메뉴 건너뛰기




Volumn 36, Issue 18, 2015, Pages 4724-4747

Infrared ultraspectral signature classification based on a restricted Boltzmann machine with sparse and prior constraints

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BINARY CODES; EXTRACTION; FEATURE EXTRACTION; LEARNING SYSTEMS; MARKOV PROCESSES; NUCLEIC ACIDS; SPECTRAL RESOLUTION;

EID: 84943420300     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2015.1079664     Document Type: Article
Times cited : (14)

References (36)
  • 2
    • 33646412098 scopus 로고    scopus 로고
    • TES on the Aura Mission: Scientific Objectives, Measurements, and Analysis Overview
    • R.Beer, 2006. “TES on the Aura Mission: Scientific Objectives, Measurements, and Analysis Overview.” IEEE Transactions on Geoscience and Remote Sensing 44 (5): 1102–1105. doi:10.1109/TGRS.2005.863716.
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.5 , pp. 1102-1105
    • Beer, R.1
  • 6
    • 54549113055 scopus 로고    scopus 로고
    • Spectral Derivative Feature Coding for Hyperspectral Signature Analysis
    • C.-I.Chang,, S.Chakravarty, H.-M.Chen, and Y.-C.Ouyang. 2009. “Spectral Derivative Feature Coding for Hyperspectral Signature Analysis.” Pattern Recognition 42 (3): 395–408. doi:10.1016/j.patcog.2008.07.016.
    • (2009) Pattern Recognition , vol.42 , Issue.3 , pp. 395-408
    • Chang, C.-I.1    Chakravarty, S.2    Chen, H.-M.3    Ouyang, Y.-C.4
  • 8
  • 9
    • 0037382547 scopus 로고    scopus 로고
    • Automated Analysis of Ultra High Resolution Remote Sensing Data for Biotope Type Mapping: New Possibilities and Challenges
    • M.Ehlers,, M.Gähler, and R.Janowsky. 2003. “Automated Analysis of Ultra High Resolution Remote Sensing Data for Biotope Type Mapping: New Possibilities and Challenges.” ISPRS Journal of Photogrammetry and Remote Sensing 57 (5–6): 315–326. doi:10.1016/S0924-2716(02)00161-2.
    • (2003) ISPRS Journal of Photogrammetry and Remote Sensing , vol.57 , Issue.5-6 , pp. 315-326
    • Ehlers, M.1    Gähler, M.2    Janowsky, R.3
  • 10
    • 84878615328 scopus 로고    scopus 로고
    • Rapid Ultraspectral Matching Method Based on Crosscut Feature Extraction
    • Y.Fang,, Y.Ma, H.Li, K.Liang, S.Wang, and H.Wang. 2013. “Rapid Ultraspectral Matching Method Based on Crosscut Feature Extraction.” Optical Review 20 (3): 259–265. doi:10.1007/s10043-013-0047-9.
    • (2013) Optical Review , vol.20 , Issue.3 , pp. 259-265
    • Fang, Y.1    Ma, Y.2    Li, H.3    Liang, K.4    Wang, S.5    Wang, H.6
  • 12
    • 84885023116 scopus 로고    scopus 로고
    • Training Restricted Boltzmann Machines: An Introduction
    • A.Fischer,, and C.Igel. 2014. “Training Restricted Boltzmann Machines: An Introduction.” Pattern Recognition 47 (1): 25–39. doi:10.1016/j.patcog.2013.05.025.
    • (2014) Pattern Recognition , vol.47 , Issue.1 , pp. 25-39
    • Fischer, A.1    Igel, C.2
  • 15
    • 0013344078 scopus 로고    scopus 로고
    • Training Products of Experts by Minimizing Contrastive Divergence
    • G.E.Hinton,. 2002. “Training Products of Experts by Minimizing Contrastive Divergence.” Neural Computation 14 (8): 1771–1800. doi:10.1162/089976602760128018.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 16
    • 84887348655 scopus 로고    scopus 로고
    • Deep Belief Networks
    • G.E.Hinton, 2009. “Deep Belief Networks.” Scholarpedia 4 (5): 5947. doi:10.4249/scholarpedia.5947.
    • (2009) Scholarpedia , vol.4 , Issue.5 , pp. 5947
    • Hinton, G.E.1
  • 17
    • 84872506495 scopus 로고    scopus 로고
    • A Practical Guide to Training Restricted Boltzmann Machines
    • Berlin: Springer
    • G.E.Hinton, 2012. “A Practical Guide to Training Restricted Boltzmann Machines.” In Neural Networks: Tricks of the Trade, 599–619. Berlin: Springer. doi:10.1007/978-3-642-35289-8_32.
    • (2012) Neural Networks: Tricks of the Trade , pp. 599-619
    • Hinton, G.E.1
  • 18
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the Dimensionality of Data with Neural Networks
    • G.E.Hinton,, and R.R.Salakhutdinov. 2006. “Reducing the Dimensionality of Data with Neural Networks.” Science 313 (5786): 504–507. doi:10.1126/science.1127647.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 19
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative Matrix Factorization with Sparseness Constraints
    • P.O.Hoyer, 2004. “Non-negative Matrix Factorization with Sparseness Constraints.” TheJournal of Machine Learning Research 5: 1457–1469. http://dl.acm.org/citation.cfm?id=1005332.1044709.
    • (2004) TheJournal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 20
    • 77957741951 scopus 로고
    • On the Mean Accuracy of Statistical Pattern Recognizers
    • G.Hughes, 1968. “On the Mean Accuracy of Statistical Pattern Recognizers.” IEEE Transactions on Information Theory 14 (1): 55–63. doi:10.1109/TIT.1968.1054102.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 21
    • 0017480895 scopus 로고
    • Spectral Signatures of Particulate Minerals in the Visible and near Infrared
    • G.R.Hunt, 1977. “Spectral Signatures of Particulate Minerals in the Visible and near Infrared.” Geophysics 42 (3): 501–513. doi:10.1190/1.1440721.
    • (1977) Geophysics , vol.42 , Issue.3 , pp. 501-513
    • Hunt, G.R.1
  • 22
    • 0027201479 scopus 로고
    • Binary Coding of Imaging Spectrometer Data for Fast Spectral Matching and Classification
    • X.Jia,, and J.A.Richards. 1993. “Binary Coding of Imaging Spectrometer Data for Fast Spectral Matching and Classification.” Remote Sensing of Environment 43 (1): 47–53. doi:10.1016/0034-4257(93)90063-4.
    • (1993) Remote Sensing of Environment , vol.43 , Issue.1 , pp. 47-53
    • Jia, X.1    Richards, J.A.2
  • 23
    • 84867058657 scopus 로고    scopus 로고
    • Artificial DNA Computing-Based Spectral Encoding and Matching Algorithm for Hyperspectral Remote Sensing Data
    • H.Jiao,, Y.Zhong, and L.Zhang. 2012. “Artificial DNA Computing-Based Spectral Encoding and Matching Algorithm for Hyperspectral Remote Sensing Data.” IEEE Transactions on Geoscience and Remote Sensing 50 (10): 4085–4104. doi:10.1109/TGRS.2012.2188856.
    • (2012) IEEE Transactions on Geoscience and Remote Sensing , vol.50 , Issue.10 , pp. 4085-4104
    • Jiao, H.1    Zhong, Y.2    Zhang, L.3
  • 26
    • 84916618475 scopus 로고    scopus 로고
    • Non-Rigid Visible and Infrared Face Registration via Regularized Gaussian Fields Criterion
    • J.Ma,, J.Zhao, Y.Ma, and J.Tian. 2015. “Non-Rigid Visible and Infrared Face Registration via Regularized Gaussian Fields Criterion.” Pattern Recognition 48 (3): 772–784. doi:10.1016/j.patcog.2014.09.005.
    • (2015) Pattern Recognition , vol.48 , Issue.3 , pp. 772-784
    • Ma, J.1    Zhao, J.2    Ma, Y.3    Tian, J.4
  • 28
    • 85027932133 scopus 로고    scopus 로고
    • Robust Feature Matching for Remote Sensing Image Registration via Locally Linear Transforming
    • J.Ma,, H.Zhou, J.Zhao, Y.Gao, J.Jiang, and J.Tian. 2015. “Robust Feature Matching for Remote Sensing Image Registration via Locally Linear Transforming.” IEEE Transactions on Geoscience and Remote Sensing 53 (12): 6469–6481. doi:10.1109/TGRS.2015.2441954.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.12 , pp. 6469-6481
    • Ma, J.1    Zhou, H.2    Zhao, J.3    Gao, Y.4    Jiang, J.5    Tian, J.6
  • 30
    • 0001134902 scopus 로고    scopus 로고
    • Fast Three-Dimensional Data Compression of Hyperspectral Imagery Using Vector Quantization with Spectral-Feature-Based Binary Coding
    • S.-E.Qian,, A.B.Hollinger, D.Williams, and D.Manak. 1996. “Fast Three-Dimensional Data Compression of Hyperspectral Imagery Using Vector Quantization with Spectral-Feature-Based Binary Coding.” Optical Engineering 35 (11): 3242–3249. doi:10.1117/1.601062.
    • (1996) Optical Engineering , vol.35 , Issue.11 , pp. 3242-3249
    • Qian, S.-E.1    Hollinger, A.B.2    Williams, D.3    Manak, D.4
  • 31
    • 56449102578 scopus 로고    scopus 로고
    • Proceedings of the 25th International Conference on Machine Learning, ACM
    • R.Salakhutdinov,, and I.Murray. 2008. “On the Quantitative Analysis of Deep Belief Networks.” In Proceedings of the 25th International Conference on Machine Learning, 872–879. ACM. doi:10.1145/1390156.1390266.
    • (2008) On the Quantitative Analysis of Deep Belief Networks , pp. 872-879
    • Salakhutdinov, R.1    Murray, I.2
  • 32
    • 17544397208 scopus 로고    scopus 로고
    • Aircraft Emission Measurements by Remote Sensing Methodologies at Airports
    • K.Schäfer,, C.Jahn, P.Sturm, B.Lechner, and M.Bacher. 2003. “Aircraft Emission Measurements by Remote Sensing Methodologies at Airports.” Atmospheric Environment 37 (37): 5261–5271. doi:10.1016/j.atmosenv.2003.09.002.
    • (2003) Atmospheric Environment , vol.37 , Issue.37 , pp. 5261-5271
    • Schäfer, K.1    Jahn, C.2    Sturm, P.3    Lechner, B.4    Bacher, M.5
  • 34
    • 84914166118 scopus 로고    scopus 로고
    • Spectral Matching Approaches in Hyperspectral Image Processing
    • S.Shanmugam,, and P.SrinivasaPerumal. 2014. “Spectral Matching Approaches in Hyperspectral Image Processing.” International Journal of Remote Sensing 35 (24): 8217–8251. doi:10.1080/01431161.2014.980922.
    • (2014) International Journal of Remote Sensing , vol.35 , Issue.24 , pp. 8217-8251
    • Shanmugam, S.1    SrinivasaPerumal, P.2
  • 36
    • 31044447641 scopus 로고    scopus 로고
    • The Effectiveness of Spectral Similarity Measures for the Analysis of Hyperspectral Imagery
    • F.Van der Meer, 2006. “The Effectiveness of Spectral Similarity Measures for the Analysis of Hyperspectral Imagery.” International Journal of Applied Earth Observation and Geoinformation 8 (1): 3–17. doi:10.1016/j.jag.2005.06.001.
    • (2006) International Journal of Applied Earth Observation and Geoinformation , vol.8 , Issue.1 , pp. 3-17
    • Van der Meer, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.