOI 10.1137/S0097539703432542
    • N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-order perceptron algorithm. SIAM Journal on Computing, 34(3):640-668, 2005. (Pubitemid 40844236)
    • (2005) SIAM Journal on Computing , vol.34 , Issue.3 , pp. 640-668
    • Cesa-Bianchi, N.1    Conconi, A.2    Gentile, C.3
  • 13
    • 33847624608 scopus 로고    scopus 로고
    • Improved second-order bounds for prediction with expert advice
    • DOI 10.1007/s10994-006-5001-7, Special Issue on Learning Theory
    • N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for prediction with expert advice. Machine Learning, 66:321-352, 2007. (Pubitemid 46360617)
    • (2007) Machine Learning , vol.66 , Issue.2-3 , pp. 321-352
    • Cesa-Bianchi, N.1    Mansour, Y.2    Stoltz, G.3
  • 17
    • 0037526304 scopus 로고
    • Notions generalizing convexity for functions defined on spaces of matrices
    • American Mathematical Society
    • C. Davis. Notions generalizing convexity for functions defined on spaces of matrices. In Proceedings of the Symposia in Pure Mathematics, volume 7, pages 187-201. American Mathematical Society, 1963.
    • (1963) Proceedings of the Symposia in Pure Mathematics , vol.7 , pp. 187-201
    • Davis, C.1
  • 19
    • 75249102673 scopus 로고    scopus 로고
    • Efficient online and batch learning using forward backward splitting
    • J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal of Machine Learning Research, 10:2873-2908, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2873-2908
    • Duchi, J.1    Singer, Y.2
  • 21
    • 0014825610 scopus 로고
    • A new approach to variable metric algorithms
    • R. Fletcher. A new approach to variable metric algorithms. Computer Journal, 13:317-322, 1970.
    • (1970) Computer Journal , vol.13 , pp. 317-322
    • Fletcher, R.1
  • 25
    • 85028171280 scopus 로고    scopus 로고
    • Convex Analysis and Minimization Algorithms II
    • Verlag
    • J. B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms II. Springer-Verlag, 1996.
    • (1996) Springer
    • Hiriart-Urruty, J.B.1    Lemaréchal, C.2
  • 28
    • 24644463787 scopus 로고    scopus 로고
    • Efficient algorithms for online decision problems
    • A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal of Computer and System Sciences, 71(3):291-307, 2003.
    • (2003) Journal of Computer and System Sciences , vol.71 , Issue.3 , pp. 291-307
    • Kalai, A.1    Vempala, S.2
  • 29
    • 84862283078 scopus 로고    scopus 로고
    • An optimal method for stochastic composite optimization
    • Online first; to appear
    • G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming Series A, 2010. Online first; to appear.
    • (2010) Mathematical Programming Series A
    • Lan, G.1
  • 30
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5:361-397, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 361-397
    • Lewis, D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 33
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, 2009.
    • (2009) SIAM Journal on Optimization , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 35
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of nonsmooth functions
    • Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming, 103: 127-152, 2005.
    • (2005) Mathematical Programming , vol.103 , pp. 127-152
    • Nesterov, Y.1
  • 36
    • 65249121279 scopus 로고    scopus 로고
    • Primal-dual subgradient methods for convex problems
    • Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221-259, 2009.
    • (2009) Mathematical Programming , vol.120 , Issue.1 , pp. 221-259
    • Nesterov, Y.1
  • 38
    • 0000859664 scopus 로고
    • An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds
    • P. M. Pardalos and J. B. Rosen. An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds. Mathematical Programming, 46:321-328, 1990.
    • (1990) Mathematical Programming , vol.46 , pp. 321-328
    • Pardalos, P.M.1    Rosen, J.B.2
  • 39
    • 80052188299 scopus 로고    scopus 로고
    • Lecture notes on online learning. for the Statistical Machine Learning Course at
    • University of California
    • A. Rakhlin. Lecture notes on online learning. For the Statistical Machine Learning Course at University of California, Berkeley, 2009.
    • (2009) Berkeley
    • Rakhlin, A.1
  • 41
    • 0039218959 scopus 로고
    • Utilization of the operation of space dilation in the minimization of convex functions
    • Translated from Kibernetika
    • N. Z. Shor. Utilization of the operation of space dilation in the minimization of convex functions. Cybernetics and Systems Analysis, 6(1):7-15, 1972. Translated from Kibernetika.
    • (1972) Cybernetics and Systems Analysis , vol.6 , Issue.1 , pp. 7-15
    • Shor, N.Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.