메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 1097-1105

ImageNet classification with deep convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTIONAL NEURAL NETWORK; DIFFERENT CLASS; GPU IMPLEMENTATION; HIGH RESOLUTION IMAGE; MAX-POOLING; OVERFITTING; REGULARIZATION METHODS; TEST ERRORS;

EID: 84876231242     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (99018)

References (26)
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1):59-70, 2007.
    • (2007) Computer Vision and Image Understanding , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 14
    • 84887042736 scopus 로고    scopus 로고
    • Using very deep autoencoders for content-based image retrieval
    • A. Krizhevsky and G.E. Hinton. Using very deep autoencoders for content-based image retrieval. In ESANN, 2011.
    • (2011) ESANN
    • Krizhevsky, A.1    Hinton, G.E.2
  • 19
    • 84883488616 scopus 로고    scopus 로고
    • Metric learning for large scale image classification: Generalizing to new classes at near-zero cost
    • Florence, Italy, October
    • T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric Learning for Large Scale Image Classification: Generalizing to New Classes at Near-Zero Cost. In ECCV - European Conference on Computer Vision, Florence, Italy, October 2012.
    • (2012) ECCV - European Conference on Computer Vision
    • Mensink, T.1    Verbeek, J.2    Perronnin, F.3    Csurka, G.4
  • 22
    • 73449129720 scopus 로고    scopus 로고
    • A high-throughput screening approach to discovering good forms of biologically inspired visual representation
    • N. Pinto, D. Doukhan, J.J. DiCarlo, and D.D. Cox. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS computational biology, 5(11):e1000579, 2009.
    • (2009) PLoS Computational Biology , vol.5 , Issue.11
    • Pinto, N.1    Doukhan, D.2    Dicarlo, J.J.3    Cox, D.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.