메뉴 건너뛰기




Volumn 101, Issue 3, 2013, Pages 652-675

Advances in spectral-spatial classification of hyperspectral images

Author keywords

Classification; hyperspectral image; kernel methods; mathematical morphology; morphological neighborhood; segmentation; spectral spatial classifier

Indexed keywords

CLASSIFICATION (OF INFORMATION); HYPERSPECTRAL IMAGING; IMAGE SEGMENTATION; MAPS; MATHEMATICAL MORPHOLOGY; MORPHOLOGY; PIXELS; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 84899967600     PISSN: 00189219     EISSN: None     Source Type: Journal    
DOI: 10.1109/JPROC.2012.2197589     Document Type: Article
Times cited : (1257)

References (114)
  • 1
    • 0034082989 scopus 로고    scopus 로고
    • Using vegetation reflectance variability for species level classification of hyperspectral data
    • M. A. Cochrane, BUsing vegetation reflectance variability for species level classification of hyperspectral data, Int. J. Remote Sens., vol. 21, no. 10, pp. 2075-2087, 2000. (Pubitemid 30343843)
    • (2000) International Journal of Remote Sensing , vol.21 , Issue.10 , pp. 2075-2087
    • Cochrane, M.A.1
  • 2
    • 77951855172 scopus 로고    scopus 로고
    • A review on hyperspectral remote sensing for homogeneous and heterogeneous forest biodiversity assessment
    • A. Ghiyamat and H. Shafri, BA review on hyperspectral remote sensing for homogeneous and heterogeneous forest biodiversity assessment, Int. J. Remote Sens., vol. 31, no. 7, pp. 1837-1856, 2010.
    • (2010) Int. J. Remote Sens , vol.31 , Issue.7 , pp. 1837-1856
    • Ghiyamat, A.1    Shafri, H.2
  • 3
    • 41249085933 scopus 로고    scopus 로고
    • Ash decline assessment in emerald ash borer-infested regions: A test of tree-level, hyperspectral technologies
    • J. Pontius, M. Martin, L. Plourde, and R. Hallett, BAsh decline assessment in emerald ash borer-infested regions: A test of tree-level, hyperspectral technologies, Remote Sens. Environ., vol. 112, no. 5, pp. 2665-2676, 2008.
    • (2008) Remote Sens Environ , vol.112 , Issue.5 , pp. 2665-2676
    • Pontius, J.1    Martin, M.2    Plourde, L.3    Hallett, R.4
  • 4
    • 0030209425 scopus 로고    scopus 로고
    • Hyperspectral geological remote sensing: Evaluation of analytical techniques
    • E. A. Cloutis, BHyperspectral geological remote sensing: Evaluation of analytical techniques, Int. J. Remote Sens., vol. 17, no. 12, pp. 2215-2242, 1996.
    • (1996) Int. J. Remote Sens , vol.17 , Issue.12 , pp. 2215-2242
    • Cloutis, E.A.1
  • 5
    • 27844461475 scopus 로고    scopus 로고
    • Multisensor approach to determine changes of wetland characteristics in semiarid environments (Central Spain)
    • DOI 10.1109/TGRS.2005.852082
    • T. Schmid, M. Koch, and J. Gumuzzio, BMultisensor approach to determine changes of wetland characteristics in semiarid environments (central Spain), IEEE Trans. Geosci. Remote Sens., vol. 43, no. 11, pp. 2516-2525, Nov. 2005. (Pubitemid 41640775)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.11 , pp. 2516-2525
    • Schmid, T.1    Koch, M.2    Gumuzzio, J.3
  • 7
    • 0242569227 scopus 로고    scopus 로고
    • Relationship between hyperspectral reflectance, soil nitrate-nitrogen, cotton leaf chlorophyll, and cotton yield: A step toward precision agriculture
    • DOI 10.1300/J064v22n03-03
    • J. L. Boggs, T. D. Tsegaye, T. L. Coleman, K. C. Reddy, and A. Fahsi, BRelationship between hyperspectral reflectance, soil nitrate-nitrogen, cotton leaf chlorophyll, and cotton yield: A step toward precision agriculture, J. Sustainable Agriculture, vol. 22, no. 3, pp. 5-16, 2003. (Pubitemid 37400174)
    • (2003) Journal of Sustainable Agriculture , vol.22 , Issue.3 , pp. 5-16
    • Boggs, J.L.1    Tsegaye, T.D.2    Coleman, T.L.3    Reddy, K.C.4    Fahsi, A.5
  • 8
    • 17644371466 scopus 로고    scopus 로고
    • Hyperspectral image processing for automatic target detection applications
    • D. Manolakis, D. Marden, and G. A. Shaw, BHyperspectral image processing for automatic target detection applications, Lincoln Lab. J., vol. 14, no. 1, pp. 79-116, 2003.
    • (2003) Lincoln Lab J , vol.14 , Issue.1 , pp. 79-116
    • Manolakis, D.1    Marden, D.2    Shaw, G.A.3
  • 10
    • 14644403023 scopus 로고    scopus 로고
    • Multispectral land sensing: Where from, where to?
    • DOI 10.1109/TGRS.2004.837327
    • D. A. Landgrebe, BMultispectral land sensing: Where from, where to?[ IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 414-421, Mar. 2005. (Pubitemid 40320264)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 414-421
    • Landgrebe, D.A.1
  • 14
    • 0031997059 scopus 로고    scopus 로고
    • Supervised classification in high-dimensional space: Geometrical, statistical, and asymptotical properties of multivariate data
    • PII S1094697798015260
    • L. O. Jimenez and D. A. Landgrebe, BSupervised classification in high-dimensional space: Geometrical, statistical, and asymptotical properties of multivariate data, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., vol. 28, no. 1, pp. 39-54, Feb. 1998. (Pubitemid 128748606)
    • (1998) IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews , vol.28 , Issue.1 , pp. 39-54
    • Jimenez, L.O.1    Landgrebe, D.A.2
  • 15
    • 0346061723 scopus 로고    scopus 로고
    • High-dimensional data analysis: The curses and blessing of dimensionality
    • Century
    • D. L. Donoho, BHigh-dimensional data analysis: The curses and blessing of dimensionality, in AMS Math. Challenges 21st Century, pp. 1-32, 2000.
    • (2000) AMS Math Challenges 21st , pp. 1-32
    • Donoho, D.L.1
  • 16
    • 77957741951 scopus 로고
    • BOn the mean accuracy of statistical pattern recognizers
    • Jan
    • G. F. Hughes, BOn the mean accuracy of statistical pattern recognizers, IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 17
    • 77958497920 scopus 로고    scopus 로고
    • Dimension reduction: A guided tour
    • C. J. C. Burges, BDimension reduction: A guided tour, Found. Trends Mach. Learn., vol. 2, no. 4, pp. 275-365, 2010.
    • (2010) Found. Trends Mach. Learn , vol.2 , Issue.4 , pp. 275-365
    • Burges, C.J.C.1
  • 18
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • DOI 10.1109/TGRS.2004.842481
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, BInvestigation of the random forest framework for classification of hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005. (Pubitemid 40320271)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 19
    • 77951295198 scopus 로고    scopus 로고
    • Semisupervised neural networks for efficient hyperspectral image classification
    • May
    • F. Ratle, G. Camps-Valls, and J. Weston, BSemisupervised neural networks for efficient hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2271-2282, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.5 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 21
    • 33947659964 scopus 로고    scopus 로고
    • Evaluation of kernels for multiclass classification of hyperspectral remote sensing data
    • May DOI: 10.1109/ICASSP. 2006.1660467
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, BEvaluation of kernels for multiclass classification of hyperspectral remote sensing data, in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., May 2006, vol. 2, p. II, DOI: 10.1109/ICASSP. 2006.1660467.
    • (2006) Proc. IEEE Int. Conf. Acoust. Speech Signal Process , vol.2
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 22
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug
    • F. Melgani and L. Bruzzone, BClassification of hyperspectral remote sensing images with support vector machines, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 23
    • 0003752735 scopus 로고    scopus 로고
    • Classification of high dimensional data with limited training samples
    • Purdue Univ., Tech. Rep
    • S. Tadjudin and D. A. Landgrebe, BClassification of high dimensional data with limited training samples, Schl. Electr. Comput. Eng., Purdue Univ., Tech. Rep., 1998.
    • (1998) Schl. Electr. Comput. Eng.
    • Tadjudin, S.1    Landgrebe, D.A.2
  • 24
    • 31144472175 scopus 로고    scopus 로고
    • Classification of remote sensing images from urban areas using a fuzzy possibilistic model
    • DOI 10.1109/LGRS.2005.856117
    • J. Chanussot, J. A. Benediktsson, and M. Fauvel, BClassification of remote sensing images from urban areas using a fuzzy possibilistic model, IEEE Geoscience Remote Sens. Lett., vol. 3, no. 1, pp. 40-44, Jan. 2006. (Pubitemid 43131893)
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , Issue.1 , pp. 40-44
    • Chanussot, J.1    Benediktsson, J.A.2    Fauvel, M.3
  • 25
    • 84861723546 scopus 로고    scopus 로고
    • Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data
    • G. Martin and A. Plaza, BSpatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data, IEEE J. Sel. Top. Appl. Earth Observat. Remote Sens., vol. 52, pp. 380-395, 2012.
    • (2012) IEEE J. Sel. Top. Appl. Earth Observat. Remote Sens , vol.52 , pp. 380-395
    • Martin, G.1    Plaza, A.2
  • 26
    • 0016882368 scopus 로고
    • Classification of multispectral image data by extraction and classification of homogeneous objects
    • Jan
    • R. L. Kettig and D. A. Landgrebe, BClassification of multispectral image data by extraction and classification of homogeneous objects, IEEE Trans. Geosci. Electron., vol. 14, no. 1, pp. 19-26, Jan. 1976.
    • (1976) IEEE Trans. Geosci. Electron , vol.14 , Issue.1 , pp. 19-26
    • Kettig, R.L.1    Landgrebe, D.A.2
  • 27
    • 0036875946 scopus 로고    scopus 로고
    • Adaptive Bayesian contextual classification based on Markov random fields
    • Nov
    • Q. Jackson and D. A. Landgrebe, BAdaptive Bayesian contextual classification based on Markov random fields, IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2454-2463, Nov. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.11 , pp. 2454-2463
    • Jackson, Q.1    Landgrebe, D.A.2
  • 28
  • 29
    • 0032630688 scopus 로고    scopus 로고
    • GMRF parameter estimation in a non-stationary framework by a renormalization technique: Application to remote sensing imaging
    • Apr
    • X. Descombes, M. Sigelle, and F. Preteux, BGMRF parameter estimation in a non-stationary framework by a renormalization technique: Application to remote sensing imaging, IEEE Trans. Image Process., vol. 8, no. 4, pp. 490-503, Apr. 1999.
    • (1999) IEEE Trans. Image Process , vol.8 , Issue.4 , pp. 490-503
    • Descombes, X.1    Sigelle, M.2    Preteux, F.3
  • 30
    • 64349105831 scopus 로고    scopus 로고
    • Managing the spectral-spatial mix in context classification using Markov random fields
    • Apr
    • X. Jia and J. A. Richards, BManaging the spectral-spatial mix in context classification using Markov random fields, IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 311-314, Apr. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett , vol.5 , Issue.2 , pp. 311-314
    • Jia, X.1    Richards, J.A.2
  • 31
    • 33746427122 scopus 로고    scopus 로고
    • Graph cuts and efficient N-D image segmentation
    • DOI 10.1007/s11263-006-7934-5
    • Y. Boykov and G. Funka-Lea, BGraph cuts and efficient ND image segmentation, Int. J. Comput. Vis., vol. 70, pp. 109-131, Nov. 2006. (Pubitemid 44127252)
    • (2006) International Journal of Computer Vision , vol.70 , Issue.2 , pp. 109-131
    • Boykov, Y.1    Funka-Lea, G.2
  • 32
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • Feb
    • V. Kolmogorov and R. Zabih, BWhat energy functions can be minimized via graph cuts?[ IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp. 147-159, Feb. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabih, R.2
  • 33
    • 67649859294 scopus 로고    scopus 로고
    • SAR image regularization with fast approximate discrete minimization
    • Jul
    • L. Denis, F. Tupin, J. Darbon, and M. Sigelle, BSAR image regularization with fast approximate discrete minimization, IEEE Trans. Image Process., vol. 18, no. 7, pp. 1588-1600, Jul. 2009.
    • (2009) IEEE Trans. Image Process , vol.18 , Issue.7 , pp. 1588-1600
    • Denis, L.1    Tupin, F.2    Darbon, J.3    Sigelle, M.4
  • 34
    • 33947318856 scopus 로고    scopus 로고
    • Ant colony optimization for image regularization based on a nonstationary markov modeling
    • DOI 10.1109/TIP.2007.891150
    • S. Le Hegarat-Mascle, A. Kallel, and X. Descombes, BAnt colony optimization for image regularization based on a nonstationary Markov modeling, IEEE Trans. Image Process., vol. 16, no. 3, pp. 865-878, Mar. 2007. (Pubitemid 46436704)
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.3 , pp. 865-878
    • Le Hegarat-Mascle, S.1    Kallel, A.2    Descombes, X.3
  • 35
    • 80052335044 scopus 로고    scopus 로고
    • Adaptive Markov random field approach for classification of hyperspectral imagery
    • Sep.
    • Z. Bing, L. Shanshan, J. Xiuping, G. Lianru, and P. Man, BAdaptive Markov random field approach for classification of hyperspectral imagery, IEEE Geosci. Remote Sens. Lett., vol. 8, no. 5, pp. 973-977, Sep. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , Issue.5 , pp. 973-977
    • Bing, Z.1    Shanshan, L.2    Xiuping, J.3    Lianru, G.4    Man, P.5
  • 37
    • 84896394712 scopus 로고    scopus 로고
    • Spatial techniques for image classification
    • London, U.K: Taylor & Francis
    • S. Aksoy, BSpatial techniques for image classification, in Signal and Image Processing for Remote Sensing. London, U.K.: Taylor & Francis, 2006, pp. 491-513.
    • (2006) Signal and Image Processing for Remote Sensing , pp. 491-513
    • Aksoy, S.1
  • 38
    • 84862932431 scopus 로고    scopus 로고
    • Spectral-spatial based super pixel remote sensing image classification
    • Oct.
    • G. Zhang, X. Jia, and N. M. Kwok, BSpectral-spatial based super pixel remote sensing image classification, in Proc. 4th Int. Congr. Image Signal Process., Oct. 2011, vol. 3, pp. 1680-1684.
    • (2011) Proc. 4th Int. Congr. Image Signal Process , vol.3 , pp. 1680-1684
    • Zhang, G.1    Jia, X.2    Kwok, N.M.3
  • 39
    • 0142009648 scopus 로고    scopus 로고
    • Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
    • Sep
    • J. A. Benediktsson, M. Pesaresi, and K. Arnason, BClassification and feature extraction for remote sensing images from urban areas based on morphological transformations, IEEE Trans. Geosci. Remote Sens., vol. 41, no. 9, pp. 1940-1949, Sep. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens , vol.41 , Issue.9 , pp. 1940-1949
    • Benediktsson, J.A.1    Pesaresi, M.2    Arnason, K.3
  • 40
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • DOI 10.1109/TGRS.2004.842478
    • J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, BClassification of hyperspectral data from urban areas based on extended morphological profiles, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491, Mar. 2005. (Pubitemid 40320270)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 41
    • 34247471770 scopus 로고    scopus 로고
    • A dempster - Shafer relaxation approach to context classification
    • DOI 10.1109/TGRS.2007.893821
    • J. A. Richards and X. Jia, BA Dempster-Shafer relaxation approach to context classification, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 5, pp. 1422-1431, May 2007. (Pubitemid 46652341)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.5 , pp. 1422-1431
    • Richards, J.A.1    Jia, X.2
  • 42
    • 33746944624 scopus 로고    scopus 로고
    • A patch-based image classification by integrating hyperspectral data with GIS
    • DOI 10.1080/01431160500409577, PII G66383440383Q203
    • B. Zhang, X. Jia, Z. Chen, and Q. Tong, BA patch-based image classification by integrating hyperspectral data with GIS, Int. J. Remote Sens., vol. 27, no. 15, pp. 3337-3346, 2006. (Pubitemid 44203584)
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.15 , pp. 3337-3346
    • Zhang, B.1    Jia, X.2    Chen, Z.3    Tong, Q.4
  • 44
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Jul.
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, BSegmentation and classification of hyperspectral images using watershed transformation, Pattern Recognit., vol. 43, no. 7, pp. 2367-2379, Jul. 2010.
    • (2010) Pattern Recognit , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 45
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Sep
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, BSpectral-spatial classification of hyperspectral imagery based on partitional clustering techniques, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 9, pp. 2973-2987, Sep. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.9 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 46
    • 78049241977 scopus 로고    scopus 로고
    • Multiple spectral-spatial classification approach for hyperspectral data
    • Nov.
    • Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, BMultiple spectral-spatial classification approach for hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4122-4132, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.11 , pp. 4122-4132
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3    Tilton, J.C.4
  • 47
    • 84869505872 scopus 로고    scopus 로고
    • Best merge region growing segmentation with integrated non-adjacent region object aggregation
    • DOI: 10.1109/TGRS.2012.2190079
    • J. C. Tilton, Y. Tarabalka, P. M. Montesano, and E. Gofman, BBest merge region growing segmentation with integrated non-adjacent region object aggregation, IEEE Trans. Geosci. Remote Sens., 2012, DOI: 10.1109/TGRS.2012. 2190079.
    • (2012) IEEE Trans. Geosci. Remote Sens
    • Tilton, J.C.1    Tarabalka, Y.2    Montesano, P.M.3    Gofman, E.4
  • 48
    • 0003826720 scopus 로고    scopus 로고
    • Principles and Applications, 2nd ed New York: Springer-Verlag
    • P. Soille, Morphological Image Analysis, Principles and Applications, 2nd ed. New York: Springer-Verlag, 2003.
    • (2003) Morphological Image Analysis
    • Soille, P.1
  • 49
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
    • Oct.
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, BSegmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers, IEEE Trans. Syst. Man Cybern. B, Cybern, vol. 40, no. 5, pp. 1267-1279, Oct. 2010.
    • (2010) IEEE Trans. Syst. Man Cybern. B, Cybern , vol.40 , Issue.5 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 50
    • 0032633354 scopus 로고    scopus 로고
    • Covariance estimation with limited training samples
    • Jul
    • S. Tadjudin and D. A. Landgrebe, BCovariance estimation with limited training samples, IEEE Trans. Geosci. Remote Sens., vol. 37, no. 4, pp. 2113-2118, Jul. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , Issue.4 , pp. 2113-2118
    • Tadjudin, S.1    Landgrebe, D.A.2
  • 53
    • 0036762736 scopus 로고    scopus 로고
    • Advances in mathematical morphology applied to geoscience and remote sensing
    • DOI 10.1109/TGRS.2002.804618
    • P. Soille and M. Pesaresi, BAdvances in mathematical morphology applied to geoscience and remote sensing, IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 2042-2055, Sep. 2002. (Pubitemid 35458400)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 2042-2055
    • Soille, P.1    Pesaresi, M.2
  • 54
    • 70350451456 scopus 로고    scopus 로고
    • Recent developments in morphological image processing for remote sensing
    • P. Soille, BRecent developments in morphological image processing for remote sensing, Proc. SPIEVInt. Soc. Opt. Eng., vol. 7477, pp. 747702-1-747702-11, 2009.
    • (2009) Proc. SPIEVInt. Soc. Opt. Eng , vol.7477 , pp. 7477021-74770211
    • Soille, P.1
  • 55
    • 0029404248 scopus 로고
    • Theoretical aspects of morphological filters by reconstruction
    • J. Crespo, J. Serra, and R. W. Schafer, BTheoretical aspects of morphological filters by reconstruction, Signal Process., vol. 47, no. 2, pp. 201-225, 1995.
    • (1995) Signal Process , vol.47 , Issue.2 , pp. 201-225
    • Crespo, J.1    Serra, J.2    Schafer, R.W.3
  • 56
    • 0035248508 scopus 로고    scopus 로고
    • A new approach for the morphological segmentation of high-resolution satellite imagery
    • DOI 10.1109/36.905239, PII S0196289201011597
    • M. Pesaresi and J. A. Benediktsson, BA new approach for the morphological segmentation of high-resolution satellite imagery, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 309-320, Feb. 2001. (Pubitemid 32270994)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.2 , pp. 309-320
    • Pesaresi, M.1    Benediktsson, J.A.2
  • 57
    • 70350655559 scopus 로고    scopus 로고
    • Classification of very high spatial resolution imagery using mathematical morphology and support vector machines
    • Nov
    • D. Tuia, F. Pacifici, M. Kanevski, and W. J. Emery, BClassification of very high spatial resolution imagery using mathematical morphology and support vector machines, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 11, pp. 3866-3879, Nov. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.11 , pp. 3866-3879
    • Tuia, D.1    Pacifici, F.2    Kanevski, M.3    Emery, W.J.4
  • 59
    • 84864768761 scopus 로고    scopus 로고
    • Classification of hyperspectral data over urban areas using directional morphological profiles and semi-supervised feature extraction
    • W. Liao, R. Bellens, A. Pizurica, W. Philips, and Y. Pi, BClassification of hyperspectral data over urban areas using directional morphological profiles and semi-supervised feature extraction, IEEE J. Sel. Top. Appl. Earth Observat. Remote Sens., vol. 5, no. 4, pp. 1177-1190, 2012
    • (2012) IEEE J. Sel. Top. Appl. Earth Observat. Remote Sens , vol.5 , Issue.4 , pp. 1177-1190
    • Liao, W.1    Bellens, R.2    Pizurica, A.3    Philips, W.4    Pi, Y.5
  • 60
    • 34250880739 scopus 로고    scopus 로고
    • A comparative study on multivariate mathematical morphology
    • DOI 10.1016/j.patcog.2007.02.004, PII S0031320307000891
    • E. Aptoula and S. Lefèvre, BA comparative study on multivariate mathematical morphology, Pattern Recognit., vol. 40, no. 11, pp. 2914-2929, 2007. (Pubitemid 46990424)
    • (2007) Pattern Recognition , vol.40 , Issue.11 , pp. 2914-2929
    • Aptoula, E.1    Lefevre, S.2
  • 61
    • 2142816603 scopus 로고    scopus 로고
    • A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles
    • DOI 10.1016/j.patcog.2004.01.006, PII S0031320304000391
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, BA new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles, Pattern Recognit., vol. 37, no. 6, pp. 1097-1116, 2004. (Pubitemid 38549813)
    • (2004) Pattern Recognition , vol.37 , Issue.6 , pp. 1097-1116
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 63
    • 33745685587 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis
    • Jul
    • J. A. Palmason, J. A. Benediktsson, J. R. Sveinsson, and J. Chanussot, BClassification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis, in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2005, vol. 1, pp. 176-179.
    • (2005) Proc. IEEE Int. Geosci. Remote Sens. Symp , vol.1 , pp. 176-179
    • Palmason, J.A.1    Benediktsson, J.A.2    Sveinsson, J.R.3    Chanussot, J.4
  • 64
    • 66749175769 scopus 로고    scopus 로고
    • Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas
    • Jan
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, BKernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas, EURASIP J. Adv. Signal Process., vol. 2009, pp. 1-14, Jan. 2009.
    • (2009) EURASIP J. Adv. Signal Process , vol.2009 , pp. 1-14
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 65
    • 78649847038 scopus 로고    scopus 로고
    • On the influence of feature reduction for the classification of hyperspectral images based on the extended morphological profile
    • T. Castaing, B. Waske, J. A. Benediktsson, and J. Chanussot, BOn the influence of feature reduction for the classification of hyperspectral images based on the extended morphological profile, Int. J. Remote Sens., vol. 31, no. 22, pp. 5921-5939, 2010.
    • (2010) Int. J. Remote Sens , vol.31 , Issue.22 , pp. 5921-5939
    • Castaing, T.1    Waske, B.2    Benediktsson, J.A.3    Chanussot, J.4
  • 66
    • 10044272027 scopus 로고    scopus 로고
    • Beyond self-duality in morphological image analysis
    • P. Soille, BBeyond self-duality in morphological image analysis, Image Vis. Comput., vol. 23, no. 2, pp. 249-257, 2005.
    • (2005) Image Vis. Comput , vol.23 , Issue.2 , pp. 249-257
    • Soille, P.1
  • 67
    • 80052740627 scopus 로고    scopus 로고
    • A spatial-spectral kernel-based approach for the classification of remote-sensing images
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, BA spatial-spectral kernel-based approach for the classification of remote-sensing images, Pattern Recognit., vol. 45, no. 1, pp. 381-392, 2012.
    • (2012) Pattern Recognit , vol.45 , Issue.1 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 68
    • 0242712172 scopus 로고    scopus 로고
    • On the use of morphological alternated sequential filters for the classification of remote sensing images from urban areas
    • Jul
    • J. Chanussot, J. A. Benediktsson, and M. Pesaresi, BOn the use of morphological alternated sequential filters for the classification of remote sensing images from urban areas, in Proc. IEEE Geosci. Remote Sens. Symp., Jul. 2003, pp. 473-475.
    • (2003) Proc. IEEE Geosci. Remote Sens. Symp , pp. 473-475
    • Chanussot, J.1    Benediktsson, J.A.2    Pesaresi, M.3
  • 69
    • 33749550887 scopus 로고    scopus 로고
    • General adaptive neighborhood image processing Part i
    • J. Debayle and J.-C. Pinoli, BGeneral adaptive neighborhood image processingVPart I, J. Math. Imag. Vis., vol. 25, no. 2, pp. 245-266, 2006.
    • (2006) J. Math. Imag. Vis , vol.25 , Issue.2 , pp. 245-266
    • Debayle, J.1    Pinoli, J.-C.2
  • 70
    • 33749542261 scopus 로고    scopus 로고
    • General adaptive neighborhood image processing Part II
    • J. Debayle and J.-C. Pinoli, BGeneral adaptive neighborhood image processingVPart II, J. Math. Imag. Vis., vol. 25, no. 2, pp. 267-284, 2006.
    • (2006) J. Math. Imag. Vis , vol.25 , Issue.2 , pp. 267-284
    • Debayle, J.1    Pinoli, J.-C.2
  • 73
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug
    • F. Melgani and L. Bruzzone, BClassification of hyperspectral remote sensing images with support vector machines, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 75
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, BSpectral and spatial classification of hyperspectral data using SVMs and morphological profiles, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 78
    • 59249105916 scopus 로고    scopus 로고
    • Adaptive pixel neighborhood definition for the classification of hyperspectral images with support vector machines and composite kernel
    • Oct
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, BAdaptive pixel neighborhood definition for the classification of hyperspectral images with support vector machines and composite kernel, in Proc. 15th IEEE Int. Conf. Image Process., Oct. 2008, pp. 1884-1887.
    • (2008) Proc. 15th IEEE Int. Conf. Image Process , pp. 1884-1887
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 80
    • 0001584432 scopus 로고    scopus 로고
    • Antiextensive connected operators for image and sequence processing
    • PII S1057714998024622
    • P. Salembier, A. Oliveras, and L. Garrido, BAntiextensive connected operators for image and sequence processing, IEEE Trans. Image Process., vol. 7, no. 4, pp. 555-570, Apr. 1998. (Pubitemid 128745371)
    • (1998) IEEE Transactions on Image Processing , vol.7 , Issue.4 , pp. 555-570
    • Salembier, P.1    Oliveras, A.2    Garrido, L.3
  • 81
    • 77957007028 scopus 로고    scopus 로고
    • Morphological attribute profiles for the analysis of very high resolution images
    • Oct.
    • M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, BMorphological attribute profiles for the analysis of very high resolution images, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3747-3762, Oct. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.10 , pp. 3747-3762
    • Dalla Mura, M.1    Benediktsson, J.A.2    Waske, B.3    Bruzzone, L.4
  • 82
    • 79960309951 scopus 로고    scopus 로고
    • The evolution of the morphological profile: From panchromatic to hyperspectral images
    • S. Prasad, L. M. Bruce, J. Chanussot, R. I. Hammoud, and L. B. Wolff, Eds. Berlin, Germany: Springer-Verlag
    • M. Dalla Mura, J. A. Benediktsson, J. Chanussot, and L. Bruzzone, BThe evolution of the morphological profile: From panchromatic to hyperspectral images, in Optical Remote Sensing, vol. 3, S. Prasad, L. M. Bruce, J. Chanussot, R. I. Hammoud, and L. B. Wolff, Eds. Berlin, Germany: Springer-Verlag, 2011, pp. 123-146.
    • (2011) Optical Remote Sensing , vol.3 , pp. 123-146
    • Dalla Mura, M.1    Benediktsson, J.A.2    Chanussot, J.3    Bruzzone, L.4
  • 83
    • 79955521136 scopus 로고    scopus 로고
    • Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis
    • May
    • M. Dalla Mura, A. Villa, J. A. Benediktsson, J. Chanussot, and L. Bruzzone, BClassification of hyperspectral images by using extended morphological attribute profiles and independent component analysis, IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 542-546, May 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , Issue.3 , pp. 542-546
    • Dalla Mura, M.1    Villa, A.2    Benediktsson, J.A.3    Chanussot, J.4    Bruzzone, L.5
  • 85
    • 34248523783 scopus 로고    scopus 로고
    • Iterative area filtering of multichannel images
    • DOI 10.1016/j.imavis.2006.09.002, PII S0262885606003118
    • D. Brunner and P. Soille, BIterative area filtering of multichannel images, Image Vis. Comput., vol. 25, no. 8, pp. 1352-1364, Aug. 2007. (Pubitemid 46764432)
    • (2007) Image and Vision Computing , vol.25 , Issue.8 , pp. 1352-1364
    • Brunner, D.1    Soille, P.2
  • 86
    • 77957001686 scopus 로고    scopus 로고
    • Learning relevant image features with multiple-kernel classification
    • Oct.
    • D. Tuia, G. Camps-Valls, G. Matasci, and M. Kanevski, BLearning relevant image features with multiple-kernel classification, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3780-3791, Oct. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.10 , pp. 3780-3791
    • Tuia, D.1    Camps-Valls, G.2    Matasci, G.3    Kanevski, M.4
  • 87
    • 79953094686 scopus 로고    scopus 로고
    • Urban image classification with semisupervised multiscale cluster kernels
    • D. Tuia and G. Camps-Valls, BUrban image classification with semisupervised multiscale cluster kernels, IEEE J. Sel. Top. Appl. Earth Observat. Remote Sens., vol. 4 , no. 1, pp. 65-74, 2011.
    • (2011) IEEE J. Sel. Top. Appl. Earth Observat. Remote Sens , vol.4 , Issue.1 , pp. 65-74
    • Tuia, D.1    Camps-Valls, G.2
  • 88
    • 0018729995 scopus 로고
    • A survey on image segmentation
    • K. S. Fu and J. K. Mui, BA survey on image segmentation, Pattern Recognit., vol. 13, no. 1, pp. 3-16, 1981.
    • (1981) Pattern Recognit , vol.13 , Issue.1 , pp. 3-16
    • Fu, K.S.1    Mui, J.K.2
  • 89
    • 0031631377 scopus 로고    scopus 로고
    • Image segmentation by region growing and spectral clustering with a natural convergence criterion
    • J. C. Tilton, BImage segmentation by region growing and spectral clustering with a natural convergence criterion, in Proc. Int. Geosci. Remote Sens. Symp., 1998, vol. 4, pp. 1766-1768.
    • (1998) Proc. Int. Geosci. Remote Sens. Symp , vol.4 , pp. 1766-1768
    • Tilton, J.C.1
  • 90
    • 0001626339 scopus 로고
    • A classification em algorithm for clustering and two stochastic versions
    • Oct
    • G. Celeux and G. Govaert, BA classification EM algorithm for clustering and two stochastic versions, Comput. Stat. Data Anal., vol. 14, no. 3, pp. 315-332, Oct. 1992.
    • (1992) Comput. Stat. Data Anal , vol.14 , Issue.3 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 91
    • 0027591549 scopus 로고
    • SEM algorithm and unsupervised statistical segmentation of satellite images
    • DOI 10.1109/36.225529
    • P. Masson and W. Pieczynski, BSEM algorithm and unsupervised segmentation of satellite images, IEEE Trans. Geos. Remote Sens., vol. 31, no. 3, pp. 618-633, May 1993. (Pubitemid 23697387)
    • (1993) IEEE Transactions on Geoscience and Remote Sensing , vol.31 , Issue.3 , pp. 618-633
    • Masson Pascale1    Pieczynski Wojciech2
  • 93
    • 84929388497 scopus 로고    scopus 로고
    • Morphological segmentation of hyperspectral images
    • G. Noyel, J. Angulo, and D. Jeulin, BMorphological segmentation of hyperspectral images, Image Anal. Stereol., vol. 26, pp. 101-109, 2007.
    • (2007) Image Anal. Stereol , vol.26 , pp. 101-109
    • Noyel, G.1    Angulo, J.2    Jeulin, D.3
  • 94
    • 33646863860 scopus 로고    scopus 로고
    • A morphological gradient approach to color edge detection
    • DOI 10.1109/TIP.2005.864164
    • A. N. Evans and X. U. Liu, BA morphological gradient approach to color edge detection, IEEE Trans. Image Process., vol. 15, no. 6, pp. 1454-1463, Jun. 2006. (Pubitemid 43778924)
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.6 , pp. 1454-1463
    • Evans, A.N.1    Liu, X.U.2
  • 95
    • 0026172104 scopus 로고
    • Watersheds in digital spaces: An efficient algorithm based on immersion simulations
    • DOI 10.1109/34.87344
    • L. Vincent and P. Soille, BWatersheds in digital spaces: An efficient algorithm based on immersion simulations, IEEE Trans. Pattern Anal. Mach. Intel., vol. 13, no. 6, pp. 583-598, Jun. 1991. (Pubitemid 21675616)
    • (1991) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.13 , Issue.6 , pp. 583-598
    • Vincent Luc1    Soille Pierre2
  • 97
    • 35348908282 scopus 로고    scopus 로고
    • Fast hyperspectral feature reduction using piecewise constant function approximations
    • DOI 10.1109/LGRS.2007.896331
    • A. C. Jensen and A. S. Solberg, BFast hyperspectral feature reduction using piecewise 88 constant function approximations, IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 547-551, Oct. 2007. (Pubitemid 47588027)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.4 , pp. 547-551
    • Jensen, A.C.1    Solberg, A.S.2
  • 98
    • 0024610590 scopus 로고
    • Hierarchy in picture segmentation: A stepwise optimization approach
    • Feb
    • J.-M. Beaulieu and M. Goldberg, BHierarchy in picture segmentation: A stepwise optimization approach, IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 2, pp. 150-163, Feb. 1989.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell , vol.11 , Issue.2 , pp. 150-163
    • Beaulieu, J.-M.1    Goldberg, M.2
  • 100
    • 33745728148 scopus 로고    scopus 로고
    • Automated selection of results in hierarchical segmentations of remotely sensed hyperspectral images
    • Jul
    • A. J. Plaza and J. C. Tilton, BAutomated selection of results in hierarchical segmentations of remotely sensed hyperspectral images, in Proc. Int. Geosci. Remote Sens. Symp., Jul. 2005, vol. 7, pp. 4946-4949.
    • (2005) Proc. Int. Geosci. Remote Sens. Symp , vol.7 , pp. 4946-4949
    • Plaza, A.J.1    Tilton, J.C.2
  • 102
    • 84857699240 scopus 로고    scopus 로고
    • A marker-based approach for the automated selection of a single segmentation from a hierarchical set of image segmentations
    • Feb.
    • Y. Tarabalka, J. C. Tilton, J. A. Benediktsson, and J. Chanussot, BA marker-based approach for the automated selection of a single segmentation from a hierarchical set of image segmentations, IEEE J. Sel. Top. Appl. Earth Observat. Remote Sens., vol. 5, no. 1, pp. 262-272, Feb. 2012.
    • (2012) IEEE J. Sel. Top. Appl. Earth Observat. Remote Sens , vol.5 , Issue.1 , pp. 262-272
    • Tarabalka, Y.1    Tilton, J.C.2    Benediktsson, J.A.3    Chanussot, J.4
  • 103
    • 70350455333 scopus 로고    scopus 로고
    • Application of combined pixel-based and spatial-based approaches for improved mixed vegetation classification using IKONOS
    • A. Widayati, B. Verbist, and A. Meijerink, BApplication of combined pixel-based and spatial-based approaches for improved mixed vegetation classification using IKONOS, in Proc. 23rd Asian Conf. Remote Sens., pp. 1-8, 2002.
    • (2002) Proc. 23rd Asian Conf. Remote Sens , pp. 1-8
    • Widayati, A.1    Verbist, B.2    Meijerink, A.3
  • 104
    • 45849104692 scopus 로고    scopus 로고
    • Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines
    • S. V. d. Linden, A. Janz, B. Waske, M. Eiden, and P. Hostert, BClassifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines, J. Appl. Remote Sens., vol. 1, no. 3543, pp. 1-17, 2007.
    • (2007) J. Appl. Remote Sens , vol.1 , Issue.3543 , pp. 1-17
    • Linden, S.V.D.1    Janz, A.2    Waske, B.3    Eiden, M.4    Hostert, P.5
  • 106
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • T.-F. Wu, C.-J. Lin, and R. C. Weng, BProbability estimates for multi-class classification by pairwise coupling, J. Mach. Learn. Res., no. 5, pp. 975-1005, 2004.
    • (2004) J. Mach. Learn. Res. , Issue.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3
  • 107
    • 0036821351 scopus 로고    scopus 로고
    • Multiple classifiers applied to multisource remote sensing data
    • Oct.
    • G. Briem, J. A. Benediktsson, J. R. Sveinsson, Multiple classifiers applied to multisource remote sensing data, IEEE Trans. Geos. Remote Sens., vol. 40, no. 10, pp. 2291-2299, Oct. 2002.
    • (2002) IEEE Trans. Geos. Remote Sens , vol.40 , Issue.10 , pp. 2291-2299
    • Briem, G.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 110
    • 84911584312 scopus 로고
    • Shortest connection networks and some generalizations
    • R. C. Prim, BShortest connection networks and some generalizations, Bell Syst. Technol. J., vol. 36, pp. 1389-1401, 1957.
    • (1957) Bell Syst. Technol. J , vol.36 , pp. 1389-1401
    • Prim, R.C.1
  • 111
    • 84859048363 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach
    • Apr.
    • K. Bernard, Y. Tarabalka, J. Angulo, J. Chanussot, and J. A. Benediktsson, BSpectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach, IEEE Trans. Image Process., vol. 21, no. 4, pp. 2008-2021, Apr. 2012.
    • (2012) IEEE Trans Image Process , vol.21 , Issue.4 , pp. 2008-2021
    • Bernard, K.1    Tarabalka, Y.2    Angulo, J.3    Chanussot, J.4    Benediktsson, J.A.5
  • 112
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • G. M. Foody, BThematic map comparison: Evaluating the statistical significance of differences in classification accuracy, Photogramm. Eng. Remote Sens., vol. 70, no. 5, pp. 627-633, May 2004. (Pubitemid 39081774)
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1
  • 113
    • 0027579237 scopus 로고
    • Feature extraction based on decision boundaries
    • Apr
    • C. Lee and D. A. Landgrebe, BFeature extraction based on decision boundaries, IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 4, pp. 388-400, Apr. 1993.
    • (1993) IEEE Trans. Pattern Anal. Mach. Intell , vol.15 , Issue.4 , pp. 388-400
    • Lee, C.1    Landgrebe, D.A.2
  • 114
    • 0036875217 scopus 로고    scopus 로고
    • A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction
    • Nov
    • B. C. Kuo and D. A. Landgrebe, BA robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction, IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2486-2494, Nov. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.11 , pp. 2486-2494
    • Kuo, B.C.1    Landgrebe, D.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.