메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 2994-3002

Co-saliency detection via looking deep and wide

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; BENCHMARKING; COMPUTER VISION; IMAGE PROCESSING; IMAGE RETRIEVAL; IMAGE SEGMENTATION; NEURAL NETWORKS; SECURITY SYSTEMS;

EID: 84948744896     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298918     Document Type: Conference Paper
Times cited : (124)

References (45)
  • 1
    • 77955985702 scopus 로고    scopus 로고
    • ICoseg: Interactive co-segmentation with intelligent scribble guidance
    • D. Batra, A. Kowdle, D. Parikh, L. Jie, and T. Chen. iCoseg: Interactive co-segmentation with intelligent scribble guidance. In CVPR, 2010
    • (2010) CVPR
    • Batra, D.1    Kowdle, A.2    Parikh, D.3    Jie, L.4    Chen, T.5
  • 2
    • 84888312735 scopus 로고    scopus 로고
    • Co-salient object detection from multiple images
    • H. Li, F. Meng, and K. N. Ngan. Co-Salient Object Detection From Multiple Images. IEEE Trans. Multimedia, 15(8): 1896-1909, 2013
    • (2013) IEEE Trans. Multimedia , vol.15 , Issue.8 , pp. 1896-1909
    • Li, H.1    Meng, F.2    Ngan, K.N.3
  • 3
    • 84866672748 scopus 로고    scopus 로고
    • A unified approach to salient object detection via low rank matrix recovery
    • X. Shen and Y. Wu. A unified approach to salient object detection via low rank matrix recovery. In CVPR, 2012
    • (2012) CVPR
    • Shen, X.1    Wu, Y.2
  • 4
    • 84889245941 scopus 로고    scopus 로고
    • Bayesian saliency via low and mid level cues
    • Y. Xie, H. Lu, and M.-H. Yang. Bayesian saliency via low and mid level cues. IEEE Trans. Image Process., 22(5): 1689-1698, 2013
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.5 , pp. 1689-1698
    • Xie, Y.1    Lu, H.2    Yang, M.-H.3
  • 5
    • 84887392014 scopus 로고    scopus 로고
    • Salient object detection: A discriminative regional feature integration approach
    • H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li. Salient object detection: A discriminative regional feature integration approach. In CVPR, 2013
    • (2013) CVPR
    • Jiang, H.1    Wang, J.2    Yuan, Z.3    Wu, Y.4    Zheng, N.5    Li, S.6
  • 6
    • 84898491541 scopus 로고    scopus 로고
    • Automatic salient object segmentation based on context and shape prior
    • H. Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, and S. Li. Automatic salient object segmentation based on context and shape prior. In BMVC, 2011
    • (2011) BMVC
    • Jiang, H.1    Wang, J.2    Yuan, Z.3    Liu, T.4    Zheng, N.5    Li, S.6
  • 7
    • 84897583648 scopus 로고    scopus 로고
    • An object-oriented visual saliency detection framework based on sparse coding representations
    • J. Han, S. He, X. Qian, D. Wang, L. Guo, and T. Liu. An object-oriented visual saliency detection framework based on sparse coding representations. IEEE Trans. Circuits Syst. Video Technol., 23(12):2009-2021, 2013
    • (2013) IEEE Trans. Circuits Syst. Video Technol. , vol.23 , Issue.12 , pp. 2009-2021
    • Han, J.1    He, S.2    Qian, X.3    Wang, D.4    Guo, L.5    Liu, T.6
  • 10
    • 84887379226 scopus 로고    scopus 로고
    • Unsupervised joint object discovery and segmentation in internet images
    • M. Rubinstein, A. Joulin, J. Kopf, and C. Liu. Unsupervised joint object discovery and segmentation in internet images. In CVPR, 2013
    • (2013) CVPR
    • Rubinstein, M.1    Joulin, A.2    Kopf, J.3    Liu, C.4
  • 11
    • 84959210948 scopus 로고    scopus 로고
    • Video object discovery and co-segmentation with extremely weak supervision
    • L. Wang, G. Hua, R. Sukthankar, J. Xue, and N. Zheng. Video object discovery and co-segmentation with extremely weak supervision. In ECCV, 2014
    • (2014) ECCV
    • Wang, L.1    Hua, G.2    Sukthankar, R.3    Xue, J.4    Zheng, N.5
  • 12
    • 34948825949 scopus 로고    scopus 로고
    • Image matching via saliency region correspondences
    • A. Toshev, J. Shi, and K. Daniilidis. Image matching via saliency region correspondences. In CVPR, 2007
    • (2007) CVPR
    • Toshev, A.1    Shi, J.2    Daniilidis, K.3
  • 13
    • 84878851825 scopus 로고    scopus 로고
    • Automatic salient object extraction with contextual cue and its applications to recognition and alpha matting
    • J. Xue, L. Wang, N. Zheng, and G. Hua. Automatic salient object extraction with contextual cue and its applications to recognition and alpha matting. Pattern Recognit., 46(11): 2874-2889, 2013
    • (2013) Pattern Recognit. , vol.46 , Issue.11 , pp. 2874-2889
    • Xue, J.1    Wang, L.2    Zheng, N.3    Hua, G.4
  • 14
    • 84898835433 scopus 로고    scopus 로고
    • Video co-segmentation for meaningful action extraction
    • J. Guo, Z. Li, L.-F. Cheong, and S. Z. Zhou. Video Co-segmentation for Meaningful Action Extraction. In ICCV, 2013
    • (2013) ICCV
    • Guo, J.1    Li, Z.2    Cheong, L.-F.3    Zhou, S.Z.4
  • 16
    • 82055163013 scopus 로고    scopus 로고
    • A co-saliency model of image pairs
    • H. Li and K. N. Ngan. A Co-Saliency Model of Image Pairs. IEEE Trans. Image Process., 20(12):3365-3375, 2011
    • (2011) IEEE Trans Image Process. , vol.20 , Issue.12 , pp. 3365-3375
    • Li, H.1    Ngan, K.N.2
  • 17
    • 84890449164 scopus 로고    scopus 로고
    • Co-saliency detection based on hierarchical segmentation
    • Z. Liu, W. Zou, L. Li, L. Shen, and O. Le Meur. Co-Saliency Detection Based on Hierarchical Segmentation. IEEE Signal Process. Lett., 21(1):88-92, 2014
    • (2014) IEEE Signal Process. Lett. , vol.21 , Issue.1 , pp. 88-92
    • Liu, Z.1    Zou, W.2    Li, L.3    Shen, L.4    Le Meur, O.5
  • 18
    • 84883324670 scopus 로고    scopus 로고
    • Cluster-based co-saliency detection
    • H. Fu, X. Cao, and Z. Tu. Cluster-Based Co-Saliency Detection. IEEE Trans. Image Process., 22(10):3766-3778, 2013
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.10 , pp. 3766-3778
    • Fu, H.1    Cao, X.2    Tu, Z.3
  • 20
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 21
    • 78651076975 scopus 로고    scopus 로고
    • Preattentive co-saliency detection
    • H.-T. Chen. Preattentive co-saliency detection. In ICIP, 2010
    • (2010) ICIP
    • Chen, H.-T.1
  • 22
    • 78649589844 scopus 로고    scopus 로고
    • Cosaliency: Where people look when comparing images
    • D. E. Jacobs, D. B. Goldman, and E. Shechtman. Cosaliency: Where people look when comparing images. In UIST, 2010
    • (2010) UIST
    • Jacobs, D.E.1    Goldman, D.B.2    Shechtman, E.3
  • 23
    • 84890454209 scopus 로고    scopus 로고
    • Image co-saliency detection by propagating superpixel affinities
    • Z. Tan, L. Wan, W. Feng, and C.-M. Pun. Image co-saliency detection by propagating superpixel affinities. In ICASSP, 2013
    • (2013) ICASSP
    • Tan, Z.1    Wan, L.2    Feng, W.3    Pun, C.-M.4
  • 24
    • 84938324278 scopus 로고    scopus 로고
    • Self-adaptively weighted co-saliency detection via rank constraint
    • X. Cao, Z. Tao, B. Zhang, H. Fu, and W. Feng. Self-Adaptively Weighted Co-Saliency Detection via Rank Constraint. IEEE Trans. Image Process., 23(9):4175-4186, 2014
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.9 , pp. 4175-4186
    • Cao, X.1    Tao, Z.2    Zhang, B.3    Fu, H.4    Feng, W.5
  • 25
    • 84887368488 scopus 로고    scopus 로고
    • Looking beyond the image: Unsupervised learning for object saliency and detection
    • P. Siva, C. Russell, T. Xiang, and L. Agapito. Looking Beyond the Image: Unsupervised Learning for Object Saliency and Detection. In CVPR, 2013
    • (2013) CVPR
    • Siva, P.1    Russell, C.2    Xiang, T.3    Agapito, L.4
  • 26
    • 84911456915 scopus 로고    scopus 로고
    • BING: Binarized normed gradients for objectness estimation at 300fps
    • M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr. BING: Binarized normed gradients for objectness estimation at 300fps. In CVPR, 2014
    • (2014) CVPR
    • Cheng, M.-M.1    Zhang, Z.2    Lin, W.-Y.3    Torr, P.4
  • 29
    • 58149506125 scopus 로고    scopus 로고
    • SUN: A Bayesian framework for saliency using natural statistics
    • L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell. SUN: A Bayesian framework for saliency using natural statistics. J. Vision, 8(7):32, 2008
    • (2008) J. Vision , vol.8 , Issue.7 , pp. 32
    • Zhang, L.1    Tong, M.H.2    Marks, T.K.3    Shan, H.4    Cottrell, G.W.5
  • 31
    • 84888335371 scopus 로고    scopus 로고
    • In defence of negative mining for annotating weakly labelled data
    • P. Siva, C. Russell, and T. Xiang. In defence of negative mining for annotating weakly labelled data. In ECCV, 2012
    • (2012) ECCV
    • Siva, P.1    Russell, C.2    Xiang, T.3
  • 32
    • 84887363465 scopus 로고    scopus 로고
    • Finding things: Image parsing with regions and per-exemplar detectors
    • J. Tighe and S. Lazebnik. Finding things: Image parsing with regions and per-exemplar detectors. In CVPR, 2013
    • (2013) CVPR
    • Tighe, J.1    Lazebnik, S.2
  • 33
    • 84866697047 scopus 로고    scopus 로고
    • Figure-ground segmentation by transferring window masks
    • D. Kuettel and V. Ferrari. Figure-ground segmentation by transferring window masks. In CVPR, 2012
    • (2012) CVPR
    • Kuettel, D.1    Ferrari, V.2
  • 34
    • 84898830857 scopus 로고    scopus 로고
    • Category-independent object-level saliency detection
    • Y. Jia and M. Han. Category-Independent Object-level Saliency Detection. In ICCV, 2013
    • (2013) ICCV
    • Jia, Y.1    Han, M.2
  • 37
    • 84887357058 scopus 로고    scopus 로고
    • Saliency detection via graph-based manifold ranking
    • C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang. Saliency Detection via Graph-Based Manifold Ranking. In CVPR, 2013
    • (2013) CVPR
    • Yang, C.1    Zhang, L.2    Lu, H.3    Ruan, X.4    Yang, M.-H.5
  • 38
    • 33745913325 scopus 로고    scopus 로고
    • Object categorization by learned universal visual dictionary
    • J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual dictionary. In ICCV, 2005
    • (2005) ICCV
    • Winn, J.1    Criminisi, A.2    Minka, T.3
  • 40
    • 84872560515 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • Y. Bengio. Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks of the Trade, 2012
    • (2012) Neural Networks: Tricks of the Trade
    • Bengio, Y.1
  • 42
    • 84911458493 scopus 로고    scopus 로고
    • Enriching visual knowledge bases via object discovery and segmentation
    • X. Chen, A. Shrivastava, and A. Gupta. Enriching visual knowledge bases via object discovery and segmentation. In CVPR, 2014
    • (2014) CVPR
    • Chen, X.1    Shrivastava, A.2    Gupta, A.3
  • 43
    • 85028166694 scopus 로고    scopus 로고
    • Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
    • J. Han, D. Zhang, G. Cheng, L. Guo, and J. Ren. Object Detection in Optical Remote Sensing Images Based on Weakly Supervised Learning and High-Level Feature Learning. IEEE Trans. Geosci. Remote Sens., 53(6): 3325-3337, 2015
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.6 , pp. 3325-3337
    • Han, J.1    Zhang, D.2    Cheng, G.3    Guo, L.4    Ren, J.5
  • 44
    • 84908669619 scopus 로고    scopus 로고
    • Weakly supervised learning for target detection in remote sensing images
    • D. Zhang, J. Han, G. Cheng, Z. Liu, S. Bu, and L. Guo. Weakly Supervised Learning for Target Detection in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett., 12(4): 701-705, 2015
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.4 , pp. 701-705
    • Zhang, D.1    Han, J.2    Cheng, G.3    Liu, Z.4    Bu, S.5    Guo, L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.