-
3
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
79957835935
-
-
Arxiv preprint arXiv:1102.0183
-
D.C. Cirȩsan, U. Meier, J. Masci, L.M. Gambardella, and J. Schmidhuber. High-performance neural networks for visual object classification. Arxiv preprint arXiv:1102.0183, 2011.
-
(2011)
High-performance Neural Networks for Visual Object Classification
-
-
Cirȩsan, D.C.1
Meier, U.2
Masci, J.3
Gambardella, L.M.4
Schmidhuber, J.5
-
6
-
-
72249100259
-
ImageNet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.
-
(2009)
CVPR09
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
7
-
-
84877790784
-
-
J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L. Fei-Fei. ILSVRC-2012, 2012. URL http://www.image-net.org/challenges/LSVRC/2012/.
-
(2012)
-
-
Deng, J.1
Berg, A.2
Satheesh, S.3
Su, H.4
Khosla, A.5
Fei-Fei, L.6
-
8
-
-
34047174674
-
Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1):59-70, 2007.
-
(2007)
Computer Vision and Image Understanding
, vol.106
, Issue.1
, pp. 59-70
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
10
-
-
84867720412
-
-
arXiv preprint arXiv:1207.0580
-
G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
11
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
IEEE
-
K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In International Conference on Computer Vision, pages 2146-2153. IEEE, 2009.
-
(2009)
International Conference on Computer Vision
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.A.3
Lecun, Y.4
-
14
-
-
84887042736
-
Using very deep autoencoders for content-based image retrieval
-
A. Krizhevsky and G.E. Hinton. Using very deep autoencoders for content-based image retrieval. In ESANN, 2011.
-
(2011)
ESANN
-
-
Krizhevsky, A.1
Hinton, G.E.2
-
15
-
-
0000494466
-
Handwritten digit recognition with a back-propagation network
-
Y. Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, et al. Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems, 1990.
-
(1990)
Advances in Neural Information Processing Systems
-
-
Le Cun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
16
-
-
5044231640
-
Learning methods for generic object recognition with invariance to pose and lighting
-
IEEE
-
Y. LeCun, F.J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to pose and lighting. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 2, pages II-97. IEEE, 2004.
-
(2004)
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on
, vol.2
-
-
Lecun, Y.1
Huang, F.J.2
Bottou, L.3
-
17
-
-
77955998889
-
Convolutional networks and applications in vision
-
IEEE
-
Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks and applications in vision. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pages 253-256. IEEE, 2010.
-
(2010)
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on
, pp. 253-256
-
-
Lecun, Y.1
Kavukcuoglu, K.2
Farabet, C.3
-
18
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
ACM
-
H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 609-616. ACM, 2009.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
19
-
-
84883488616
-
Metric learning for large scale image classification: Generalizing to new classes at near-zero cost
-
Florence, Italy, October
-
T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric Learning for Large Scale Image Classification: Generalizing to New Classes at Near-Zero Cost. In ECCV - European Conference on Computer Vision, Florence, Italy, October 2012.
-
(2012)
ECCV - European Conference on Computer Vision
-
-
Mensink, T.1
Verbeek, J.2
Perronnin, F.3
Csurka, G.4
-
22
-
-
73449129720
-
A high-throughput screening approach to discovering good forms of biologically inspired visual representation
-
N. Pinto, D. Doukhan, J.J. DiCarlo, and D.D. Cox. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS computational biology, 5(11):e1000579, 2009.
-
(2009)
PLoS Computational Biology
, vol.5
, Issue.11
-
-
Pinto, N.1
Doukhan, D.2
Dicarlo, J.J.3
Cox, D.D.4
-
23
-
-
39749186006
-
Labelme: A database and web-based tool for image annotation
-
B.C. Russell, A. Torralba, K.P. Murphy, and W.T. Freeman. Labelme: a database and web-based tool for image annotation. International journal of computer vision, 77(1):157-173, 2008.
-
(2008)
International Journal of Computer Vision
, vol.77
, Issue.1
, pp. 157-173
-
-
Russell, B.C.1
Torralba, A.2
Murphy, K.P.3
Freeman, W.T.4
-
25
-
-
84945900998
-
Best practices for convolutional neural networks applied to visual document analysis
-
P.Y. Simard, D. Steinkraus, and J.C. Platt. Best practices for convolutional neural networks applied to visual document analysis. In Proceedings of the Seventh International Conference on Document Analysis and Recognition, volume 2, pages 958-962, 2003.
-
(2003)
Proceedings of the Seventh International Conference on Document Analysis and Recognition
, vol.2
, pp. 958-962
-
-
Simard, P.Y.1
Steinkraus, D.2
Platt, J.C.3
-
26
-
-
77649302828
-
Convolutional networks can learn to generate affinity graphs for image segmentation
-
S.C. Turaga, J.F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Briggman,W. Denk, and H.S. Seung. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Computation, 22(2):511-538, 2010.
-
(2010)
Neural Computation
, vol.22
, Issue.2
, pp. 511-538
-
-
Turaga, S.C.1
Murray, J.F.2
Jain, V.3
Roth, F.4
Helmstaedter, M.5
Briggman, K.6
Denk, W.7
Seung, H.S.8
|