-
1
-
-
85010218839
-
-
ISPRS 2d semantic labeling contest
-
ISPRS 2d semantic labeling contest. http://www2.isprs.org/ commissions/comm3/wg4/semantic-labeling.html
-
-
-
-
3
-
-
84906354756
-
Gisassisted object detection and geospatial localization
-
Springer
-
S. Ardeshir, A. R. Zamir, A. Torroella, and M. Shah. Gisassisted object detection and geospatial localization. In Computer Vision-ECCV 2014, pages 602-617. Springer, 2014
-
(2014)
Computer Vision-ECCV 2014
, pp. 602-617
-
-
Ardeshir, S.1
Zamir, A.R.2
Torroella, A.3
Shah, M.4
-
7
-
-
85141717857
-
Semantic cross-view matching
-
F. Castaldo, A. Zamir, R. Angst, F. Palmieri, and S. Savarese. Semantic cross-view matching. In Proceedings of the IEEE International Conference on Computer Vision Workshops, pages 9-17, 2015
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision Workshops
, pp. 9-17
-
-
Castaldo, F.1
Zamir, A.2
Angst, R.3
Palmieri, F.4
Savarese, S.5
-
8
-
-
79958822032
-
The dgpf-test on digital airborne camera evaluation-overview and test design
-
M. Cramer. The dgpf-test on digital airborne camera evaluation-overview and test design. Photogrammetrie-Fernerkundung-Geoinformation, 2010(2):73-82, 2010
-
(2010)
Photogrammetrie-Fernerkundung-Geoinformation
, vol.2010
, Issue.2
, pp. 73-82
-
-
Cramer, M.1
-
9
-
-
84973897611
-
Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
-
D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In Proceedings of the IEEE International Conference on Computer Vision, pages 2650-2658, 2015
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 2650-2658
-
-
Eigen, D.1
Fergus, R.2
-
10
-
-
50949133669
-
Liblinear: A library for large linear classification
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for large linear classification. The Journal of Machine Learning Research, 9:1871-1874, 2008
-
(2008)
The Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
11
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8):1915-1929, 2013
-
(2013)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
14
-
-
84959236250
-
Hypercolumns for object segmentation and fine-grained localization
-
B. Hariharan, P. Arbelez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 447-456, 2015
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 447-456
-
-
Hariharan, B.1
Arbelez, P.2
Girshick, R.3
Malik, J.4
-
16
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, pages 1026-1034, 2015
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
84913555165
-
-
arXiv preprint arXiv:1408.5093
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. ArXiv preprint arXiv:1408.5093, 2014
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
21
-
-
84962489522
-
Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks
-
A. Lagrange, B. L. Saux, A. Beaupre, A. Boulch, A. Chan-Hon-Tong, S. Herbin, H. Randrianarivo, and M. Ferecatu. Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks. In Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International, pages 4173-4176, 2015
-
(2015)
Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International
, pp. 4173-4176
-
-
Lagrange, A.1
Saux, B.L.2
Beaupre, A.3
Boulch, A.4
Chan-Hon-Tong, A.5
Herbin, S.6
Randrianarivo, H.7
Ferecatu, M.8
-
24
-
-
84940417787
-
Effective semantic pixel labelling with convolutional networks and conditional random fields
-
S. Paisitkriangkrai, J. Sherrah, P. Janney, and A. Hengel. Effective semantic pixel labelling with convolutional networks and conditional random fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 36-43, 2015
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
, pp. 36-43
-
-
Paisitkriangkrai, S.1
Sherrah, J.2
Janney, P.3
Hengel, A.4
-
27
-
-
84960980241
-
Faster r-cnn: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, pages 91-99, 2015
-
(2015)
Advances in Neural Information Processing Systems
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
28
-
-
84962512661
-
Detection of seals in remote sensing images using features extracted from deep convolutional neural networks
-
A. B. Salberg. Detection of seals in remote sensing images using features extracted from deep convolutional neural networks. In Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International, pages 1893-1896, 2015
-
(2015)
Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International
, pp. 1893-1896
-
-
Salberg, A.B.1
-
29
-
-
84906347546
-
-
arXiv preprint arXiv:1312.6229
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. ArXiv preprint arXiv:1312.6229, 2013
-
(2013)
Overfeat: Integrated Recognition, Localization and Detection Using Convolutional Networks
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
31
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929-1958, 2014
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
33
-
-
84959241859
-
Holistic 3d scene understanding from a single geo-tagged image
-
IEEE
-
S. Wang, S. Fidler, and R. Urtasun. Holistic 3d scene understanding from a single geo-tagged image. In Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on, pages 3964-3972. IEEE, 2015.
-
(2015)
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on
, pp. 3964-3972
-
-
Wang, S.1
Fidler, S.2
Urtasun, R.3
|