메뉴 건너뛰기




Volumn 14, Issue 5, 2017, Pages 597-601

Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery

Author keywords

Anomaly detection; convolutional neural network (CNN); deep learning; hyperspectral imagery

Indexed keywords

DEEP LEARNING; NEURAL NETWORKS; SPECTROSCOPY;

EID: 85016510342     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2017.2657818     Document Type: Article
Times cited : (259)

References (25)
  • 1
    • 84931572289 scopus 로고    scopus 로고
    • Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
    • Oct.
    • L. Zhang, Q. Zhang, L. Zhang, D. Tao, X. Huang, and B. Du, "Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding," Pattern Recognit., vol. 48, no. 10, pp. 3102-3112, Oct. 2015.
    • (2015) Pattern Recognit. , vol.48 , Issue.10 , pp. 3102-3112
    • Zhang, L.1    Zhang, Q.2    Zhang, L.3    Tao, D.4    Huang, X.5    Du, B.6
  • 2
    • 84902073586 scopus 로고    scopus 로고
    • A discriminative metric learning based anomaly detection method
    • Nov.
    • B. Du and L. Zhang, "A discriminative metric learning based anomaly detection method," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 6844-6857, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 6844-6857
    • Du, B.1    Zhang, L.2
  • 3
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • Oct.
    • I. S. Reed and X. Yu, "Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution," IEEE Trans. Acoust., Speech, Signal Process., vol. 38, no. 10, pp. 1760-1770, Oct. 1990.
    • (1990) IEEE Trans. Acoust., Speech, Signal Process , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 4
    • 84877924594 scopus 로고    scopus 로고
    • Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data
    • Apr.
    • J. M. Molero, E. M. Garzón, I. García, and A. Plaza, "Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 801-814, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.2 , pp. 801-814
    • Molero, J.M.1    Garzón, E.M.2    García, I.3    Plaza, A.4
  • 5
    • 0036613261 scopus 로고    scopus 로고
    • Anomaly detection and classification for hyperspectral imagery
    • Jun.
    • C.-I. Chang and S.-S. Chiang, "Anomaly detection and classification for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 6, pp. 1314-1325, Jun. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.6 , pp. 1314-1325
    • Chang, C.-I.1    Chiang, S.-S.2
  • 6
    • 36348959745 scopus 로고    scopus 로고
    • A time-efficient method for anomaly detection in hyperspectral images
    • Dec.
    • O. Duran and M. Petrou, "A time-efficient method for anomaly detection in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3894-3904, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 3894-3904
    • Duran, O.1    Petrou, M.2
  • 7
    • 78049264379 scopus 로고    scopus 로고
    • Local manifold learning-based k-nearest-neighbor for hyperspectral image classification
    • Nov.
    • L. Ma, M. M. Crawford, and J. Tian, "Local manifold learning-based k-nearest-neighbor for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4099-4109, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4099-4109
    • Ma, L.1    Crawford, M.M.2    Tian, J.3
  • 8
    • 79955590723 scopus 로고    scopus 로고
    • Random-selection-based anomaly detector for hyperspectral imagery
    • May
    • B. Du and L. Zhang, "Random-selection-based anomaly detector for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1578-1589, May 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.5 , pp. 1578-1589
    • Du, B.1    Zhang, L.2
  • 10
    • 84924093890 scopus 로고    scopus 로고
    • Decision fusion for dual-window-based hyperspectral anomaly detector
    • Feb.
    • W. Li and Q. Du, "Decision fusion for dual-window-based hyperspectral anomaly detector," J. Appl. Remote Sens., vol. 9, no. 1, p. 097297, Feb. 2015.
    • (2015) J. Appl. Remote Sens. , vol.9 , Issue.1 , pp. 097297
    • Li, W.1    Du, Q.2
  • 11
    • 84877923339 scopus 로고    scopus 로고
    • Multiple-window anomaly detection for hyperspectral imagery
    • Apr.
    • W. M. Liu and C. I. Chang, "Multiple-window anomaly detection for hyperspectral imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 644-658, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.2 , pp. 644-658
    • Liu, W.M.1    Chang, C.I.2
  • 12
    • 84907455189 scopus 로고    scopus 로고
    • Collaborative representation for hyperspectral anomaly detection
    • Mar.
    • W. Li and Q. Du, "Collaborative representation for hyperspectral anomaly detection," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1463-1474, Mar. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1463-1474
    • Li, W.1    Du, Q.2
  • 13
    • 85027928103 scopus 로고    scopus 로고
    • Hyperspectral anomaly detection by the use of background joint sparse representation
    • Jun.
    • J. Li, H. Zhang, L. Zhang, and L. Ma, "Hyperspectral anomaly detection by the use of background joint sparse representation," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2523-2533, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2523-2533
    • Li, J.1    Zhang, H.2    Zhang, L.3    Ma, L.4
  • 14
    • 79959708449 scopus 로고    scopus 로고
    • Simultaneous joint sparsity model for target detection in hyperspectral imagery
    • Jul.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Simultaneous joint sparsity model for target detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 676-680, Jul. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.4 , pp. 676-680
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 15
    • 84941419455 scopus 로고    scopus 로고
    • Combined sparse and collaborative representation for hyperspectral target detection
    • Dec.
    • W. Li, Q. Du, and B. Zhang, "Combined sparse and collaborative representation for hyperspectral target detection," Pattern Recognit., vol. 48, no. 12, pp. 3904-3916, Dec. 2015.
    • (2015) Pattern Recognit. , vol.48 , Issue.12 , pp. 3904-3916
    • Li, W.1    Du, Q.2    Zhang, B.3
  • 16
    • 84907464023 scopus 로고    scopus 로고
    • A sparse representation-based binary hypothesis model for target detection in hyperspectral images
    • Mar.
    • Y. Zhang, B. Du, and L. Zhang, "A sparse representation-based binary hypothesis model for target detection in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1346-1354, Mar. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1346-1354
    • Zhang, Y.1    Du, B.2    Zhang, L.3
  • 18
    • 84995529466 scopus 로고    scopus 로고
    • Hyperspectral image classification using deep pixel-pair features
    • Feb.
    • W. Li, G. Wu, F. Zhang, and Q. Du, "Hyperspectral image classification using deep pixel-pair features," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 2, pp. 844-853, Feb. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.2 , pp. 844-853
    • Li, W.1    Wu, G.2    Zhang, F.3    Du, Q.4
  • 19
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • Jun.
    • L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: A technical tutorial on the state of the art," IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 22-40, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 20
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on deep belief network
    • Jun.
    • Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2381-2392
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 21
    • 84959139728 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral image based on deep auto-encoder
    • Sep.
    • X. Ma, H. Wang, and J. Geng, "Spectral-spatial classification of hyperspectral image based on deep auto-encoder," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 9, pp. 4073-4085, Sep. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.9 , Issue.9 , pp. 4073-4085
    • Ma, X.1    Wang, H.2    Geng, J.3
  • 22
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • Jan.
    • W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, "Deep convolutional neural networks for hyperspectral image classification," J. Sensors, vol. 2015, Jan. 2015, Art. no. 258619.
    • (2015) J. Sensors , vol.2015
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 23
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Mar.
    • A. Romero, C. Gatta, and G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1349-1362, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 24
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
    • Aug.
    • W. Zhao and S. Du, "Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4544-4554, Aug. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 25
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Sep.
    • J. A. Hanley and B. J. McNeil, "A method of comparing the areas under receiver operating characteristic curves derived from the same cases," Radiology, vol. 148, no. 3, pp. 839-843, Sep. 1983.
    • (1983) Radiology , vol.148 , Issue.3 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.