메뉴 건너뛰기




Volumn 36, Issue 13, 2015, Pages 3459-3482

Hyperspectral classification via deep networks and superpixel segmentation

Author keywords

[No Author keywords available]

Indexed keywords

PIXELS; SPECTROSCOPY; SUPERPIXELS;

EID: 84937140953     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2015.1055607     Document Type: Article
Times cited : (77)

References (61)
  • 2
    • 84937133640 scopus 로고    scopus 로고
    • Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing
    • Schölkopf B., Girolami M., Lawrence N., (eds), Sardinia: ICAIS
    • B.Antoine,, X.Glorot, J.Weston, and Y.Bengio. 2012. “Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing.” In International Conference on Artificial Intelligence and Statistics, edited by B.Schölkopf, M.Girolami and N.Lawrence. Sardinia: ICAIS.
    • (2012) International Conference on Artificial Intelligence and Statistics
    • Antoine, B.1    Glorot, X.2    Weston, J.3    Bengio, Y.4
  • 3
    • 35348920168 scopus 로고    scopus 로고
    • Feature Selection and Classification of Hyperspectral Images with Support Vector Machines
    • R.Archibald,, and G.Fann. 2007. “Feature Selection and Classification of Hyperspectral Images with Support Vector Machines.” IEEE Geoscience and Remote Sensing Letters 4 (4): 674–677. doi:10.1109/LGRS.2007.905116.
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.4 , pp. 674-677
    • Archibald, R.1    Fann, G.2
  • 4
    • 77958488310 scopus 로고    scopus 로고
    • Deep Machine Learning - A New Frontier in Artificial Intelligence Research [Research Frontier]
    • I.Arel,, D.C.Rose, and T.P.Karnowski. 2010. “Deep Machine Learning - A New Frontier in Artificial Intelligence Research [Research Frontier].” IEEE Computational Intelligence Magazine 5 (4): 13–18. doi:10.1109/MCI.2010.938364.
    • (2010) IEEE Computational Intelligence Magazine , vol.5 , Issue.4 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 5
    • 14644412366 scopus 로고    scopus 로고
    • Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles
    • J.A.Benediktsson,, J.A.Palmason, and J.R.Sveinsson. 2005. “Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles.” IEEE Transactions on Geoscience and Remote Sensing 43 (3): 480–491. doi:10.1109/TGRS.2004.842478.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 6
  • 10
    • 84904136037 scopus 로고    scopus 로고
    • Large-Scale Machine Learning with Stochastic Gradient Descent
    • Lechevallier Y., Saporta G., (eds), Paris: Physica-Verlag HD
    • L.Bottou, 2010. “Large-Scale Machine Learning with Stochastic Gradient Descent.” In Proceedings of COMPSTAT, edited by Y.Lechevallier and G.Saporta, 177–186. Paris: Physica-Verlag HD.
    • (2010) Proceedings of COMPSTAT , pp. 177-186
    • Bottou, L.1
  • 12
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based Methods for Hyperspectral Image Classification
    • G.Camps-Valls,, and L.Bruzzone. 2005. “Kernel-based Methods for Hyperspectral Image Classification.” IEEE Transactions on Geoscience and Remote Sensing 43 (6): 1351–1362. doi:10.1109/TGRS.2005.846154.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 13
    • 77954623833 scopus 로고    scopus 로고
    • Remote Sensing Feature Selection by Kernel Dependence Measures
    • G.Camps-Valls,, J.Mooij, and B.Scholkopf. 2010. “Remote Sensing Feature Selection by Kernel Dependence Measures.” IEEE Geoscience and Remote Sensing Letters 7 (3): 587–591. doi:10.1109/LGRS.2010.2041896.
    • (2010) IEEE Geoscience and Remote Sensing Letters , vol.7 , Issue.3 , pp. 587-591
    • Camps-Valls, G.1    Mooij, J.2    Scholkopf, B.3
  • 14
    • 85032751634 scopus 로고    scopus 로고
    • Advances in Hyperspectral Image Classification: Earth Monitoring with Statistical Learning Methods
    • G.Camps-Valls,, D.Tuia, L.Bruzzone, and J.A.Benediktsson. 2014. “Advances in Hyperspectral Image Classification: Earth Monitoring with Statistical Learning Methods.” IEEE Signal Processing Magazine 31 (1): 45–54. doi:10.1109/MSP.2013.2279179.
    • (2014) IEEE Signal Processing Magazine , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Benediktsson, J.A.4
  • 17
    • 84861776914 scopus 로고    scopus 로고
    • Multi-Column Deep Neural Network for Traffic Sign Classification
    • D.Cireşan,, U.Meier, J.Masci, and J.Schmidhuber. 2012. “Multi-Column Deep Neural Network for Traffic Sign Classification.” Neural Networks 32: 333–338. doi:10.1016/j.neunet.2012.02.023.
    • (2012) Neural Networks , vol.32 , pp. 333-338
    • Cireşan, D.1    Meier, U.2    Masci, J.3    Schmidhuber, J.4
  • 18
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of Oriented Gradients for Human Detection
    • Schmid C., Soatto S., Tomasi C., (eds), San Diego, CA: IEEE Computer Society
    • N.Dalal,, and B.Triggs. 2005. “Histograms of Oriented Gradients for Human Detection.” In Computer Vision and Pattern Recognition, edited by C.Schmid, S.Soatto and C.Tomasi. San Diego, CA: IEEE Computer Society.
    • (2005) Computer Vision and Pattern Recognition
    • Dalal, N.1    Triggs, B.2
  • 19
    • 77952616442 scopus 로고    scopus 로고
    • Bayesian Estimation of Linear Mixtures Using the Normal Compositional Model. Application to Hyperspectral Imagery
    • O.Eches,, N.Dobigeon, C.Mailhes, and J.-Y.Tourneret. 2010. “Bayesian Estimation of Linear Mixtures Using the Normal Compositional Model. Application to Hyperspectral Imagery.” IEEE Transactions on Image Processing 19 (6): 1403–1413. doi:10.1109/TIP.2010.2042993.
    • (2010) IEEE Transactions on Image Processing , vol.19 , Issue.6 , pp. 1403-1413
    • Eches, O.1    Dobigeon, N.2    Mailhes, C.3    Tourneret, J.-Y.4
  • 21
    • 66749175769 scopus 로고    scopus 로고
    • Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas
    • M.Fauvel,, J.Chanussot, and J.A.Benediktsson. 2009. “Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas.” EURASIP Journal on Advances in Signal Processing 2009: 1–15. doi:10.1155/2009/783194.
    • (2009) EURASIP Journal on Advances in Signal Processing , vol.2009 , pp. 1-15
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 23
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the Difficulty of Training Deep Feedforward Neural Networks
    • Lawrence N., Teh Y.W., Titterington M., (eds), Sardinia: ICAIS
    • X.Glorot,, and Y.Bengio. 2010. “Understanding the Difficulty of Training Deep Feedforward Neural Networks.” In International Conference on Artificial Intelligence and Statistics, edited by N.Lawrence, Y.W.Teh and M.Titterington, 249–256. Sardinia: ICAIS.
    • (2010) International Conference on Artificial Intelligence and Statistics , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 24
    • 0026565214 scopus 로고
    • Separate Visual Pathways for Perception and Action
    • M.A.Goodale,, and A.D.Milner. 1992. “Separate Visual Pathways for Perception and Action.” Trends in Neurosciences 15 (1): 20–25. doi:10.1016/0166-2236(92)90344-8.
    • (1992) Trends in Neurosciences , vol.15 , Issue.1 , pp. 20-25
    • Goodale, M.A.1    Milner, A.D.2
  • 25
    • 38349158946 scopus 로고    scopus 로고
    • A Selective KPCA Algorithm Based on High-Order Statistics for Anomaly Detection in Hyperspectral Imagery
    • Y.Gu,, Y.Liu, and Y.Zhang. 2008. “A Selective KPCA Algorithm Based on High-Order Statistics for Anomaly Detection in Hyperspectral Imagery.” IEEE Geoscience and Remote Sensing Letters 5 (1): 43–47. doi:10.1109/LGRS.2007.907304.
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.5 , Issue.1 , pp. 43-47
    • Gu, Y.1    Liu, Y.2    Zhang, Y.3
  • 26
    • 41849112041 scopus 로고    scopus 로고
    • Customizing Kernel Functions for SVM-Based Hyperspectral Image Classification
    • B.Guo,, S.R.Gunn, R.I.Damper, and J.D.B.Nelson. 2008. “Customizing Kernel Functions for SVM-Based Hyperspectral Image Classification.” IEEE Transactions on Image Processing 17 (4): 622–629. doi:10.1109/TIP.2008.918955.
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.4 , pp. 622-629
    • Guo, B.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.D.B.4
  • 27
    • 33750590333 scopus 로고    scopus 로고
    • Band Selection for Hyperspectral Image Classification Using Mutual Information
    • B.Guo,, S.R.Gunn, R.I.Damper, and J.D.B.Nelson. 2006. “Band Selection for Hyperspectral Image Classification Using Mutual Information.” IEEE Geoscience and Remote Sensing Letters 3 (4): 522–526. doi:10.1109/LGRS.2006.878240.
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , Issue.4 , pp. 522-526
    • Guo, B.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.D.B.4
  • 28
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the Random Forest Framework for Classification of Hyperspectral Data
    • J.Ham,, Y.Chen, M.M.Crawford, and J.Ghosh. 2005. “Investigation of the Random Forest Framework for Classification of Hyperspectral Data.” IEEE Transactions on Geoscience and Remote Sensing 43 (3): 492–501. doi:10.1109/TGRS.2004.842481.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 29
    • 0042826822 scopus 로고    scopus 로고
    • Independent Component Analysis: Algorithms and Applications
    • A.Hyvärinen,, and E.Oja. 2000. “Independent Component Analysis: Algorithms and Applications.” Neural Networks 13 (4–5): 411–430. doi:10.1016/S0893-6080(00)00026-5.
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 32
    • 80053417666 scopus 로고    scopus 로고
    • Unsupervised Remote Sensing Image Classification Using an Artificial DNA Computing
    • Ding Y., Wang H., Xiong N., Hao K., Wang L., (eds), Shanghai: ICNC
    • H.Jiao,, Y.Zhong, L.Zhang, and P.Li. 2011. “Unsupervised Remote Sensing Image Classification Using an Artificial DNA Computing.” In International Conference on Natural Computation, edited by Y.Ding, H.Wang, N.Xiong, K.Hao and L.Wang, 1341–1345. Shanghai: ICNC.
    • (2011) International Conference on Natural Computation , pp. 1341-1345
    • Jiao, H.1    Zhong, Y.2    Zhang, L.3    Li, P.4
  • 33
    • 85162460675 scopus 로고    scopus 로고
    • Learning Convolutional Feature Hierachies for Visual Recognition
    • Lafferty J.D., Williams C.K.I., Shawe-Taylor J., Zemel R.S., Culotta A., (eds), Vancouver, BC: NIPS
    • K.Kavukcuoglu,, P.Sermanet, Y.Lan Boureau, K.Gregor, M.Mathieu, and Y.LeCun. 2010. “Learning Convolutional Feature Hierachies for Visual Recognition.” In Advances in Neural Information Processing Systems, edited by J.D.Lafferty, C.K.I.Williams, J.Shawe-Taylor, R.S.Zemel and A.Culotta. Vancouver, BC: NIPS.
    • (2010) Advances in Neural Information Processing Systems
    • Kavukcuoglu, K.1    Sermanet, P.2    Lan Boureau, Y.3    Gregor, K.4    Mathieu, M.5    LeCun, Y.6
  • 34
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet Classification with Deep Convolutional Neural Networks
    • Pereira F., Burges C.J.C., Bottou L., Weinberger K.Q., (eds), Lake Tahoe: NIPS
    • A.Krizhevsky,, I.Sutskever, and G.E.Hinton. 2012. “ImageNet Classification with Deep Convolutional Neural Networks.” In Advances in Neural Information Processing Systems, edited by F.Pereira, C.J.C.Burges, L.Bottou and K.Q.Weinberger. Lake Tahoe: NIPS.
    • (2012) Advances in Neural Information Processing Systems
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 35
    • 63149143190 scopus 로고    scopus 로고
    • Kernel Nonparametric Weighted Feature Extraction for Hyperspectral Image Classification
    • B.-C.Kuo,, C.-H.Li, and J.-M.Yang. 2009. “Kernel Nonparametric Weighted Feature Extraction for Hyperspectral Image Classification.” IEEE Transactions on Geoscience and Remote Sensing 47 (4): 1139–1155. doi:10.1109/TGRS.2008.2008308.
    • (2009) IEEE Transactions on Geoscience and Remote Sensing , vol.47 , Issue.4 , pp. 1139-1155
    • Kuo, B.-C.1    Li, C.-H.2    Yang, J.-M.3
  • 36
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral Image Data Analysis
    • D.Landgrebe, 2002. “Hyperspectral Image Data Analysis.” IEEE Signal Processing Magazine 19 (1): 17–28. doi:10.1109/79.974718.
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 37
    • 85161980001 scopus 로고    scopus 로고
    • Sparse Deep Belief Net Model for Visual Area V2
    • Koller D., Schuurmans D., Bengio Y., Bottou L., (eds), Vancouver, BC: NIPS
    • H.Lee,, C.Ekanadham, and A.Y.Ng. 2008. “Sparse Deep Belief Net Model for Visual Area V2.” In Advances in Neural Information Processing Systems, edited by D.Koller, D.Schuurmans, Y.Bengio, and L.Bottou. Vancouver, BC: NIPS.
    • (2008) Advances in Neural Information Processing Systems
    • Lee, H.1    Ekanadham, C.2    Ng, A.Y.3
  • 39
    • 77957990796 scopus 로고    scopus 로고
    • An Effective Feature Selection Method for Hyperspectral Image Classification Based on Genetic Algorithm and Support Vector Machine
    • S.Li,, H.Wu, D.Wan, and J.Zhu. 2011. “An Effective Feature Selection Method for Hyperspectral Image Classification Based on Genetic Algorithm and Support Vector Machine.” Knowledge-Based Systems 24 (1): 40–48. doi:10.1016/j.knosys.2010.07.003.
    • (2011) Knowledge-Based Systems , vol.24 , Issue.1 , pp. 40-48
    • Li, S.1    Wu, H.2    Wan, D.3    Zhu, J.4
  • 40
    • 84894256108 scopus 로고    scopus 로고
    • Superpixel-based Markov Random Field for Classification of Hyperspectral Images
    • Woodgate P., Jones S., (eds), Melbourne: IEEE GRSS
    • S.Li,, X.Jia, and B.Zhang. 2013. “Superpixel-based Markov Random Field for Classification of Hyperspectral Images.” In IEEE International Geoscience and Remote Sensing Symposium, edited by P.Woodgate and S.Jones, 3491–3494. Melbourne: IEEE GRSS.
    • (2013) IEEE International Geoscience and Remote Sensing Symposium , pp. 3491-3494
    • Li, S.1    Jia, X.2    Zhang, B.3
  • 43
    • 65049090023 scopus 로고    scopus 로고
    • A Composite Semisupervised SVM for Classification of Hyperspectral Images
    • M.Marconcini,, G.Camps-Valls, and L.Bruzzone. 2009. “A Composite Semisupervised SVM for Classification of Hyperspectral Images.” IEEE Geoscience and Remote Sensing Letters 6 (2): 234–238. doi:10.1109/LGRS.2008.2009324.
    • (2009) IEEE Geoscience and Remote Sensing Letters , vol.6 , Issue.2 , pp. 234-238
    • Marconcini, M.1    Camps-Valls, G.2    Bruzzone, L.3
  • 45
    • 4344614511 scopus 로고    scopus 로고
    • Classification of Hyperspectral Remote Sensing Images with Support Vector Machines
    • F.Melgani,, and L.Bruzzone. 2004. “Classification of Hyperspectral Remote Sensing Images with Support Vector Machines.” IEEE Transactions on Geoscience and Remote Sensing 42 (8): 1778–1790. doi:10.1109/TGRS.2004.831865.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 47
    • 78649843439 scopus 로고    scopus 로고
    • Extended Profiles with Morphological Attribute Filters for the Analysis of Hyperspectral Data
    • M.D.Mura,, J.A.Benediktsson, B.Waske, and L.Bruzzone. 2010a. “Extended Profiles with Morphological Attribute Filters for the Analysis of Hyperspectral Data.” International Journal of Remote Sensing 31 (22): 5975–5991. doi:10.1080/01431161.2010.512425.
    • (2010) International Journal of Remote Sensing , vol.31 , Issue.22 , pp. 5975-5991
    • Mura, M.D.1    Benediktsson, J.A.2    Waske, B.3    Bruzzone, L.4
  • 48
    • 0035248508 scopus 로고    scopus 로고
    • A New Approach for The Morphological Segmentation of High-Resolution Satellite Imagery
    • M.Pesaresi,, and J.A.Benediktsson. 2001. “A New Approach for The Morphological Segmentation of High-Resolution Satellite Imagery.” IEEE Transactions on Geoscience and Remote Sensing 39 (2): 309–320. doi:10.1109/36.905239.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.2 , pp. 309-320
    • Pesaresi, M.1    Benediktsson, J.A.2
  • 49
    • 77951295198 scopus 로고    scopus 로고
    • Semisupervised Neural Networks for Efficient Hyperspectral Image Classification
    • F.Ratle,, G.Camps-Valls, and J.Weston. 2010. “Semisupervised Neural Networks for Efficient Hyperspectral Image Classification.” IEEE Transactions on Geoscience and Remote Sensing 48 (5): 2271–2282. doi:10.1109/TGRS.2009.2037898.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing , vol.48 , Issue.5 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 51
    • 85162476102 scopus 로고    scopus 로고
    • Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection
    • Shawe-Taylor J., Zemel R.S., Bartlett P.L., Pereira F., Weinberger K.Q., (eds), Granada: NIPS
    • R.Socher,, E.H.Huang, J.Pennington, A.Y.Ng, and C.D.Manning. 2011. “Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection.” In Advances in Neural Information Processing Systems, edited by J.Shawe-Taylor, R.S.Zemel, P.L.Bartlett, F.Pereira and K.Q.Weinberger. Granada: NIPS.
    • (2011) Advances in Neural Information Processing Systems
    • Socher, R.1    Huang, E.H.2    Pennington, J.3    Ng, A.Y.4    Manning, C.D.5
  • 52
    • 80053261327 scopus 로고    scopus 로고
    • Semi-supervised Recursive Autoencoders for Predicting Sentiment Distributions
    • Belz A., Evans R., Gatt A., Striegnitz K., (eds), Edinburgh: ACL
    • R.Socher,, J.Pennington, E.H.Huang, A.Y.Ng, and C.D.Manning. 2011. “Semi-supervised Recursive Autoencoders for Predicting Sentiment Distributions.” In Conference on Empirical Methods in Natural Language Processing, edited by A.Belz, R.Evans, A.Gatt and K.Striegnitz, 151–161. Edinburgh: ACL.
    • (2011) Conference on Empirical Methods in Natural Language Processing , pp. 151-161
    • Socher, R.1    Pennington, J.2    Huang, E.H.3    Ng, A.Y.4    Manning, C.D.5
  • 55
    • 84890858894 scopus 로고    scopus 로고
    • Hyperspectral Imagery Classification Based on Rotation-Invariant Spectral–Spatial Feature
    • C.Tao,, Y.Tang, C.Fan, and Z.Zou. 2014. “Hyperspectral Imagery Classification Based on Rotation-Invariant Spectral–Spatial Feature.” IEEE Geoscience and Remote Sensing Letters 11 (5): 980–984. doi:10.1109/LGRS.2013.2284007.
    • (2014) IEEE Geoscience and Remote Sensing Letters , vol.11 , Issue.5 , pp. 980-984
    • Tao, C.1    Tang, Y.2    Fan, C.3    Zou, Z.4
  • 56
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and Composing Robust Features with Denoising Autoencoders
    • Cohen W., McCallum A., Roweis S., (eds), Helsinki: ACM
    • P.Vincent,, H.Larochelle, Y.Bengio, and P.-A.Manzagol. 2008. “Extracting and Composing Robust Features with Denoising Autoencoders.” In International Conference on Machine Learning, edited by W.Cohen, A.McCallum and S.Roweis. Helsinki: ACM.
    • (2008) International Conference on Machine Learning
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 57
    • 79551480483 scopus 로고    scopus 로고
    • Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
    • P.Vincent,, H.Larochelle, I.Lajoie, Y.Bengio, and P.-A.Manzagol. 2010. “Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion.” Journal of Machine Learning Research 11: 3371–3408.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 58
    • 2142812371 scopus 로고    scopus 로고
    • Robust Real-Time Face Detection
    • P.Viola,, and M.J.Jones. 2004. “Robust Real-Time Face Detection.” International Journal of Computer Vision 57 (2): 137–154. doi:10.1023/B:VISI.0000013087.49260.fb.
    • (2004) International Journal of Computer Vision , vol.57 , Issue.2 , pp. 137-154
    • Viola, P.1    Jones, M.J.2
  • 59
    • 33744719449 scopus 로고    scopus 로고
    • Independent Component Analysis based DimensionalityReduction with Applications in Hyperspectral Image Analysis
    • J.Wang,, and C.-I.Chang. 2006. “Independent Component Analysis based DimensionalityReduction with Applications in Hyperspectral Image Analysis.” IEEE Transactions on Geoscience and Remote Sensing 44 (6): 1586–1600. doi:10.1109/TGRS.2005.863297.
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.6 , pp. 1586-1600
    • Wang, J.1    Chang, C.-I.2
  • 61
    • 77953710563 scopus 로고    scopus 로고
    • Learning Conditional Random Fields for Classification of Hyperspectral Images
    • P.Zhong,, and R.Wang. 2010. “Learning Conditional Random Fields for Classification of Hyperspectral Images.” IEEE Transactions on Image Processing 19 (7): 1890–1907. doi:10.1109/TIP.2010.2045034.
    • (2010) IEEE Transactions on Image Processing , vol.19 , Issue.7 , pp. 1890-1907
    • Zhong, P.1    Wang, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.