메뉴 건너뛰기




Volumn , Issue , 2009, Pages 873-880

Large-scale deep unsupervised learning using graphics processors

Author keywords

[No Author keywords available]

Indexed keywords

BELIEF NETWORKS; COMPUTATIONAL CAPABILITY; DUAL-CORE; FREE PARAMETERS; GRAPHICS PROCESSOR; HIGHLY NONLINEAR; LARGE-SCALE APPLICATIONS; MACHINE LEARNING APPLICATIONS; MULTI CORE; PARALLEL METHOD; PARALLELIZING; SCALE MODELS; SCALING-UP; SPARSE CODING; TRAINING EXAMPLE; UNLABELED DATA; UNSUPERVISED LEARNING METHOD;

EID: 71149105669     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (406)

References (33)
  • 11
    • 70049107588 scopus 로고    scopus 로고
    • Empirical evaluation of convolutional RBMs for vision
    • Tech Report
    • Desjardins, G., & Bengio, Y. (2008). Empirical evaluation of convolutional RBMs for vision. Tech Report.
    • (2008)
    • Desjardins, G.1    Bengio, Y.2
  • 13
    • 0036508274 scopus 로고    scopus 로고
    • Power-constrained CMOS scaling limits
    • Frank, D. (2002). Power-constrained CMOS scaling limits. IBM Jour. of Res. and Devel., 46, 235-244.
    • (2002) IBM Jour. of Res. and Devel , vol.46 , pp. 235-244
    • Frank, D.1
  • 15
    • 0035054933 scopus 로고    scopus 로고
    • Microprocessors for the new millennium: Challenges, opportunities and new frontiers
    • Gelsinger, P. (2001). Microprocessors for the new millennium: Challenges, opportunities and new frontiers. ISSCC Tech. Digest, 22-25.
    • (2001) ISSCC Tech. Digest , pp. 22-25
    • Gelsinger, P.1
  • 16
    • 48849089104 scopus 로고    scopus 로고
    • High-performance implementation of the level-3 BLAS
    • Goto, K., & Van De Geijn, R. (2008). High-performance implementation of the level-3 BLAS. ACM Trans. Math. Softw., 35, 1-14.
    • (2008) ACM Trans. Math. Softw , vol.35 , pp. 1-14
    • Goto, K.1    Van De Geijn, R.2
  • 17
    • 70049086636 scopus 로고    scopus 로고
    • Many-core GPU computing with NVIDIA CUDA
    • Harris, M. (2008). Many-core GPU computing with NVIDIA CUDA. Int. Conf. Supercomputing (p. 1).
    • (2008) Int. Conf. Supercomputing , pp. 1
    • Harris, M.1
  • 18
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14, 1771-1800.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 19
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 20
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 21
    • 70049083257 scopus 로고    scopus 로고
    • Fast inference in sparse coding algorithms with applications to object recognition
    • Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2008). Fast inference in sparse coding algorithms with applications to object recognition. NYU Tech Report.
    • (2008) NYU Tech Report
    • Kavukcuoglu, K.1    Ranzato, M.2    LeCun, Y.3
  • 26
    • 71149108426 scopus 로고    scopus 로고
    • 2 regu-larization, and rotational invariance. International Conference on Machine Learning (pp. 78-85).
    • 2 regu-larization, and rotational invariance. International Conference on Machine Learning (pp. 78-85).
  • 27
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 29
    • 56449123056 scopus 로고    scopus 로고
    • Semi-supervised learning of compact document representations with deep networks
    • Ranzato, M. A., & Szummer, M. (2008). Semi-supervised learning of compact document representations with deep networks. International Conference on Machine Learning (pp. 792-799).
    • (2008) International Conference on Machine Learning , pp. 792-799
    • Ranzato, M.A.1    Szummer, M.2
  • 31
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B., 58, 267-288.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 32
    • 0032492432 scopus 로고    scopus 로고
    • Independent component filters of natural images compared with simple cells in primary visual cortex
    • van Hateren, J. H., & van der Schaaff, A. (1997). Independent component filters of natural images compared with simple cells in primary visual cortex. Royal Soc. Lond. B, 265, 359-366.
    • (1997) Royal Soc. Lond. B , vol.265 , pp. 359-366
    • van Hateren, J.H.1    van der Schaaff, A.2
  • 33
    • 0343462141 scopus 로고    scopus 로고
    • Automated empirical optimization of software and the ATLAS project
    • Whaley, R. C., Petitet, A., & Dongarra, J. J. (2001). Automated empirical optimization of software and the ATLAS project. Parallel Computing, 27, 3-35.
    • (2001) Parallel Computing , vol.27 , pp. 3-35
    • Whaley, R.C.1    Petitet, A.2    Dongarra, J.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.